[go: up one dir, main page]

JP3765417B2 - Ultrasonic flaw detection method and apparatus - Google Patents

Ultrasonic flaw detection method and apparatus Download PDF

Info

Publication number
JP3765417B2
JP3765417B2 JP2002356650A JP2002356650A JP3765417B2 JP 3765417 B2 JP3765417 B2 JP 3765417B2 JP 2002356650 A JP2002356650 A JP 2002356650A JP 2002356650 A JP2002356650 A JP 2002356650A JP 3765417 B2 JP3765417 B2 JP 3765417B2
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
wave
defect
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002356650A
Other languages
Japanese (ja)
Other versions
JP2004191088A (en
Inventor
康二 道場
英幸 平澤
光浩 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002356650A priority Critical patent/JP3765417B2/en
Publication of JP2004191088A publication Critical patent/JP2004191088A/en
Application granted granted Critical
Publication of JP3765417B2 publication Critical patent/JP3765417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、溶接継手部等の内部欠陥を非破壊で検査する超音波探傷方法及びその装置に関するものである。
【0002】
【従来の技術】
従来より、溶接継手部等の内部欠陥を非破壊で検査する手段として、超音波探傷検査(UT)が知られている。この超音波探傷検査は、被検査体の表面に探触子を密着させ、この探触子から被検査体に入射させた超音波の反射によって欠陥を検出する非破壊検査であり、入射させた超音波の反射を検出するまでの時間によって欠陥の位置を知ることができる。
【0003】
図7は超音波探傷方法の一例を示す図であり、(a) は超音波探傷方法の模式図、(b) はその探傷波形の模式図である。この超音波探傷方法は、一般にTOFD(Time of Fright Diffraction)法と呼ばれている。図示する例は、このTOFD法によって溶接継手部101を超音波探傷検査する例であり、溶接継手部101の両側部に超音波探触子102A,102Bを設け、一方の超音波探触子102Aから溶接継手部101の溶接線方向と直交する方向に超音波を入射し、その反射を他方の超音波探触子102Bで受けて超音波探傷検査を行っている。
【0004】
この例の場合、溶接継手部101から所定距離離れた位置から発信した超音波によって、被検査体100の全板厚方向を検査するように構成されている。図示する左側が送信探触子102Aであり、右側が受信探触子102Bである。送信探触子102Aから発した超音波が被検査体100の表面を伝わって受信探触子102Bで検出されるラテラル波aと、被検査体100の底面で反射した底面波bと、これらの間で欠陥103に反射した回折波の上端波cと下端波dとを受信探触子102Bで検知し、この信号によって、欠陥103の存在と欠陥103の位置を検出している。また、この例の場合、溶接継手部101に沿って超音波探触子102A,102Bを移動させることにより、全線の超音波探傷を繰り返す例を示している。
【0005】
この種の従来技術として、被検査体へ入射して回した超音波から欠陥の位置を検出するTOFD法と、被検査体へ入射して反射した超音波のエコーから欠陥の位置を検出する反射エコー法とを同時に行うことにより、欠陥の板面方向の位置及び板厚方向の位置を容易に高精度で検出しようとするものがある(例えば、特許文献1参照。)。
【0006】
また、他の従来技術として、複数の振動子を連続的に配列した一体構造のアレイ型超音波探触子のうち1又は2以上の探触子を利用し、機械操作が不要な電子走査によって、被検査対象部位全体の欠陥検出を高速かつ高精度で行えるようにしたものがある(例えば、特許文献2参照。)。
【0007】
【特許文献1】
特開2001−13114号公報(第2頁、図1)
【0008】
【特許文献2】
特開2001−324484号公報(第2頁、図5)
【0009】
【発明が解決しようとする課題】
