JP3766472B2 - 同調回路 - Google Patents
同調回路 Download PDFInfo
- Publication number
- JP3766472B2 JP3766472B2 JP17581396A JP17581396A JP3766472B2 JP 3766472 B2 JP3766472 B2 JP 3766472B2 JP 17581396 A JP17581396 A JP 17581396A JP 17581396 A JP17581396 A JP 17581396A JP 3766472 B2 JP3766472 B2 JP 3766472B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- phase shift
- signal
- tuning
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Networks Using Active Elements (AREA)
- Channel Selection Circuits, Automatic Tuning Circuits (AREA)
- Amplifiers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ラジオ受信機等に用いられる同調回路に関する。
【0002】
【従来の技術】
AMラジオ等の各種の受信機には種々の周波数の信号が入力されるが、これらの信号の中から所望の信号を選局して受信するには、入力回路にバンドパスフィルタの特性を持たせればよい。また、AMラジオのように広範囲に渡って分布する複数の放送波の中から1つを選局するには、このバンドパスフィルタの中心周波数を任意に変化させればよいが、このような特性を有するバンドパスフィルタが従来存在しなかったことから、スーパーヘテロダイン方式が採用されている。このスーパーヘテロダイン方式は、バンドパスフィルタの中心周波数を変えずに、放送局の周波数をバンドパスフィルタの中心周波数に変換することで、所望の信号のみを取り出すものである。
【0003】
【発明が解決しようとする課題】
ところで、上述した従来の受信機においては、バーアンテナとバリコンによるLC共振回路によって同調回路を形成しており、バリコンが不可欠の構成要素となっていた。また、スーパーヘテロダイン方式を用いた受信機においては、選択度を向上させるために、この入力回路による同調周波数と局部発振回路の発振周波数とを連動させる同調機構を有し、この連動を2連バリコンによって行っていた。上述したバリコンや2連バリコンは受信周波数に応じて所定の静電容量を有するように作られていて大きさが決まっていることから、同調機構全体の小型化や集積化が難しかった。
【0004】
また、スーパーヘテロダイン方式を用いた従来の受信機の局部発振回路や中間周波増幅回路には局部発振トランスや中間周波トランスが使用されており(最近では中間周波増幅をセラミックフィルタを用いて行うものもある)、これらのトランスは外付け部品であって、この点からも同調機構全体の集積化が難しかった。
【0005】
本発明は、このような点に鑑みて創作されたものであり、その目的はバリコンが不要であって集積化に適した同調回路を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述した課題を解決するために、本発明の同調回路は、2つの移相回路と非反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させる。2つの移相回路の全体による位相シフト量の合計は所定の周波数において360°となり、この周波数で同調動作が行われる。また、一方の移相回路に含まれるインダクタをアンテナコイルによって形成するため、放送波等の各種の受信信号を直接同調回路に取り込むことができ、従来不可欠であったバリコンが不要となる。
【0007】
請求項2および5の同調回路は、2つの移相回路を含んで形成される閉ループの一部に分圧回路を挿入し、分圧回路に入力される交流信号を同調出力として取り出すため、同調出力の振幅を大きくできる。
【0008】
請求項3および6の同調回路は、アンテナの1次コイルからなるインダクタと第1の抵抗とで構成されるLR回路を内部に含む移相回路を備えるため、2次コイルから同調信号を取り出すようにすれば、直流成分を効率よくカットすることができ、次段の回路との接続が容易になる。
【0009】
請求項4の同調回路は、2つの移相回路と位相反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させる。2つの移相回路の全体による位相シフト量の合計は所定の周波数において180°となり、この周波数で同調動作が行われる。
【0010】
請求項7の同調回路内の各移相回路は、変換手段によって変換された交流信号をLR回路あるいはCR回路を介して合成するため、各移相回路ともに位相を所定量シフトさせた信号を出力することができる。
【0011】
請求項8の同調回路は、トランジスタを用いて変換手段を構成するため、回路構成を簡略化できる。
【0012】
請求項9および10の同調回路は、2つの移相回路内のCR回路あるいはLR回路の少なくとも一方の時定数を可変するため、同調周波数を任意に変更できる。
【0013】
請求項11の同調回路は、2つの移相回路を含んで形成される閉ループの一部に第4の抵抗を挿入するとともに、閉ループを流れる交流信号の一部を分岐させる第5の抵抗を設けるため、これら第4および第5の抵抗の抵抗比を可変することにより、同調帯域幅を変化させることができる。
【0014】
請求項12の同調回路は、2つの移相回路を含んで形成される閉ループのループゲインを1以下に設定するため、発振することはなく、安定な同調動作が行われる。
【0015】
【発明の実施の形態】
以下、本発明の同調回路を適用した一の実施形態について、図面を参照しながら具体的に説明する。
【0016】
〔第1の実施形態〕
図1は、第1の実施形態の同調回路の構成を示す回路図である。同図に示す同調回路1は、所定周波数の交流信号の位相を合計で360°シフトさせる2つの移相回路10Lおよび30Cと、後段の移相回路30Cの出力信号の位相を変えずに所定の増幅度で増幅して出力する非反転回路50と、非反転回路50の後段に設けられた抵抗162および164からなる分圧回路160と、分圧回路160の出力を前段の移相回路10Lの入力側に帰還させる帰還抵抗70と、帰還抵抗70を介して帰還させた信号の一部を分岐するために設けられた可変抵抗74とを含んで構成されている。
【0017】
帰還抵抗70と直列に接続されたキャパシタ72、および可変抵抗74に直列に接続されたキャパシタ73はともに直流電流を阻止するためのものであり、そのインピーダンスは動作周波数において極めて小さく、すなわち大きな静電容量を有している。
【0018】
図2は、図1に示した前段の移相回路10Lの構成を抜き出して示したものである。同図に示す前段の移相回路10Lは、ゲートが入力端22に接続されたFET12と、このFET12のソース・ドレイン間に直列に接続されたインダクタ17および抵抗16と、FET12のドレインと正電源との間に接続された抵抗18と、FET12のソースとアースとの間に接続された抵抗20とを含んで構成されている。
【0019】
このような構成を有する移相回路10Lにおいて、インダクタ17にはAM受信機やFM受信機などのアンテナコイルが用いられる。また、図2に示したFET12のソースおよびドレインに接続された2つの抵抗20、18の抵抗値はほぼ等しく設定されている。
【0020】
なお、図1に示した移相回路10L内の抵抗26は、FET12のゲート電位を設定するためのものである。また、抵抗16とFET12のドレインとの間に挿入されたキャパシタ13は直流電流阻止用であり、そのインピーダンスは動作周波数において極めて小さく設定され、すなわち大きな静電容量を有している。
【0021】
図2に示す入力端22に所定の交流信号が入力されると、すなわちFET12のゲートに所定の交流電圧(入力電圧)が印加されると、FET12のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET12のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEi とする。
【0022】
このFET12のソース・ドレイン間にはインダクタ17と抵抗16とにより構成される直列回路(LR回路)が接続されている。したがって、FET12のソースおよびドレインに現れる電圧のそれぞれをインダクタ17あるいは抵抗16を介して合成した信号が出力端24から出力される。
【0023】
図3は、前段の移相回路10Lの入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図である。抵抗16とインダクタ17の接続点とグランドレベルとの電位差を出力電圧Eo として取り出すものとすると、この出力電圧Eo は、図3に示した半円においてその中心点を始点とし、電圧VR1と電圧VL1とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei に等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
【0024】
また、図3から明らかなように、電圧VR1と電圧VL1とは円周上で直角に交わるため、理論的にはFET12のゲートに印加される入力電圧と電圧VR1との位相差は、周波数ωが0から∞まで変化するに従って0°から90°まで変化する。そして、移相回路10L全体の位相シフト量φ1 はその2倍であり、周波数に応じて0°から180°まで変化する。
【0025】
同様に、図4は図1に示した後段の移相回路30Cの構成を抜き出して示したものである。同図に示す後段の移相回路30Cは、ゲートが入力端42に接続されたFET32と、このFET32のソース・ドレイン間に直列に接続されたキャパシタ34および可変抵抗36と、FET32のドレインと正電源との間に接続された抵抗38と、FET32のソースとアースとの間に接続された抵抗40とを含んで構成されている。移相回路10Cと同様に、図4に示したFET32のソースおよびドレインに接続された2つの抵抗40、38の抵抗値はほぼ等しく設定されている。
【0026】
なお、図1に示した移相回路30C内の抵抗46はFET32に適切なバイアス電圧を印加するためのものであり、移相回路30Cと10Lとの間に設けられたキャパシタ48は、移相回路10Lの出力から直流成分を取り除く直流電流阻止用であり、交流成分のみが移相回路30Cに入力される。
【0027】
図4に示した入力端42に所定の交流信号が入力されると、すなわちFET32のゲートに所定の交流電圧(入力電圧)が印加されると、FET32のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET32のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEi とする。
【0028】
このFET32のソース・ドレイン間にはキャパシタ34と可変抵抗36とにより構成される直列回路が接続されている。したがって、FET32のソースおよびドレインに現れる電圧のそれぞれをキャパシタ34あるいは可変抵抗36を介して合成した信号が出力端44から出力される。
【0029】
図5は、後段の移相回路30Cのキャパシタ等に現れる電圧との関係を示すベクトル図である。可変抵抗36とキャパシタ34の接続点とグランドレベルとの電位差を出力電圧Eo として取り出すものとすると、この出力電圧Eo は、図5に示した半円においてその中心点を始点とし、電圧VR2と電圧VC2とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei に等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
【0030】
また、図5から明らかなように、電圧VR2と電圧VC2とは円周上で直角に交わるため、理論的にはFET32のゲートに印加される入力電圧と電圧VR2との位相差は、周波数ωが0から∞まで変化するに従って90°から0°まで変化する。そして、移相回路30C全体の位相シフト量φ2 はその2倍であり、周波数に応じて180°から0°まで変化する。
【0031】
このようにして、2つの移相回路10L、30Cのそれぞれにおいて位相が所定量シフトされる。しかも、図3および図5に示すように、所定の周波数において2つの移相回路10L、30Cの全体により位相シフト量の合計が360°となり、このとき2つの移相回路10L、30C、分圧回路160および帰還抵抗70により形成される帰還ループのループゲインを1以下に設定することにより、帰還ループの一部に入力した信号の中から上述した所定の周波数成分のみを抽出する同調動作が行われる。
【0032】
図1に示した同調回路1においては、帰還ループに含まれるインダクタ17としてアンテナコイルを用いているため、放送波等がこのアンテナコイルに到達するとインダクタ17が電圧源としても機能することになり、等価的には帰還ループの一部にこの電圧源で発生する交流信号が入力されると考えることができる。
【0033】
図6は、図1に示した同調回路の一部に対応した等価回路を示す図である。同図では、図1に示した移相回路10L内のインダクタ17を、単なるインダクタ17′として機能する部分と信号源として機能する部分とに分離して示している。具体的には、帰還ループの外部に接続された電圧源76から入力される交流信号によってインダクタの両端に所定の交流電圧が発生すると等価的に考えることができ、この電圧源76によって発生された所定の交流信号は可変抵抗74およびキャパシタ73を介して移相回路10Lに入力される。
【0034】
したがって、等価的には抵抗70を介して帰還される信号と信号源76によって発生した信号とが加算され、この加算された信号が前段の移相回路10Lに入力されて閉ループ内を流れる。
【0035】
図7は、図1に示した同調回路1の構成を部分的に図6に示した等価的な構成に置き換えた場合であって、2つの移相回路10L、30C、非反転回路50および分圧回路160の全体を伝達関数K1 を有する回路に置き換えたシステム図であり、伝達関数K1 を有する回路と並列に抵抗R0 を有する帰還抵抗70が、直列に帰還抵抗70のn倍の抵抗値(nR0 )を有する入力抵抗74が接続されている。図8は、図7に示すシステムをミラーの定理によって変換したシステム図であり、変換後のシステム全体の伝達関数Aは、
A=Vo /Vi =K1 /{n(1−K1 )+1} ・・・(1)
で表すことができる。
【0036】
ところで、前段の移相回路10Lの伝達関数K2 は、インダクタ17と抵抗16からなるLR回路の時定数をT1 (インダクタ17のインダクタンスをL、抵抗16の抵抗値をRとするとT1 =L/R)とすると、
K2 =a1 (1−T1 s)/(1+T1 s) ・・・(2)
となる。ここで、s=jω、a1 は移相回路10Lの利得であって1未満の値となる。
【0037】
また、後段の移相回路30Cの伝達関数K3 は、キャパシタ34と可変抵抗36からなるCR回路の時定数をT2 (可変抵抗36の抵抗値をR、キャパシタ34の静電容量をCとするとT2 =CR)とすると、
K3 =−a2 (1−T2 s)/(1+T2 s) ・・・(3)
となる。ここで、a2 は移相回路30Cの利得であって1未満の値となる。
【0038】
また、分圧回路160の利得をa3 (≦1)とするとともに、これら移相回路10L、30Cおよび分圧回路160による信号振幅の減衰分を補うために、非反転回路50の利得を1/a1 a2 a3 とすると、移相回路10L、30C、非反転回路50および分圧回路160を縦続接続した場合の全体の伝達関数K1 は、
K1 =−{1+(Ts)2 −2Ts}/{1+(Ts)2 +2Ts}・・・(4)
となる。なお、計算を簡単なものとするために、各移相回路の時定数T1 、T2 をともにTとした。この(4)式を上述した(1)式に代入すると、
となる。
【0039】
この(5)式によれば、ω=0(直流の領域)のときにA=−1/(2n+1)となって、最大減衰量を与えることがわかる。また、ω=∞のときにもA=−1/(2n+1)となって、最大減衰量を与えることがわかる。さらに、ω=1/Tの同調点(一般には各移相回路の時定数が異なるので、ω=1/√(T1 ・T2 )の同調点)においてはA=1であって図1に示した抵抗70と74の抵抗比nに無関係であって、図9に示すように、同調帯域幅(すなわちQ)と最大減衰量が任意に設定可能なバンドパスフィルタとして動作することがわかる。
【0040】
また、上述した同調回路1は、前段の移相回路10Lに含まれるインダクタ17をアンテナコイルによって形成しているため、放送波等の各種の受信信号を直接同調回路1に取り込むことができ、従来不可欠であったバリコンが不要となる。このため、アンテナコイルを除く同調回路1全体を半導体基板上に形成することができ、集積化にも適する。
【0041】
また、同調回路1の後段の移相回路30Cに含まれる可変抵抗36の抵抗値を可変することにより、閉ループを一巡したときの位相シフト量の合計が360°となる周波数を変えることができる。したがって、同調回路1の中心周波数(同調周波数)を任意に変えることができ、必ずしも従来のようにスーパーヘテロダイン方式を用いなくとも受信機を構成することができる。このため、スーパーヘテロダイン方式の受信機では不可欠であった中間周波トランスや局部発振トランス等が不要となり、同調機構全体、さらには受信機のほとんどを半導体基板上に一体形成することも可能となる。
【0042】
また、前段の移相回路10Lの入力側に接続された可変抵抗74の抵抗値を変えることにより同調帯域幅、すなわちバンドパスフィルタのQを可変することができる。これにより、同調回路1を用いて構成した受信機において、混信が生じる場合には可変抵抗74の抵抗値を調整することにより同調帯域幅を狭くして混信を防ぎ、反対に混信が少ない場合においては可変抵抗74の抵抗値を調整することにより同調帯域幅を広げて受信信号を忠実に再現することが可能となり、混信状態に応じて最適な受信機を設計できる。
【0043】
なお、上述した同調回路はFETを用いて各移相回路を構成したが、バイポーラ型のトランジスタを用いて各移相回路を構成してもよい。バイポーラ型のトランジスタを用いると、FETを用いた場合に比べて各移相回路を通過する際の信号振幅の減衰が少なくなるため、後段の非反転回路や位相反転回路の増幅度を低くすることができる。ただし、後段の移相回路内にバイポーラトランジスタを設けると、バイポーラトランジスタは入力インピーダンスが低いことから、前段の移相回路の位相シフト量が変化するおそれがある。このため、信号振幅の減衰を少なくするために前段の移相回路内にバイポーラトランジスタを設け、かつ高入力インピーダンスとするために後段の移相回路内にFETを設けるのがより望ましい。
【0044】
〔第2の実施形態〕
図10は、第2の実施形態の同調回路の構成を示す回路図であり、図1に示した同調回路1の前段および後段の移相回路10L、30Cをそれぞれ移相回路30L、10Cに置き換えた構成を有している。
【0045】