しかしながら、前記TOFD法の場合、1組の探触子を用いて溶接線方向に走査するのみであり、欠陥を送受信探触子間隔の中点位置(探傷部中心)として算出することから、走査直交方向(溶接線幅方向)の欠陥立置を正確に検出することができない。つまり、従来の一般的なTOFD法では、探傷部の中心線からの欠陥のずれ位置(Δy)が分からなかった。
【0010】
そのため、欠陥が探傷部の中心から走査直角方向にずれた位置を検出するためには、溶接継手部の溶接線と直交する探触子方向の走査(Bスキャン)を追加して行っていた。したがって、欠陥位置を検出するために、多くの時間と労力を要している。しかも、前記溶接線方向のみの走査を行った場合、走査直角方向の誤差だけでなく、直角深さ方向についても欠陥位置に若干の誤差が生じている。
【0011】
さらに、前記特許文献1のように、TOFD法と反射エコー法とを同時に行うようにする場合、超音波探傷装置が複雑になるとともに大型となり、多くの費用を要してしまう。
【0012】
また、前記特許文献2のように、複数の振動子を連続的に配列した一体構造のアレイ型超音波探触子で電子走査を行うようにする場合、利用する振動子の選択や、被検査対象部位の板厚方向に超音波ビームの交点を結ぶように複雑な制御を行う必要があり、複雑な制御を行う制御機が必要になるとともに、被検査体に応じた制御を行うように調整しなければならない。そのため、多くの費用と時間を要してしまう。
【0013】
【課題を解決するための手段】
そこで、前記課題を解決するために、本願発明の超音波探傷方法は、所定厚さの被検査体の一方の面から送信探触子により超音波を発信し、該超音波の直射による欠陥からの回折波と、該超音波の被検査体他面での一回反射による欠陥からの回折波とを前記送信探触子に対して同一面側でかつ探傷部を挟んだ位置に配置された受信探触子により受信し、該受信したそれぞれの回折波の伝搬時間差から欠陥の位置を求めている。このようにすれば、欠陥へ直射された超音波の回折波と、被検査体の他面で一回反射した超音波が欠陥で回折した回折波とに伝搬時間差を持たせることができ、この伝搬時間の差から欠陥が探傷部の走査直交方向にずれた量を検出することができる。
【0014】
一方、本願発明の超音波探傷装置は、所定厚さの被検査体の一方の面から超音波を発信する送信探触子と、該送信探触子から発信した超音波の直射による欠陥からの回折波、及び該超音波の被検査体他面での一回反射による欠陥からの回折波を受信するように前記送信探触子に対して同一面側でかつ探傷部を挟んだ位置に配置された受信探触子と、該受信探触子で受信したそれぞれの回折波の伝搬時間差から欠陥の位置を求める制御機を設けている。このようにすれば、送信探触子から発信した超音波が直接欠陥で回折した回折波と、被検査体の他面で反射して欠陥で回折した回折波とで、伝搬時間に差を持たせることができるので、この時間差から制御機で欠陥位置の走査直交方向にずれた量を迅速に検出することができる。
【0015】
【発明の実施の形態】
以下、本願発明の一実施形態を図面に基づいて説明する。以下の説明では、探傷部として板状の被検査体の溶接継手部を例にし、欠陥をその溶接継手部内の「点」として説明する。
【0016】
図1は第1参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。図示するように、この第1参考例では、被検査体1の探傷部2を挟んで2つの送信探触子3,4と受信探触子5,6とが設けられている。この第1参考例では、同じ欠陥eからの回折波の伝播時間に差を持たせる方法として、それぞれ組となった超音波探触子7,8を走査直角方向にずらせて配置している。
【0017】
図1(b) に示す下側の送信探触子3と受信探触子5とで1組となった超音波探触子7は、探傷部2を中心とする左右対称位置に距離S1 で設けられており、上側の送信探触子4と受信探触子6とで1組となった超音波探触子8は、探傷部2の中心fから距離ΔS分が離れた位置gを中心とする左右対称位置に距離S2 で設けられている。このように2組の超音波探触子7,8を探傷部2の中心fからの距離ΔS分が異なるように配置することにより、各組において送信探触子3,4から発信した超音波9,10が欠陥eで回した回折波11,12が受信探触子5,6で受信されるまでの伝搬時間に差を持たせることができる。このように配置される超音波探触子7,8としては、2組以上の超音波探触子7,8を探傷部2の中心fから距離が異なるように配置すればよい。
【0018】
また、この第1参考例では、下側の1組となった超音波探触子7と、上部の1組となった超音波探触子8とが、探傷部2の溶接線方向(走査方向)にも所定距離ΔDだけずらして設けられている。このようにずらして設けることにより、各送信探触子3,4から発信した超音波9,10の回波11,12を、組となった各受信探触子5,6で安定して受信できるようにしている。
【0019】
この第1参考例において、超音波探触子7,8で走査する超音波探傷方法を以下に説明する。
【0020】
前記したように配置された各超音波探触子7,8によって超音波9,10を発信して欠陥eで回した回波11,12は、回折波11,12が走査直角方向のどの位置からのものかを推測する軌跡として、探触子配置および回折波伝播時間(距離)より楕円の関数として算出される。そのため、異なった位置に配設された各超音波探触子7,8によって探傷すると、その結果は、それぞれ異なった楕円軌跡13,14として算出される。