図10に示す前段の移相回路30Lは、図1に示した移相回路30C内のキャパシタ34と可変抵抗36からなるCR回路を、抵抗35とインダクタ37からなるLR回路に置き換えたものであり、このインダクタ37はアンテナコイルを用いて形成されており、移相回路30Lの入出力電圧の関係は移相回路30Cの入出力電圧間の関係と同じである。
【0046】
同様に、図10に示した後段の移相回路10Cは、図1に示した移相回路10L内のインダクタ17と抵抗16からなるLR回路を、可変抵抗15とキャパシタ14からなるCR回路に置き換えたものである。この移相回路10Cの入出力電圧の関係は移相回路10Lの入出力電圧との関係と同じである。
【0047】
このように、同調回路1A内の移相回路30L、10Cは、図1に示した同調回路1内の2つの移相回路10L、30Cと等価であり、前段の移相回路30L内にアンテナコイルにより構成したインダクタ37を含むことも同じであるから、図1に示した同調回路1と同様の効果が得られる。
【0048】
〔第3の実施形態〕
上述した第1の実施形態の同調回路1、1Aは、各同調回路を構成する2つの移相回路による位相シフト量の合計が360°となる周波数で所定の同調動作を行っていたが、2つの移相回路による位相シフト量の合計が180°となる周波数で所定の同調増幅を行うようにしてもよい。
【0049】
図11は、第3の実施形態の同調回路1Bの詳細な構成を示す回路図である。同図に示す同調回路1Bは、所定の周波数において合計で180°の位相シフトを行う2つの移相回路10Lおよび10Cと、後段の移相回路10Cの出力信号の位相をさらに反転する位相反転回路80と、帰還抵抗70と、可変抵抗74とを含んで構成されている。
【0050】
前段の移相回路10Lは、その詳細構成および入出力信号の位相関係は図2および図3を用いて説明した通りであり、例えば抵抗16とインダクタ17からなるLR回路の時定数をT1 とすると、ω=1/T1 近傍の周波数において位相シフト量φ1 がほぼ90°となる。
【0051】
また、後段の移相回路10Cの入出力電圧の関係は、第1図に示した前段の移相回路10Lの入出力電圧の関係と同じであり、例えばキャパシタ14と可変抵抗15からなるCR回路の時定数をT1 ′とすると、ω=1/T1 ′近傍の周波数において位相シフト量φ1 ′はほぼ90°となる。
【0052】
このように、2つの移相回路10Lおよび10Cの全体による位相シフト量の合計が所定の周波数において、φ1 +φ1 ′=180°となる。
【0053】
また、位相反転回路80は、ドレインと正電源との間に抵抗84が、ソースとアースとの間に抵抗86がそれぞれ接続されたFET82と、FET82のゲートに所定のバイアス電圧を印加する抵抗88とを含んで構成されている。FET82のゲートに交流信号が入力されると、トランジスタ82のドレインからは位相を反転した逆相の信号が出力される。また、この位相反転回路80は、2つの抵抗84、86の抵抗比によって定まる所定の増幅度を有する。
【0054】
このように、所定の周波数において、2つの移相回路10Lおよび10Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路80によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
【0055】
また、位相反転回路80の出力は、出力端子92から同調回路1Bの出力として取り出されるとともに、その出力を分圧回路160により分圧した電圧が帰還抵抗70を介して前段の移相回路10Lの入力側に帰還されている。
【0056】
このように、一方の移相回路10Lにアンテナコイルで形成したインダクタ17を含めるとともに、位相反転回路80の出力を帰還抵抗70を介して前段の移相回路10Lの入力側に帰還させ、この帰還ループのループゲインを1以下に設定することにより、所定の同調動作を行わせることができる。したがって、図1に示した同調回路1等と同様に、任意に同調周波数を変えることができ、バリコンが不要であって集積化に適するという特長を有している。
【0057】
〔第4の実施形態〕
図11に示した同調回路は、移相回路10Lと10Cを縦続接続する例を示したが、図12に示すように移相回路30Lと30Cを縦続接続する場合も同調動作を行わせることができる。
【0058】
2つの移相回路30Lおよび30Cの全体による位相シフト量の合計が所定の周波数において、φ2 ′+φ2 =180°となり、この所定の周波数において、2つの移相回路30Lおよび30Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路80によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
【0059】
〔第5の実施形態〕
上述した各種の同調回路では、アンテナコイルで形成したインダクタを移相回路内に設ける例を説明したが、AM受信機等のバーアンテナの1次コイルおよび2次コイルを利用して同調回路を構成することもできる。
【0060】
図13は同調回路の第5の実施形態の詳細構成を示す回路図である。同図に示す同調回路1Dは、移相回路110Lと、移相回路30Cと、非反転回路80とを縦続接続して構成され、移相回路110Lは抵抗16およびインダクタ117AからなるLR回路を含んでいる。インダクタ117Aは、AM受信機等のバーアンテナの1次コイルを用いて構成され、この1次コイルには2次コイル117Bが磁気結合されており、この2次コイル117Bの両端から同調回路の出力、すなわち同調信号が取り出される。また、図13に示す同調回路1内の後段の移相回路30Cの出力は分圧回路を介することなく前段の移相回路110Lの入力側に帰還されている。その他の構成は、図1に示した同調回路と共通する。
【0061】
図14は、図13に示す同調回路を含むAM受信機のブロック構成図である。同図に示すAM受信機は、図13に示した同調回路1D、AM検波回路2、低周波増幅回路3およびスピーカ4を含んで構成され、AM検波回路2には同調回路1内の2次コイルから出力される同調信号が入力される。
【0062】
図14に示すAM受信機において、同調回路に含まれるバーアンテナ17によりAM波が受信されるとバーアンテナ117の1次コイルからなるインダクタ117Aの両端にはAM波に含まれる各種周波数の交流電圧が発生する。この各種周波数の交流信号の中で、2つの移相回路110L、30Cを合わせた位相シフト量の合計が360°以外の成分は同調回路1Dの閉ループを介して帰還されることにより減衰し、その結果位相シフト量の合計が360°となる周波数成分のみが選択されて、2次コイル117Bから同調信号として出力される。この同調信号はAM検波回路2でAM検波されて音声信号に変換された後、低周波増幅回路3で増幅されてスピーカ4から出力される。
【0063】
このように、前段の移相回路110L内のインダクタ117Aをバーアンテナ117の1次コイルにより構成したため、バーアンテナ117で受信した放送波等の各種の受信信号を直接同調回路1Dに取り込むことができ、従来不可欠であったバリコンが不要となる。このため、バーアンテナ117を除く同調回路1D全体を半導体基板上に形成することができ、小型化およびコストの低減が図れる。
【0064】
また、1次コイルと磁気結合された2次コイル117Bから同調信号を取り出すため、直流成分をカットすることができ、次段の回路との接続が容易になる。なお、実際に図13に示す同調回路1を組み立てて出力波形を測定したところ、閉ループの一部から同調信号を直接取り出す場合に比べてノイズを低減することができた。
【0065】
また、例えば従来のAM受信機のようにLC共振回路によって同調を行う場合には、使用するバリコンの静電容量や可変範囲の制約から、バーアンテナ117のインダクタンスを十分に大きくする必要があった。これに対し、本実施形態の同調回路1では、インダクタンスを抵抗と組み合わせているため、インダクタのインダクタンスをある程度自由に設定することができる。したがって、バーアンテナのインダクタンスを従来より小さくすることができ、受信機全体を小型化できる。
【0066】
なお、図14では、図1に示した同調回路をAM受信機に適用した例を説明したが、FM受信機に適用することも可能である。その場合には、図14に示すAM検波回路をFM検波回路に置き換えればよい。
【0067】
〔第6の実施形態〕
図13では、図1に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を説明したが、同様に、図10、11、12に示す同調回路1A、1B、1Cのそれぞれについても、前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換え、このバーアンテナの2次コイルから同調出力を取り出すようにしてもよい。
【0068】
図15、16、17のそれぞれは、図10、11、12に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えるとともに、分圧回路160を取り除いた例を示す回路図である。
【0069】
図15、16、17のいずれの場合も、1次コイルと磁気結合された2次コイルから同調信号を取り出すため、直流分をカットすることができ、次段の回路との接続が容易になる。
【0070】
〔その他の実施形態〕
本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【0071】
例えば、上述した各種の同調回路は、位相シフトに着目すると2つの移相回路と非反転回路、あるいは2つの移相回路と位相反転回路によって構成されており、接続された3つの回路の全体によって所定の周波数において合計の位相シフト量を360°にすることにより所定の同調動作を行うようになっている。したがって、位相シフト量だけに着目すると、2つの移相回路のどちらを前段に用いるか、あるいは3つの回路をどのような順番で接続するかはある程度の自由度があり、必要に応じて接続順番を決めることができる。
【0072】
また、上述した各種の同調回路においては、アンテナコイルやバーアンテナ117の1次コイルにより構成されたインダクタを前段の移相回路内に設けているが、前段と後段の移相回路の配置を入れ換えて、後段の移相回路内にインダクタを設けてもよい。
【0073】
また、上述した各種の同調回路においては、LR回路を内部に含む移相回路とCR回路を内部に含む移相回路を縦続接続する例を説明したが、LR回路を内部に含む2つの移相回路を縦続接続してもよい。
【0074】
また、上述した各種の同調回路においては、一方の移相回路のみに可変抵抗を設けているが、両方の移相回路内に可変抵抗を設けてもよい。例えば、図1に示した抵抗16を可変抵抗に置き換えてもよい。両方の移相回路内に可変抵抗を設けると、2つの移相回路による位相シフト量の合計を大きくできるため、同調回路全体の同調周波数の可変範囲を広げることができる。
【0075】
また、第4の実施形態までに示した各種の同調回路においては、後段の移相回路の出力側に分圧回路を接続しているが、この分圧回路を省略し、後段の移相回路の出力を直接前段の移相回路の入力側に帰還させてもよい。
【0076】
なお、上述した各種の同調回路内の可変抵抗(例えば図1の可変抵抗36)は、例えばFETによって構成できる。この場合、1個のFETによって可変抵抗を構成してもよいが、pチャネルのFETとnチャネルのFETとを並列接続して1つの可変抵抗を構成してもよい。このように、2つのFETを組み合わせて可変抵抗を構成することにより、FETの非線形領域の改善を行うことができるため、同調出力の歪みを少なくすることができる。
【0077】
【発明の効果】
上述したように本発明の同調回路は、所定の同調周波数を有するバンドパスフィルタとして動作し、しかも一方の移相回路に含まれるインダクタをアンテナコイルによって形成しているため、放送波等の各種の受信信号を直接同調回路に取り込むことができ、従来不可欠であったバリコンが不要となる。このため、インダクタを除く同調回路全体を半導体基板上に形成することができ、集積化に適する。
【0078】
また、少なくとも一方の移相回路に含まれる可変抵抗の抵抗値を可変することにより、同調回路の閉ループを一巡したときに位相量の合計が360°となる周波数を変えることができるため、同調周波数を任意に変えることができ、必ずしも従来のようにスーパーヘテロダイン方式を用いなくとも受信機を構成することが可能となる。このため、スーパーヘテロダイン方式の受信機では不可欠であった中間周波トランスや局部発振トランス等が不要となり、同調機構全体、さらには受信機のほとんどを半導体基板上に一体形成することも可能となる。
【0079】
また、前段の移相回路の入力側に接続された抵抗あるいは帰還抵抗の少なくとも一方の抵抗値を変えることにより同調帯域幅、すなわちバンドパスフィルタのQを可変することができるため、例えば同調回路を用いて構成した受信機において、混信が生じる場合には同調帯域幅を狭くして混信を防ぎ、反対に混信が少ない場合においては同調帯域幅を広げて受信信号を忠実に再現するといったことが可能であり、混信状態に応じて最適な受信機の設計が可能となる。
【0080】
また、バーアンテナ等の2次コイルから同調信号を出力するため、同調信号に含まれる直流成分を除去することができ、次段の回路との接続が容易になる。
【図面の簡単な説明】
【図1】第1の実施形態の同調回路の構成を示す回路図である。
【図2】図1に示す前段の移相回路の構成を示す回路図である。
【図3】図2に示した移相回路の入出力電圧とインダクタ等に現れる電圧の関係を示すベクトル図である。
【図4】図1に示す後段の移相回路の構成を示す回路図である。
【図5】図4に示した移相回路の入出力電圧とキャパシタ等に現れる電圧の関係を示すベクトル図である。
【図6】図1に示した同調回路の一部に対応した等価回路を示す図である。
【図7】同調回路内の2つの移相回路および分圧回路の全体を所定の伝達関数を有する回路に置き換えた図である。
【図8】図7に示す回路をミラーの定理によって変換した図である。
【図9】図1に示す同調回路の特性図である。
【図10】第2の実施形態の同調回路の構成を示す回路図である。
【図11】第3の実施形態の同調回路の構成を示す回路図である。
【図12】第4の実施形態の同調回路の構成を示す回路図である。
【図13】第5の実施形態の同調回路の構成を示す回路図である。
【図14】図13に示す同調回路を含むAM受信機のブロック構成図である。
【図15】図10に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【図16】図11に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【図17】図12に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【符号の説明】
1 同調回路
10L、30C 移相回路
12、32 FET
13、34 キャパシタ
16、18、20、38、40 抵抗
17 インダクタ
36、74 可変抵抗
70 帰還抵抗
160 分圧回路
【発明の属する技術分野】
本発明は、ラジオ受信機等に用いられる同調回路に関する。
【0002】
【従来の技術】
AMラジオ等の各種の受信機には種々の周波数の信号が入力されるが、これらの信号の中から所望の信号を選局して受信するには、入力回路にバンドパスフィルタの特性を持たせればよい。また、AMラジオのように広範囲に渡って分布する複数の放送波の中から1つを選局するには、このバンドパスフィルタの中心周波数を任意に変化させればよいが、このような特性を有するバンドパスフィルタが従来存在しなかったことから、スーパーヘテロダイン方式が採用されている。このスーパーヘテロダイン方式は、バンドパスフィルタの中心周波数を変えずに、放送局の周波数をバンドパスフィルタの中心周波数に変換することで、所望の信号のみを取り出すものである。
【0003】
【発明が解決しようとする課題】
ところで、上述した従来の受信機においては、バーアンテナとバリコンによるLC共振回路によって同調回路を形成しており、バリコンが不可欠の構成要素となっていた。また、スーパーヘテロダイン方式を用いた受信機においては、選択度を向上させるために、この入力回路による同調周波数と局部発振回路の発振周波数とを連動させる同調機構を有し、この連動を2連バリコンによって行っていた。上述したバリコンや2連バリコンは受信周波数に応じて所定の静電容量を有するように作られていて大きさが決まっていることから、同調機構全体の小型化や集積化が難しかった。
【0004】
また、スーパーヘテロダイン方式を用いた従来の受信機の局部発振回路や中間周波増幅回路には局部発振トランスや中間周波トランスが使用されており(最近では中間周波増幅をセラミックフィルタを用いて行うものもある)、これらのトランスは外付け部品であって、この点からも同調機構全体の集積化が難しかった。
【0005】
本発明は、このような点に鑑みて創作されたものであり、その目的はバリコンが不要であって集積化に適した同調回路を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述した課題を解決するために、本発明の同調回路は、2つの移相回路と非反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させる。2つの移相回路の全体による位相シフト量の合計は所定の周波数において360°となり、この周波数で同調動作が行われる。また、一方の移相回路に含まれるインダクタをアンテナコイルによって形成するため、放送波等の各種の受信信号を直接同調回路に取り込むことができ、従来不可欠であったバリコンが不要となる。
【0007】
請求項2および5の同調回路は、2つの移相回路を含んで形成される閉ループの一部に分圧回路を挿入し、分圧回路に入力される交流信号を同調出力として取り出すため、同調出力の振幅を大きくできる。
【0008】
請求項3および6の同調回路は、アンテナの1次コイルからなるインダクタと第1の抵抗とで構成されるLR回路を内部に含む移相回路を備えるため、2次コイルから同調信号を取り出すようにすれば、直流成分を効率よくカットすることができ、次段の回路との接続が容易になる。
【0009】
請求項4の同調回路は、2つの移相回路と位相反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させる。2つの移相回路の全体による位相シフト量の合計は所定の周波数において180°となり、この周波数で同調動作が行われる。
【0010】
請求項7の同調回路内の各移相回路は、変換手段によって変換された交流信号をLR回路あるいはCR回路を介して合成するため、各移相回路ともに位相を所定量シフトさせた信号を出力することができる。
【0011】
請求項8の同調回路は、トランジスタを用いて変換手段を構成するため、回路構成を簡略化できる。
【0012】
請求項9および10の同調回路は、2つの移相回路内のCR回路あるいはLR回路の少なくとも一方の時定数を可変するため、同調周波数を任意に変更できる。
【0013】
請求項11の同調回路は、2つの移相回路を含んで形成される閉ループの一部に第4の抵抗を挿入するとともに、閉ループを流れる交流信号の一部を分岐させる第5の抵抗を設けるため、これら第4および第5の抵抗の抵抗比を可変することにより、同調帯域幅を変化させることができる。
【0014】