【0021】
この楕円軌跡13,14を算出する数式としては、以下の[数1][数2]によって求めることができる。
【0022】
超音波探触子7について、探触子間距離:S1、回波伝搬距離:W1とすると、楕円軌跡13は、[数1]で求めることができる。
【0023】
【数1】
2/a2+z2/b2=1 ・・・(1)
a=W1/2、b=1/2√(W1 2−S1 2
y:スキャン直角方向、z:深さ方向。
【0024】
超音波探触子8について、探触子間距離:S2、回波伝搬距離:W2とすると、楕円軌跡14は、[数2]で求めることができる。
【0025】
【数2】
(y−ΔS)2/a2+z2/b2=1 ・・・(2)
a=W2/2、b=1/2√(W2 2−S2 2
y:スキャン直角方向、z:深さ方向。
【0026】
そして、それぞれの超音波探触子7,8による楕円軌跡13,14を算出した結果から、超音波探触子7と超音波探触子8とを溶接線方向にずらした距離ΔD分で補正することにより、軌跡13と軌跡14との交点pを検出することができる。これらは図示しない制御機によって行われる。
【0027】
この交点pが、欠陥eで回した回折波11,12の走査直角方向の位置であり、欠陥eが探傷部2の中心fから走査直角方向にずれた量Δyとして検出することができる。
【0028】
つまり、配置位置が異なる2組の超音波探触子7,8を用いて、各組の超音波探触子7,8から得られる走査直角方向の欠陥予想軌跡の交点pから欠陥eの位置を求めている。
【0029】
したがって、探触子3,4,5,6を1方向(溶接線方向)に走査するだけで、両受信探触子5,6によって受信する回折波11,12の伝搬時間差で、欠陥eの位置Δyを検出することができる。
【0030】
なお、この第1参考例では、各超音波探触子7,8を溶接線方向に所定距離ΔDだけずらして配設しているが、両超音波探触子7,8を1列に配置して検出するようにしてもよい。この場合は、走査方向の補正を行うことなく楕円軌跡13,14の交点pを求めることができる。
【0031】
図2は第2参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。図示するように、この第2参考例では、被検査体1の探傷部2を挟んで1つの送信探触子15と2つの受信探触子16,17とが距離S1 ,S2 で設けられている。この第2参考例では、同じ欠陥eからの回折波の伝播時間に差を持たせる方法として、走査直角方向に配置距離を異ならせた受信探触子16,17を2つ設けている。
【0032】
この第2参考例によれば、1つの送信探触子15から発信した超音波18が欠陥eで回した回波19,20を、異なる距離に設けた2つの受信探触子16,17で受信することにより、両受信探触子16,17によって受信する欠陥eからの回折波19,20の伝搬時間差で、欠陥eの位置Δyを検出することができる。
【0033】
この第2参考例の場合も、前記第1参考例と同様に、数式1,2により各受信探触子16,17の配置位置における回波19,20から異なる楕円軌跡21,22を求め、その楕円軌跡21,22の交点pを求めることにより欠陥eの位置Δyを検出している。
【0034】
なお、この第2参考例の場合、探触子15,16,17が走査直角方向の同一ライン上設けられているので、探触子15,16,17を1方向(溶接線方向)に走査するだけでよいが、前記第1参考例と同様に2つの受信探触子16,17を溶接線方向にずらして配置した場合、前記したようにして、受信探触子16,17をずらした量ΔD(図1(b) )を補正して欠陥eの位置を検出すればよい。
【0035】
また、これら第1,第2参考例のように、送信探触子3,4,15と受信探触子5,6,16,17とを設ける以外に、1つの受信探触子と2つ以上の送信探触子、または、2つの受信探触子と2つ以上の送信深触子を用いることによっても、回波の伝搬時間差から同様に走査直角方向の欠陥eの位置を検出することが可能である。
【0036】
さらに、1つの送信探触子と3つ以上の別配置した受信探触子とを設けて超音波探傷すれば、より検出精度を向上させることが可能である。このことは、3つ以上の送信探触子と1つの受信探触子とを設けても同様である。
【0037】
図3は第3参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。図示するように、この第3参考例では、被検査体1の探傷部2を挟んで送信探触子23と受信探触子24とが設けられており、この第3参考例では、同じ欠陥eからの回折波の伝播時間に差を持たせる方法として、受信探触子24が走査直角方向に近接又は離間する前後移動可能とすることにより、探触子23,24の間隔が変化するようにしている。
【0038】
この第3参考例によれば、受信探触子24を前後方向に移動させ、移動させた位置の各計測点(距離S1 ,S2 ,S3 )で、超音波25が欠陥eで回した回波26,27,28を受信し、受信した回波26,27,28の伝搬時間の差から欠陥eの位置Δyを求めている。この例では、受信探触子24の移動範囲中間部の距離S2 と前後端部の距離S1 ,S3 とで回波26,27,28を検出している。