請求項12の同調回路は、2つの移相回路を含んで形成される閉ループのループゲインを1以下に設定するため、発振することはなく、安定な同調動作が行われる。
【0015】
【発明の実施の形態】
以下、本発明の同調回路を適用した一の実施形態について、図面を参照しながら具体的に説明する。
【0016】
〔第1の実施形態〕
図1は、第1の実施形態の同調回路の構成を示す回路図である。同図に示す同調回路1は、所定周波数の交流信号の位相を合計で360°シフトさせる2つの移相回路10Lおよび30Cと、後段の移相回路30Cの出力信号の位相を変えずに所定の増幅度で増幅して出力する非反転回路50と、非反転回路50の後段に設けられた抵抗162および164からなる分圧回路160と、分圧回路160の出力を前段の移相回路10Lの入力側に帰還させる帰還抵抗70と、帰還抵抗70を介して帰還させた信号の一部を分岐するために設けられた可変抵抗74とを含んで構成されている。
【0017】
帰還抵抗70と直列に接続されたキャパシタ72、および可変抵抗74に直列に接続されたキャパシタ73はともに直流電流を阻止するためのものであり、そのインピーダンスは動作周波数において極めて小さく、すなわち大きな静電容量を有している。
【0018】
図2は、図1に示した前段の移相回路10Lの構成を抜き出して示したものである。同図に示す前段の移相回路10Lは、ゲートが入力端22に接続されたFET12と、このFET12のソース・ドレイン間に直列に接続されたインダクタ17および抵抗16と、FET12のドレインと正電源との間に接続された抵抗18と、FET12のソースとアースとの間に接続された抵抗20とを含んで構成されている。
【0019】
このような構成を有する移相回路10Lにおいて、インダクタ17にはAM受信機やFM受信機などのアンテナコイルが用いられる。また、図2に示したFET12のソースおよびドレインに接続された2つの抵抗20、18の抵抗値はほぼ等しく設定されている。
【0020】
なお、図1に示した移相回路10L内の抵抗26は、FET12のゲート電位を設定するためのものである。また、抵抗16とFET12のドレインとの間に挿入されたキャパシタ13は直流電流阻止用であり、そのインピーダンスは動作周波数において極めて小さく設定され、すなわち大きな静電容量を有している。
【0021】
図2に示す入力端22に所定の交流信号が入力されると、すなわちFET12のゲートに所定の交流電圧(入力電圧)が印加されると、FET12のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET12のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEi とする。
【0022】
このFET12のソース・ドレイン間にはインダクタ17と抵抗16とにより構成される直列回路(LR回路)が接続されている。したがって、FET12のソースおよびドレインに現れる電圧のそれぞれをインダクタ17あるいは抵抗16を介して合成した信号が出力端24から出力される。
【0023】
図3は、前段の移相回路10Lの入出力電圧とインダクタ等に現れる電圧との関係を示すベクトル図である。抵抗16とインダクタ17の接続点とグランドレベルとの電位差を出力電圧Eo として取り出すものとすると、この出力電圧Eo は、図3に示した半円においてその中心点を始点とし、電圧VR1と電圧VL1とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei に等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
【0024】
また、図3から明らかなように、電圧VR1と電圧VL1とは円周上で直角に交わるため、理論的にはFET12のゲートに印加される入力電圧と電圧VR1との位相差は、周波数ωが0から∞まで変化するに従って0°から90°まで変化する。そして、移相回路10L全体の位相シフト量φ1 はその2倍であり、周波数に応じて0°から180°まで変化する。
【0025】
同様に、図4は図1に示した後段の移相回路30Cの構成を抜き出して示したものである。同図に示す後段の移相回路30Cは、ゲートが入力端42に接続されたFET32と、このFET32のソース・ドレイン間に直列に接続されたキャパシタ34および可変抵抗36と、FET32のドレインと正電源との間に接続された抵抗38と、FET32のソースとアースとの間に接続された抵抗40とを含んで構成されている。移相回路10Cと同様に、図4に示したFET32のソースおよびドレインに接続された2つの抵抗40、38の抵抗値はほぼ等しく設定されている。
【0026】
なお、図1に示した移相回路30C内の抵抗46はFET32に適切なバイアス電圧を印加するためのものであり、移相回路30Cと10Lとの間に設けられたキャパシタ48は、移相回路10Lの出力から直流成分を取り除く直流電流阻止用であり、交流成分のみが移相回路30Cに入力される。
【0027】
図4に示した入力端42に所定の交流信号が入力されると、すなわちFET32のゲートに所定の交流電圧(入力電圧)が印加されると、FET32のソースにはこの入力電圧と同相の交流電圧が現れ、反対にFET32のドレインにはこの入力電圧と逆相であってソースに現れる電圧と振幅が等しい交流電圧が現れる。このソースおよびドレインに現れる交流電圧の振幅をともにEi とする。
【0028】
このFET32のソース・ドレイン間にはキャパシタ34と可変抵抗36とにより構成される直列回路が接続されている。したがって、FET32のソースおよびドレインに現れる電圧のそれぞれをキャパシタ34あるいは可変抵抗36を介して合成した信号が出力端44から出力される。
【0029】
図5は、後段の移相回路30Cのキャパシタ等に現れる電圧との関係を示すベクトル図である。可変抵抗36とキャパシタ34の接続点とグランドレベルとの電位差を出力電圧Eo として取り出すものとすると、この出力電圧Eo は、図5に示した半円においてその中心点を始点とし、電圧VR2と電圧VC2とが交差する円周上の一点を終点とするベクトルで表すことができ、その大きさは半円の半径Ei に等しくなる。しかも、入力信号の周波数が変化しても、このベクトルの終点は円周上を移動するだけであるため、周波数に応じて出力振幅が変化しない安定した出力を得ることができる。
【0030】
また、図5から明らかなように、電圧VR2と電圧VC2とは円周上で直角に交わるため、理論的にはFET32のゲートに印加される入力電圧と電圧VR2との位相差は、周波数ωが0から∞まで変化するに従って90°から0°まで変化する。そして、移相回路30C全体の位相シフト量φ2 はその2倍であり、周波数に応じて180°から0°まで変化する。
【0031】
このようにして、2つの移相回路10L、30Cのそれぞれにおいて位相が所定量シフトされる。しかも、図3および図5に示すように、所定の周波数において2つの移相回路10L、30Cの全体により位相シフト量の合計が360°となり、このとき2つの移相回路10L、30C、分圧回路160および帰還抵抗70により形成される帰還ループのループゲインを1以下に設定することにより、帰還ループの一部に入力した信号の中から上述した所定の周波数成分のみを抽出する同調動作が行われる。
【0032】
図1に示した同調回路1においては、帰還ループに含まれるインダクタ17としてアンテナコイルを用いているため、放送波等がこのアンテナコイルに到達するとインダクタ17が電圧源としても機能することになり、等価的には帰還ループの一部にこの電圧源で発生する交流信号が入力されると考えることができる。
【0033】
図6は、図1に示した同調回路の一部に対応した等価回路を示す図である。同図では、図1に示した移相回路10L内のインダクタ17を、単なるインダクタ17′として機能する部分と信号源として機能する部分とに分離して示している。具体的には、帰還ループの外部に接続された電圧源76から入力される交流信号によってインダクタの両端に所定の交流電圧が発生すると等価的に考えることができ、この電圧源76によって発生された所定の交流信号は可変抵抗74およびキャパシタ73を介して移相回路10Lに入力される。
【0034】
したがって、等価的には抵抗70を介して帰還される信号と信号源76によって発生した信号とが加算され、この加算された信号が前段の移相回路10Lに入力されて閉ループ内を流れる。
【0035】
図7は、図1に示した同調回路1の構成を部分的に図6に示した等価的な構成に置き換えた場合であって、2つの移相回路10L、30C、非反転回路50および分圧回路160の全体を伝達関数K1 を有する回路に置き換えたシステム図であり、伝達関数K1 を有する回路と並列に抵抗R0 を有する帰還抵抗70が、直列に帰還抵抗70のn倍の抵抗値(nR0 )を有する入力抵抗74が接続されている。図8は、図7に示すシステムをミラーの定理によって変換したシステム図であり、変換後のシステム全体の伝達関数Aは、
A=Vo /Vi =K1 /{n(1−K1 )+1} ・・・(1)
で表すことができる。
【0036】
ところで、前段の移相回路10Lの伝達関数K2 は、インダクタ17と抵抗16からなるLR回路の時定数をT1 (インダクタ17のインダクタンスをL、抵抗16の抵抗値をRとするとT1 =L/R)とすると、
K2 =a1 (1−T1 s)/(1+T1 s) ・・・(2)
となる。ここで、s=jω、a1 は移相回路10Lの利得であって1未満の値となる。
【0037】
また、後段の移相回路30Cの伝達関数K3 は、キャパシタ34と可変抵抗36からなるCR回路の時定数をT2 (可変抵抗36の抵抗値をR、キャパシタ34の静電容量をCとするとT2 =CR)とすると、