【0039】
この第3参考例の場合も、前記第1参考例と同様に、数式1,2を用いて、各回波26,27,28を受信する位置での探触子23,24の各配置における回波26,27,28から楕円軌跡29,30,31を求め、その楕円軌跡29,30,31の交点pを求めることにより欠陥eの位置Δyを検出している。
【0040】
なお、この第3参考例では、受信探触子24を前後移動させているが、送信探触子23を前後移動させるように構成してもよい。
【0041】
また、この第3参考例では、1つの送信探触子23と1つの受信探触子24とを用いているが、1つの送信探触子23と複数の受信深触子24、または複数の送信探触子23と1つの受信探触子24とを設け、送信、受信のどちらかの探触子23,24を前後移動させ、各計測点(例えば、一定のピッチ毎の所定位置)で回波26,27,28を計測する構成であっても同様の効果を得ることができる。
【0042】
図4は本願発明の一実施形態に係る超音波探傷方法を示す正面図である。図5は同超音波探傷方法の一回反射した超音波による回折波を説明するための正面図である。図4に示すように、この実施形態では、被検査体1の探傷部2を挟んで送信探触子32と受信探触子33とが距離S1 で設けられている。この実施形態では、同じ欠陥eからの回折波の伝播時間に差を持たせる方法として、送信探触子32から発信した超音波34が直接欠陥eで回折した回折波35と、被検査体1の他面(裏面)で一回反射した超音波36が欠陥eで回折した回折波37とを受信探触子33で受信するようにしている。
【0043】
この実施形態において利用する一回反射した超音波36は、図5に示すように、限られた厚みの被検査体1の裏面で反射して欠陥eにより回した超音波36が反射しなかった場合の楕円軌跡38を求め、その楕円軌跡38が被検査体1の裏面位置で反射した楕円軌跡39として求めている。
【0044】
の実施形態の場合、前記第1参考例と同様に数式1,2を用いて、送信探触子32から直射した超音波34による回波35は、超音波探触子側に頂点を有する楕円軌跡40として求め、被検査体1の裏面で一回反射した超音波36による回波37は、前記したように被検査体1の裏面側から発信された超音波36のように反超音波探触子側に頂点を有する楕円軌跡39として求め、これら頂点が逆向きの楕円軌跡40,39の交点pを求めることにより欠陥eの位置Δyを検出している。
【0045】
このような方法によれば、1組の超音波探触子32,33によって、同じ欠陥eからの回折波の伝播時間に差を持たせて、欠陥eの位置Δyを検出することができる。
【0046】
図6は第4参考例に係る超音波探傷方法を示す正面図である。この第4参考例では、TOFD法において、欠陥eの位置を求める際に、超音波の縦波だけの探傷結果を利用するのではなく、縦波で送信された超音波が欠陥eにおいて回折する際に発生する横波を受信して、得られた探傷結果の縦波と横波の音速差を利用することで、同じ欠陥eからの伝播時間差で欠陥eの3次元位置を検出するものである。
【0047】
図示するように、被検査体1の探傷部2を挟んで送信探触子41と受信探触子42とが設けられ、送信探触子41から縦波の超音波43を発信し、この超音波43が欠陥eで回した縦波の回波44と、横波の回波45とが受信探触子42で受信される。
【0048】
この送信探触子41に縦波斜角探触子を用い、回折後の縦波と横波を受信する受信探触子42に、縦波検出を主目的とした縦波斜角探触子、横波検出を主目的とした横波斜角探触子を用いれば、それぞれの探触子41,42で回折後の縦波及び横波を効率よく受信することができる。
【0049】
このように受信探触子42で縦波の回波44と横波の回波45とを受信し、これらの回波44,45の音速差から欠陥eの位置Δyを検出する制御機を設ければ、回波44,45の縦波と横波との音速差を利用して、欠陥eが探傷部2の走査直交方向にずれた量を効率良く検出して欠陥eの位置Δyを特定することができる。
【0050】
つまり、この第4参考例によれば、超音波の縦波と横波とも伝播経路及び伝播距離は両者とも同じであるが、音速が異なる波が同一経路を伝搬していることを利用し、少なくとも2つの異なる伝搬時間(異なる超音波のモード)を利用して、欠陥eの探傷部中心fからのずれ量を求めている。
【0051】
この縦波で回した超音波の伝搬時間tLLは[数3]に示す式で表され、回後の横波モード変換した超音波の伝搬時間tLSは[数4]に示す式で表される。
【0052】
【数3】

Figure 0003765417
【0053】
【数4】
Figure 0003765417
【0054】
数式中の、W1 ,W2 :図中の距離、VL :縦波音速、VS :横波音速、である。そして、これら数式[数3][数4]より、図中の距離W1 ,W2 は、下記数式[数5][数6]となる。
【0055】
【数5】
Figure 0003765417
【0056】
【数6】
Figure 0003765417
【0057】
ここで、図6の配置で反射源が得られた場合、反射源位置(y、z)は、下記数式[数7][数8]を満足することとなる。
【0058】
【数7】
Figure 0003765417
【0059】
【数8】
Figure 0003765417
【0060】
そのため、これら数式[数7][数8]に数式[数5][数6]を代入することで、反射源位置(yF 、zF )を求めることができる。これらは図示しない制御機によって行われる。
【0061】
このようにして、超音波43が回した回波の縦波44と横波45との音速差を利用することにより、欠陥eが探傷部2の中心f位置からずれた位置Δyを検出することができる。
【0062】
さらに、縦波で入射した超音波43が回折後も縦波で伝搬した際、エコーの受信が予想される範囲、及び縦波で入射した超音波43が回折後横波で伝搬した際にエコーの受信が予想される範囲を、TOFD探傷画面の時間軸上に表示するようにすれば、検査員が画面を見ながら欠陥eを特定する波形選択を支援することができる。
【0063】
一方、この第4参考例において、送信探触子41から横波の超音波を送信し、この超音波が欠陥eにおいて回折する際に発生する縦波の超音波と横波の超音波とを受信探触子42で受信するようにしてもよい。この場合、送信探触子41に横波斜角探触子を用い、回折後の縦波と横波を受信する受信探触子42に、縦波検出を主目的とした縦波斜角探触子、横波検出を主目的とした横波斜角探触子を用いれば、それぞれの探触子41,42で回折後の横波及び縦波を効率よく受信することができる。このようにしても、受信した際に得られる回波の縦波と横波との音速差により、欠陥eの3次元位置を検出することができる。
【0064】
その上、前記縦波で入射した超音波が回折後に縦波で伝搬した際にエコーの受信が予想される範囲と、縦波で入射した超音波が回折後に横波で伝搬した際にエコーの受信が予想される範囲とを、回波を表示する探傷画面の時間軸上に表示するようにすれば、検査員が探傷画面を見ながら回波を選択する時に支援することができる。
【0065】
以上のような実施形態によれば、TOFD法で探触子方向の走査(Bスキャン)を行わなくても走査直角方向の欠陥eのずれ位置(Δy)を検出することができるとともに、深さ方向の位置についても検出精度が向上するので、超音波探傷試験により欠陥eの位置を正確に検出する検査精度の向上が可能である。その上、溶接継手部等の欠陥部分を補修する場合でも、特定された欠陥eの位置を直接的に補修すればよく、補修作業の無駄を省き、効率良く作業を進めることができる。
【0066】
しかも、送信探触子3,4,15,23,32,41と受信探触子5,6,17,24,33,42との組合わせと、その回波19,20,26〜28,35,37,44,45の伝搬時間差や音速差によって探傷部2における欠陥eを安定して検出することが可能であるので、例えば、船積みのLPGやLNGタンクのように、曲率半径数十mの線溶接継手等も安定して超音波探傷検査ができる超音波探傷装置を実現することができるとともに、その自動化も実現可能な超音波探傷装置となる。
【0067】
なお、上述した各参考例を実施形態組合わせて実施することも可能であり、検査対象や条件に応じて適宜組合わせて使用すればよい。また、上述した実施形態において、超音波探触子の配置数及び探触子を増やすことにより、さらに計測精度を向上させることが可能であり、この場合も検査対象や条件に応じて適宜増やせばよい。
【0068】
さらに、上述した実施形態は一実施形態であり、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。
【0069】
【発明の効果】
本願発明は、以上説明したような形態で実施され、以下に記載するような効果を奏する。
【0070】
送信探触子から発信した超音波が欠陥で回する回波の伝搬時間に差を持たせ、この伝搬時間の差から欠陥が探傷部の走査直角方向にずれた量を容易に検出して、迅速な超音波探傷作業を行うことが可能となる。
【図面の簡単な説明】
【図1】 第1参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。
【図2】 第2参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。
【図3】 第3参考例に係る超音波探傷方法を示す図面であり、(a) は正面図、(b) は平面図である。
【図4】 本願発明の一実施形態に係る超音波探傷方法を示す正面図である。
【図5】 図4に示す超音波探傷方法の一回反射した超音波による回折波を説明するための正面図である。
【図6】 第4参考例に係る超音波探傷方法を示す正面図である。
【図7】 (a) は超音波探傷方法の一例を示す模式図であり、(b) はその探傷波形の模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flaw detection method and apparatus for nondestructively inspecting internal defects such as welded joints.
[0002]
[Prior art]