K3 =−a2 (1−T2 s)/(1+T2 s) ・・・(3)
となる。ここで、a2 は移相回路30Cの利得であって1未満の値となる。
【0038】
また、分圧回路160の利得をa3 (≦1)とするとともに、これら移相回路10L、30Cおよび分圧回路160による信号振幅の減衰分を補うために、非反転回路50の利得を1/a1 a2 a3 とすると、移相回路10L、30C、非反転回路50および分圧回路160を縦続接続した場合の全体の伝達関数K1 は、
K1 =−{1+(Ts)2 −2Ts}/{1+(Ts)2 +2Ts}・・・(4)
となる。なお、計算を簡単なものとするために、各移相回路の時定数T1 、T2 をともにTとした。この(4)式を上述した(1)式に代入すると、
となる。
【0039】
この(5)式によれば、ω=0(直流の領域)のときにA=−1/(2n+1)となって、最大減衰量を与えることがわかる。また、ω=∞のときにもA=−1/(2n+1)となって、最大減衰量を与えることがわかる。さらに、ω=1/Tの同調点(一般には各移相回路の時定数が異なるので、ω=1/√(T1 ・T2 )の同調点)においてはA=1であって図1に示した抵抗70と74の抵抗比nに無関係であって、図9に示すように、同調帯域幅(すなわちQ)と最大減衰量が任意に設定可能なバンドパスフィルタとして動作することがわかる。
【0040】
また、上述した同調回路1は、前段の移相回路10Lに含まれるインダクタ17をアンテナコイルによって形成しているため、放送波等の各種の受信信号を直接同調回路1に取り込むことができ、従来不可欠であったバリコンが不要となる。このため、アンテナコイルを除く同調回路1全体を半導体基板上に形成することができ、集積化にも適する。
【0041】
また、同調回路1の後段の移相回路30Cに含まれる可変抵抗36の抵抗値を可変することにより、閉ループを一巡したときの位相シフト量の合計が360°となる周波数を変えることができる。したがって、同調回路1の中心周波数(同調周波数)を任意に変えることができ、必ずしも従来のようにスーパーヘテロダイン方式を用いなくとも受信機を構成することができる。このため、スーパーヘテロダイン方式の受信機では不可欠であった中間周波トランスや局部発振トランス等が不要となり、同調機構全体、さらには受信機のほとんどを半導体基板上に一体形成することも可能となる。
【0042】
また、前段の移相回路10Lの入力側に接続された可変抵抗74の抵抗値を変えることにより同調帯域幅、すなわちバンドパスフィルタのQを可変することができる。これにより、同調回路1を用いて構成した受信機において、混信が生じる場合には可変抵抗74の抵抗値を調整することにより同調帯域幅を狭くして混信を防ぎ、反対に混信が少ない場合においては可変抵抗74の抵抗値を調整することにより同調帯域幅を広げて受信信号を忠実に再現することが可能となり、混信状態に応じて最適な受信機を設計できる。
【0043】
なお、上述した同調回路はFETを用いて各移相回路を構成したが、バイポーラ型のトランジスタを用いて各移相回路を構成してもよい。バイポーラ型のトランジスタを用いると、FETを用いた場合に比べて各移相回路を通過する際の信号振幅の減衰が少なくなるため、後段の非反転回路や位相反転回路の増幅度を低くすることができる。ただし、後段の移相回路内にバイポーラトランジスタを設けると、バイポーラトランジスタは入力インピーダンスが低いことから、前段の移相回路の位相シフト量が変化するおそれがある。このため、信号振幅の減衰を少なくするために前段の移相回路内にバイポーラトランジスタを設け、かつ高入力インピーダンスとするために後段の移相回路内にFETを設けるのがより望ましい。
【0044】
〔第2の実施形態〕
図10は、第2の実施形態の同調回路の構成を示す回路図であり、図1に示した同調回路1の前段および後段の移相回路10L、30Cをそれぞれ移相回路30L、10Cに置き換えた構成を有している。
【0045】
図10に示す前段の移相回路30Lは、図1に示した移相回路30C内のキャパシタ34と可変抵抗36からなるCR回路を、抵抗35とインダクタ37からなるLR回路に置き換えたものであり、このインダクタ37はアンテナコイルを用いて形成されており、移相回路30Lの入出力電圧の関係は移相回路30Cの入出力電圧間の関係と同じである。
【0046】
同様に、図10に示した後段の移相回路10Cは、図1に示した移相回路10L内のインダクタ17と抵抗16からなるLR回路を、可変抵抗15とキャパシタ14からなるCR回路に置き換えたものである。この移相回路10Cの入出力電圧の関係は移相回路10Lの入出力電圧との関係と同じである。
【0047】
このように、同調回路1A内の移相回路30L、10Cは、図1に示した同調回路1内の2つの移相回路10L、30Cと等価であり、前段の移相回路30L内にアンテナコイルにより構成したインダクタ37を含むことも同じであるから、図1に示した同調回路1と同様の効果が得られる。
【0048】
〔第3の実施形態〕
上述した第1の実施形態の同調回路1、1Aは、各同調回路を構成する2つの移相回路による位相シフト量の合計が360°となる周波数で所定の同調動作を行っていたが、2つの移相回路による位相シフト量の合計が180°となる周波数で所定の同調増幅を行うようにしてもよい。
【0049】
図11は、第3の実施形態の同調回路1Bの詳細な構成を示す回路図である。同図に示す同調回路1Bは、所定の周波数において合計で180°の位相シフトを行う2つの移相回路10Lおよび10Cと、後段の移相回路10Cの出力信号の位相をさらに反転する位相反転回路80と、帰還抵抗70と、可変抵抗74とを含んで構成されている。
【0050】
前段の移相回路10Lは、その詳細構成および入出力信号の位相関係は図2および図3を用いて説明した通りであり、例えば抵抗16とインダクタ17からなるLR回路の時定数をT1 とすると、ω=1/T1 近傍の周波数において位相シフト量φ1 がほぼ90°となる。
【0051】
また、後段の移相回路10Cの入出力電圧の関係は、第1図に示した前段の移相回路10Lの入出力電圧の関係と同じであり、例えばキャパシタ14と可変抵抗15からなるCR回路の時定数をT1 ′とすると、ω=1/T1 ′近傍の周波数において位相シフト量φ1 ′はほぼ90°となる。
【0052】
このように、2つの移相回路10Lおよび10Cの全体による位相シフト量の合計が所定の周波数において、φ1 +φ1 ′=180°となる。
【0053】
また、位相反転回路80は、ドレインと正電源との間に抵抗84が、ソースとアースとの間に抵抗86がそれぞれ接続されたFET82と、FET82のゲートに所定のバイアス電圧を印加する抵抗88とを含んで構成されている。FET82のゲートに交流信号が入力されると、トランジスタ82のドレインからは位相を反転した逆相の信号が出力される。また、この位相反転回路80は、2つの抵抗84、86の抵抗比によって定まる所定の増幅度を有する。
【0054】
このように、所定の周波数において、2つの移相回路10Lおよび10Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路80によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
【0055】
また、位相反転回路80の出力は、出力端子92から同調回路1Bの出力として取り出されるとともに、その出力を分圧回路160により分圧した電圧が帰還抵抗70を介して前段の移相回路10Lの入力側に帰還されている。
【0056】
このように、一方の移相回路10Lにアンテナコイルで形成したインダクタ17を含めるとともに、位相反転回路80の出力を帰還抵抗70を介して前段の移相回路10Lの入力側に帰還させ、この帰還ループのループゲインを1以下に設定することにより、所定の同調動作を行わせることができる。したがって、図1に示した同調回路1等と同様に、任意に同調周波数を変えることができ、バリコンが不要であって集積化に適するという特長を有している。
【0057】
〔第4の実施形態〕
図11に示した同調回路は、移相回路10Lと10Cを縦続接続する例を示したが、図12に示すように移相回路30Lと30Cを縦続接続する場合も同調動作を行わせることができる。
【0058】
2つの移相回路30Lおよび30Cの全体による位相シフト量の合計が所定の周波数において、φ2 ′+φ2 =180°となり、この所定の周波数において、2つの移相回路30Lおよび30Cによって位相が180°シフトされ、さらに後段に接続された位相反転回路80によって位相が反転され、これら3つの回路の全体による位相シフト量の合計が360°となる。
【0059】
〔第5の実施形態〕
上述した各種の同調回路では、アンテナコイルで形成したインダクタを移相回路内に設ける例を説明したが、AM受信機等のバーアンテナの1次コイルおよび2次コイルを利用して同調回路を構成することもできる。
【0060】
図13は同調回路の第5の実施形態の詳細構成を示す回路図である。同図に示す同調回路1Dは、移相回路110Lと、移相回路30Cと、非反転回路80とを縦続接続して構成され、移相回路110Lは抵抗16およびインダクタ117AからなるLR回路を含んでいる。インダクタ117Aは、AM受信機等のバーアンテナの1次コイルを用いて構成され、この1次コイルには2次コイル117Bが磁気結合されており、この2次コイル117Bの両端から同調回路の出力、すなわち同調信号が取り出される。また、図13に示す同調回路1内の後段の移相回路30Cの出力は分圧回路を介することなく前段の移相回路110Lの入力側に帰還されている。その他の構成は、図1に示した同調回路と共通する。
【0061】