Conventionally, ultrasonic flaw detection (UT) is known as means for nondestructively inspecting internal defects such as welded joints. This ultrasonic flaw detection inspection is a nondestructive inspection in which a probe is brought into close contact with the surface of an object to be inspected, and defects are detected by reflection of ultrasonic waves incident on the object to be inspected from the probe. The position of the defect can be known from the time until the reflection of the ultrasonic wave is detected.
[0003]
FIG. 7 is a diagram showing an example of the ultrasonic flaw detection method, where (a) is a schematic diagram of the ultrasonic flaw detection method, and (b) is a schematic diagram of the flaw detection waveform. This ultrasonic flaw detection method is generally called a TOFD (Time of Flight Diffraction) method. The illustrated example is an example in which the ultrasonic inspection of the welded joint portion 101 is performed by the TOFD method. Ultrasonic probes 102A and 102B are provided on both sides of the welded joint portion 101, and one ultrasonic probe 102A is provided. Then, ultrasonic waves are incident in a direction orthogonal to the weld line direction of the welded joint portion 101, and the reflection is received by the other ultrasonic probe 102B to perform an ultrasonic flaw inspection.
[0004]
In the case of this example, the entire plate thickness direction of the inspected object 100 is inspected by ultrasonic waves transmitted from a position away from the weld joint 101 by a predetermined distance. The left side shown in the figure is the transmission probe 102A, and the right side is the reception probe 102B. The ultrasonic wave emitted from the transmission probe 102A travels on the surface of the inspection object 100 and is detected by the reception probe 102B, the bottom wave b reflected from the bottom surface of the inspection object 100, and these The reception probe 102B detects the upper end wave c and the lower end wave d of the diffracted wave reflected between the defects 103, and the presence of the defect 103 and the position of the defect 103 are detected by this signal. Further, in the case of this example, an example is shown in which ultrasonic flaws of all lines are repeated by moving the ultrasonic probes 102A and 102B along the weld joint portion 101.
[0005]
As a conventional art of this kind, for detecting the TOFD method for detecting the position of the defect from the ultrasonic wave folding times to enter the object to be inspected, the location of the defect from ultrasound echoes reflected incident on the inspection object There is one that attempts to detect the position of the defect in the plate surface direction and the position in the plate thickness direction with high accuracy by performing the reflection echo method simultaneously (for example, see Patent Document 1).
[0006]
Further, as another conventional technique, one or two or more probes of an integrated type ultrasonic probe in which a plurality of transducers are continuously arranged are used, and electronic scanning that does not require mechanical operation is performed. In some cases, the defect detection of the entire inspection target site can be performed at high speed and with high accuracy (see, for example, Patent Document 2).
[0007]
[Patent Document 1]
JP 2001-13114 A (2nd page, FIG. 1)
[0008]
[Patent Document 2]
JP 2001-324484 A (2nd page, FIG. 5)
[0009]
[Problems to be solved by the invention]
However, in the case of the TOFD method, only scanning in the welding line direction is performed using a pair of probes, and the defect is calculated as the midpoint position (flaw detection center) of the transmission / reception probe interval. Defect placement in the orthogonal direction (welding line width direction) cannot be detected accurately. That is, in the conventional general TOFD method, the displacement position (Δy) of the defect from the center line of the flaw detection part was not known.
[0010]
For this reason, in order to detect the position where the defect is shifted in the direction perpendicular to the scanning from the center of the flaw detection portion, scanning in the probe direction (B scan) perpendicular to the weld line of the weld joint is added. Therefore, much time and labor are required to detect the defect position. In addition, when scanning is performed only in the welding line direction, some errors are generated in the defect position not only in the scanning perpendicular direction but also in the perpendicular depth direction.
[0011]
Further, when the TOFD method and the reflection echo method are performed simultaneously as in Patent Document 1, the ultrasonic flaw detection apparatus becomes complicated and large, and requires a lot of costs.
[0012]
Further, as in Patent Document 2, when electronic scanning is performed with an array type ultrasonic probe in which a plurality of transducers are continuously arranged, the selection of transducers to be used and the inspection target It is necessary to perform complex control to connect the intersections of ultrasonic beams in the thickness direction of the target part, and a controller that performs complex control is required, and adjustment is performed to perform control according to the object to be inspected. Must. Therefore, much cost and time are required.
[0013]
[Means for Solving the Problems]
Therefore, in order to solve the above-described problem, the ultrasonic flaw detection method of the present invention transmits ultrasonic waves from one surface of an object to be inspected with a predetermined thickness using a transmission probe, and detects defects caused by direct irradiation of the ultrasonic waves. The diffracted wave of the ultrasonic wave and the diffracted wave from the defect caused by a single reflection on the other surface of the inspection object are arranged on the same surface side with respect to the transmission probe and at a position sandwiching the flaw detection portion. The position of the defect is obtained from the propagation time difference between the received diffracted waves. In this way, it is possible to give a propagation time difference between the diffracted wave of the ultrasonic wave directly applied to the defect and the diffracted wave of the ultrasonic wave reflected once on the other surface of the inspection object. From the difference in propagation time, it is possible to detect the amount of defect displacement in the scanning orthogonal direction of the flaw detection portion.
[0014]
On the other hand, the ultrasonic flaw detection apparatus of the present invention is a transmission probe that transmits ultrasonic waves from one surface of an object to be inspected of a predetermined thickness, and a defect caused by direct irradiation of ultrasonic waves transmitted from the transmission probe. Arranged at the position on the same surface side of the transmission probe and with the flaw detection part sandwiched so as to receive a diffracted wave and a diffracted wave from a defect caused by a single reflection of the ultrasonic wave on the other surface of the inspection object a receiving probe that is, there is provided a controller for determining the position of the defect from the propagation time difference of the diffracted wave respectively received by the receiving probe. In this way, there is a difference in propagation time between the diffracted wave directly diffracted by the defect from the ultrasonic wave transmitted from the transmission probe and the diffracted wave reflected from the other surface of the inspection object and diffracted by the defect. Therefore, the amount of deviation of the defect position in the scanning orthogonal direction can be quickly detected from the time difference by the controller.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description , a welded joint part of a plate-like object to be inspected is taken as an example of the flaw detection part, and the defect is described as a “point” in the welded joint part.
[0016]
FIG. 1 is a drawing showing an ultrasonic flaw detection method according to a first reference example , wherein (a) is a front view and (b) is a plan view. As shown in the figure, in the first reference example , two transmission probes 3 and 4 and reception probes 5 and 6 are provided with a flaw detection portion 2 of the inspection object 1 interposed therebetween. In the first reference example , as a method of giving a difference in the propagation time of the diffracted wave from the same defect e, the ultrasonic probes 7 and 8 which are respectively paired are arranged so as to be shifted in the scanning perpendicular direction.
[0017]
The ultrasonic probe 7, which is a pair of the lower transmission probe 3 and the reception probe 5 shown in FIG. 1B, has a distance S 1 at a symmetrical position with the flaw detection unit 2 as the center. The ultrasonic probe 8, which is a pair of the upper transmission probe 4 and the reception probe 6, has a position g that is a distance ΔS away from the center f of the flaw detection unit 2. It is provided with a distance S 2 at a symmetrical position with the center. In this way, by arranging the two sets of ultrasonic probes 7 and 8 such that the distance ΔS from the center f of the flaw detection unit 2 is different, the ultrasonic waves transmitted from the transmission probes 3 and 4 in each set are detected. 9 and 10 can have a difference in propagation time to the diffraction wave 11, 12 diffraction defective e is received by the receiving probe 5,6. As the ultrasonic probes 7 and 8 arranged in this way, two or more sets of ultrasonic probes 7 and 8 may be arranged so that the distance from the center f of the flaw detection unit 2 is different.
[0018]
In the first reference example , the ultrasonic probe 7 as a lower set and the ultrasonic probe 8 as an upper set are arranged in the weld line direction (scanning) of the flaw detection unit 2. (Direction) is also shifted by a predetermined distance ΔD. By providing such staggered, the diffraction waves 11 and 12 of the ultrasonic 9, 10 originated from the transmission transducer 3,4, stably by each receiving probe 5,6 became set It can be received.
[0019]
In the first reference example , an ultrasonic flaw detection method of scanning with the ultrasonic probes 7 and 8 will be described below.
[0020]
By each ultrasound probe 7, 8 is arranged as described above diffraction was diffraction waves 11 and 12 in the outgoing to defects e ultrasound 9,10, diffracted waves 11 and 12 of the scanning direction perpendicular As a trajectory for guessing from which position, it is calculated as a function of an ellipse from the probe arrangement and the diffracted wave propagation time (distance). Therefore, when flaw detection is performed by the ultrasonic probes 7 and 8 arranged at different positions, the result is calculated as different elliptical trajectories 13 and 14, respectively.
[0021]
Formulas for calculating the elliptical trajectories 13 and 14 can be obtained by the following [Equation 1] and [Equation 2].
[0022]
For ultrasound probe 7, the probe distance: S 1, the diffraction wave propagation distance: When W 1, elliptical trajectory 13 can be determined by [Equation 1].
[0023]
[Expression 1]
y 2 / a 2 + z 2 / b 2 = 1 (1)
a = W 1/2, b = 1 / 2√ (W 1 2 -S 1 2)
y: scan perpendicular direction, z: depth direction.
[0024]
For ultrasound probe 8, the probe distance: S 2, the diffraction wave propagation distance: When W 2, elliptical trajectory 14 can be determined by Equation 2.
[0025]
[Expression 2]
(Y−ΔS) 2 / a 2 + z 2 / b 2 = 1 (2)
a = W 2/2, b = 1 / 2√ (W 2 2 -S 2 2)
y: scan perpendicular direction, z: depth direction.
[0026]
Then, based on the result of calculating the elliptical trajectories 13 and 14 by the respective ultrasonic probes 7 and 8, correction is made by a distance ΔD that is a shift of the ultrasonic probe 7 and the ultrasonic probe 8 in the welding line direction. By doing so, the intersection point p between the trajectory 13 and the trajectory 14 can be detected. These are performed by a controller (not shown).
[0027]
The intersection point p is the position of the scanning perpendicular direction of the diffraction waves 11 and 12 diffraction defective e, can be detected as an amount Δy defects e is offset from the center f of the flaw detection portion 2 in the scanning direction perpendicular.
[0028]
That is, using two sets of