図14は、図13に示す同調回路を含むAM受信機のブロック構成図である。同図に示すAM受信機は、図13に示した同調回路1D、AM検波回路2、低周波増幅回路3およびスピーカ4を含んで構成され、AM検波回路2には同調回路1内の2次コイルから出力される同調信号が入力される。
【0062】
図14に示すAM受信機において、同調回路に含まれるバーアンテナ17によりAM波が受信されるとバーアンテナ117の1次コイルからなるインダクタ117Aの両端にはAM波に含まれる各種周波数の交流電圧が発生する。この各種周波数の交流信号の中で、2つの移相回路110L、30Cを合わせた位相シフト量の合計が360°以外の成分は同調回路1Dの閉ループを介して帰還されることにより減衰し、その結果位相シフト量の合計が360°となる周波数成分のみが選択されて、2次コイル117Bから同調信号として出力される。この同調信号はAM検波回路2でAM検波されて音声信号に変換された後、低周波増幅回路3で増幅されてスピーカ4から出力される。
【0063】
このように、前段の移相回路110L内のインダクタ117Aをバーアンテナ117の1次コイルにより構成したため、バーアンテナ117で受信した放送波等の各種の受信信号を直接同調回路1Dに取り込むことができ、従来不可欠であったバリコンが不要となる。このため、バーアンテナ117を除く同調回路1D全体を半導体基板上に形成することができ、小型化およびコストの低減が図れる。
【0064】
また、1次コイルと磁気結合された2次コイル117Bから同調信号を取り出すため、直流成分をカットすることができ、次段の回路との接続が容易になる。なお、実際に図13に示す同調回路1を組み立てて出力波形を測定したところ、閉ループの一部から同調信号を直接取り出す場合に比べてノイズを低減することができた。
【0065】
また、例えば従来のAM受信機のようにLC共振回路によって同調を行う場合には、使用するバリコンの静電容量や可変範囲の制約から、バーアンテナ117のインダクタンスを十分に大きくする必要があった。これに対し、本実施形態の同調回路1では、インダクタンスを抵抗と組み合わせているため、インダクタのインダクタンスをある程度自由に設定することができる。したがって、バーアンテナのインダクタンスを従来より小さくすることができ、受信機全体を小型化できる。
【0066】
なお、図14では、図1に示した同調回路をAM受信機に適用した例を説明したが、FM受信機に適用することも可能である。その場合には、図14に示すAM検波回路をFM検波回路に置き換えればよい。
【0067】
〔第6の実施形態〕
図13では、図1に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を説明したが、同様に、図10、11、12に示す同調回路1A、1B、1Cのそれぞれについても、前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換え、このバーアンテナの2次コイルから同調出力を取り出すようにしてもよい。
【0068】
図15、16、17のそれぞれは、図10、11、12に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えるとともに、分圧回路160を取り除いた例を示す回路図である。
【0069】
図15、16、17のいずれの場合も、1次コイルと磁気結合された2次コイルから同調信号を取り出すため、直流分をカットすることができ、次段の回路との接続が容易になる。
【0070】
〔その他の実施形態〕
本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。
【0071】
例えば、上述した各種の同調回路は、位相シフトに着目すると2つの移相回路と非反転回路、あるいは2つの移相回路と位相反転回路によって構成されており、接続された3つの回路の全体によって所定の周波数において合計の位相シフト量を360°にすることにより所定の同調動作を行うようになっている。したがって、位相シフト量だけに着目すると、2つの移相回路のどちらを前段に用いるか、あるいは3つの回路をどのような順番で接続するかはある程度の自由度があり、必要に応じて接続順番を決めることができる。
【0072】
また、上述した各種の同調回路においては、アンテナコイルやバーアンテナ117の1次コイルにより構成されたインダクタを前段の移相回路内に設けているが、前段と後段の移相回路の配置を入れ換えて、後段の移相回路内にインダクタを設けてもよい。
【0073】
また、上述した各種の同調回路においては、LR回路を内部に含む移相回路とCR回路を内部に含む移相回路を縦続接続する例を説明したが、LR回路を内部に含む2つの移相回路を縦続接続してもよい。
【0074】
また、上述した各種の同調回路においては、一方の移相回路のみに可変抵抗を設けているが、両方の移相回路内に可変抵抗を設けてもよい。例えば、図1に示した抵抗16を可変抵抗に置き換えてもよい。両方の移相回路内に可変抵抗を設けると、2つの移相回路による位相シフト量の合計を大きくできるため、同調回路全体の同調周波数の可変範囲を広げることができる。
【0075】
また、第4の実施形態までに示した各種の同調回路においては、後段の移相回路の出力側に分圧回路を接続しているが、この分圧回路を省略し、後段の移相回路の出力を直接前段の移相回路の入力側に帰還させてもよい。
【0076】
なお、上述した各種の同調回路内の可変抵抗(例えば図1の可変抵抗36)は、例えばFETによって構成できる。この場合、1個のFETによって可変抵抗を構成してもよいが、pチャネルのFETとnチャネルのFETとを並列接続して1つの可変抵抗を構成してもよい。このように、2つのFETを組み合わせて可変抵抗を構成することにより、FETの非線形領域の改善を行うことができるため、同調出力の歪みを少なくすることができる。
【0077】
【発明の効果】
上述したように本発明の同調回路は、所定の同調周波数を有するバンドパスフィルタとして動作し、しかも一方の移相回路に含まれるインダクタをアンテナコイルによって形成しているため、放送波等の各種の受信信号を直接同調回路に取り込むことができ、従来不可欠であったバリコンが不要となる。このため、インダクタを除く同調回路全体を半導体基板上に形成することができ、集積化に適する。
【0078】
また、少なくとも一方の移相回路に含まれる可変抵抗の抵抗値を可変することにより、同調回路の閉ループを一巡したときに位相量の合計が360°となる周波数を変えることができるため、同調周波数を任意に変えることができ、必ずしも従来のようにスーパーヘテロダイン方式を用いなくとも受信機を構成することが可能となる。このため、スーパーヘテロダイン方式の受信機では不可欠であった中間周波トランスや局部発振トランス等が不要となり、同調機構全体、さらには受信機のほとんどを半導体基板上に一体形成することも可能となる。
【0079】
また、前段の移相回路の入力側に接続された抵抗あるいは帰還抵抗の少なくとも一方の抵抗値を変えることにより同調帯域幅、すなわちバンドパスフィルタのQを可変することができるため、例えば同調回路を用いて構成した受信機において、混信が生じる場合には同調帯域幅を狭くして混信を防ぎ、反対に混信が少ない場合においては同調帯域幅を広げて受信信号を忠実に再現するといったことが可能であり、混信状態に応じて最適な受信機の設計が可能となる。
【0080】
また、バーアンテナ等の2次コイルから同調信号を出力するため、同調信号に含まれる直流成分を除去することができ、次段の回路との接続が容易になる。
【図面の簡単な説明】
【図1】第1の実施形態の同調回路の構成を示す回路図である。
【図2】図1に示す前段の移相回路の構成を示す回路図である。
【図3】図2に示した移相回路の入出力電圧とインダクタ等に現れる電圧の関係を示すベクトル図である。
【図4】図1に示す後段の移相回路の構成を示す回路図である。
【図5】図4に示した移相回路の入出力電圧とキャパシタ等に現れる電圧の関係を示すベクトル図である。
【図6】図1に示した同調回路の一部に対応した等価回路を示す図である。
【図7】同調回路内の2つの移相回路および分圧回路の全体を所定の伝達関数を有する回路に置き換えた図である。
【図8】図7に示す回路をミラーの定理によって変換した図である。
【図9】図1に示す同調回路の特性図である。
【図10】第2の実施形態の同調回路の構成を示す回路図である。
【図11】第3の実施形態の同調回路の構成を示す回路図である。
【図12】第4の実施形態の同調回路の構成を示す回路図である。
【図13】第5の実施形態の同調回路の構成を示す回路図である。
【図14】図13に示す同調回路を含むAM受信機のブロック構成図である。
【図15】図10に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【図16】図11に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【図17】図12に示した前段の移相回路内のインダクタをバーアンテナの1次コイルに置き換えた例を示す回路図である。
【符号の説明】
1 同調回路
10L、30C 移相回路
12、32 FET
13、34 キャパシタ
16、18、20、38、40 抵抗
17 インダクタ
36、74 可変抵抗
70 帰還抵抗
160 分圧回路
Claims (13)
- 入力された交流信号を所定の増幅度で増幅するとともに同相で出力する非反転回路と、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段をそれぞれ含む全域通過型の2つの移相回路とを備え、
前記2つの移相回路の一方は、アンテナコイルからなるインダクタと第1の抵抗とで構成されるLR回路を含み、
前記2つの移相回路の他方は、キャパシタと第2の抵抗とで構成されるCR回路を含み、
前記2つの移相回路と前記非反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させることを特徴とする同調回路。 - 請求項1において、
前記2つの移相回路を含んで形成される閉ループの一部に分圧回路を挿入し、前記分圧回路に入力される交流信号を同調出力として取り出すことを特徴とする同調回路。 - 入力された交流信号を所定の増幅度で増幅するとともに同相で出力する非反転回路と、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段をそれぞれ含み互いに縦続接続された全域通過型の2つの移相回路とを備え、
前記2つの移相回路の一方は、アンテナの1次コイルからなるインダクタと第1の抵抗とで構成されるLR回路と、前記1次コイルに磁気結合された2次コイルとを含み、
前記2つの移相回路の他方は、キャパシタと第2の抵抗とで構成されるCR回路を含み、
前記2つの移相回路と前記非反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させるとともに、前記2次コイルの両端から同調信号を取り出すことを特徴とする同調回路。 - 入力された交流信号を所定の増幅度で増幅するとともに位相を反転して出力する位相反転回路と、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段をそれぞれ含み互いに縦続接続された全域通過型の2つの移相回路とを備え、
前記2つの移相回路の一方は、アンテナコイルからなるインダクタと第1の抵抗とで構成されるLR回路を含み、
前記2つの移相回路の他方は、キャパシタと第2の抵抗とで構成されるCR回路を含み、
前記2つの移相回路と前記位相反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させることを特徴とする同調回路。 - 請求項4において、
前記2つの移相回路を含んで形成される閉ループの一部に分圧回路を挿入し、前記分圧回路に入力される交流信号を同調出力として取り出すことを特徴とする同調回路。 - 入力された交流信号を所定の増幅度で増幅するとともに位相を反転して出力する位相反転回路と、入力された交流信号を同相および逆相の交流信号に変換して出力する変換手段をそれぞれ含み互いに縦続接続された全域通過型の2つの移相回路とを備え、
前記2つの移相回路の一方は、アンテナの1次コイルからなるインダクタと第1の抵抗とで構成されるLR回路と、前記1次コイルに磁気結合された2次コイルとを含み、
前記2つの移相回路の他方は、キャパシタと第2の抵抗とで構成されるCR回路を含み、
前記2つの移相回路と前記位相反転回路とを所定の順序で縦続接続し、最終段の回路の出力を初段の回路の入力側に帰還させるとともに、前記2次コイルの両端から同調信号を取り出すことを特徴とする同調回路。 - 請求項1〜6のいずれかにおいて、
前記2つの移相回路の一方は、前記変換手段によって変換された一方の交流信号を前記LR回路の一方端を介して、他方の交流信号を前記LR回路の他方端を介して合成する第1の合成手段を含み、
前記2つの移相回路の他方は、前記変換手段によって変換された一方の交流信号を前記CR回路の一方端を介して、他方の交流信号を前記CR回路の他方端を介して合成する第2の合成手段を含み、
前記第1および第2の合成手段のそれぞれは、振幅が一定で位相のみが所定量シフトした信号を出力することを特徴とする同調回路。 - 請求項1〜7のいずれかにおいて、
前記変換手段のそれぞれはトランジスタを含んでおり、前記トランジスタのソースおよびドレイン、あるいはエミッタおよびコレクタにそれぞれ抵抗値がほぼ等しい第3の抵抗を接続し、前記トランジスタのゲートあるいはベースに交流信号を入力し、前記トランジスタのソース・ドレイン間あるいはエミッタ・コレクタ間に前記LR回路あるいは前記CR回路を接続したことを特徴とする同調回路。 - 請求項1〜8のいずれかにおいて、
前記CR回路あるいは前記LR回路の少なくとも一方の時定数を可変することにより、同調周波数を変化させることを特徴とする同調回路。 - 請求項9において、
前記CR回路あるいは前記LR回路の少なくとも一方に含まれる抵抗の抵抗値を可変することにより、前記時定数を変化させることを特徴とする同調回路。 - 請求項1〜10のいずれかにおいて、
前記2つの移相回路を含んで形成される閉ループの一部に挿入された第4の抵抗と、前記閉ループを流れる交流信号の一部を分岐するために設けられた第5の抵抗とをさらに備えており、前記第4および第5の抵抗の抵抗比を可変することにより、同調帯域幅を変化させることを特徴とする同調回路。 - 請求項1〜11のいずれかにおいて、
前記2つの移相回路を含んで形成される閉ループのループゲインを1以下に設定することにより、発振しない状態で同調動作を行わせることを特徴とする同調回路。 - 請求項1〜12のいずれかにおいて、
前記インダクタを除く構成部品を半導体基板上に一体形成したことを特徴とする同調回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17581396A JP3766472B2 (ja) | 1996-06-14 | 1996-06-14 | 同調回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17581396A JP3766472B2 (ja) | 1996-06-14 | 1996-06-14 | 同調回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH104336A JPH104336A (ja) | 1998-01-06 |
JP3766472B2 true JP3766472B2 (ja) | 2006-04-12 |
Family
ID=16002689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17581396A Expired - Fee Related JP3766472B2 (ja) | 1996-06-14 | 1996-06-14 | 同調回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3766472B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101682881B1 (ko) * | 2014-12-05 | 2016-12-06 | 인베니아 주식회사 | 플라즈마 발생모듈 및 이를 포함하는 플라즈마 처리장치 |
-
1996
- 1996-06-14 JP JP17581396A patent/JP3766472B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH104336A (ja) | 1998-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3628334B2 (ja) | 同調増幅器 | |
US7352241B2 (en) | Variable gain amplifier | |
JP6278281B2 (ja) | ミキサ回路 | |
US7979042B2 (en) | Generating phase shift based on adding two vectors with variable gains | |
JP2004166204A (ja) | 周波数変換器および無線送受信機 | |
US6754478B1 (en) | CMOS low noise amplifier | |
JP3766472B2 (ja) | 同調回路 | |
JPH0974319A (ja) | 受信機 | |
KR101135190B1 (ko) | 발룬 회로를 이용한 무선 통신 시스템의 신호 변환 장치 및 수신 장치 | |
JP3766469B2 (ja) | 同調回路 | |
JP3764483B2 (ja) | 同調制御方式 | |
JP3628402B2 (ja) | 同調増幅器 | |
JPH0974318A (ja) | 受信機 | |
JPH09191230A (ja) | 同調回路 | |
JP3628407B2 (ja) | 同調増幅器 | |
JPH09214288A (ja) | 同調回路 | |
KR101135191B1 (ko) | 무선통신 시스템에서 이중 대역을 지원하는 신호 변환 장치 및 수신 장치 | |
JPH09214287A (ja) | 同調回路 | |
JP3628408B2 (ja) | 同調制御方式 | |
JP3625526B2 (ja) | 同調増幅器 | |
JPH0865100A (ja) | 同調増幅器 | |
Matei et al. | A programmable band-select filter for digital if software defined radio receivers | |
Roy et al. | Mixer-First Receiver with wide-RF Range | |
JP3628389B2 (ja) | 同調増幅器 | |
JPH08154034A (ja) | 同調増幅器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060127 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |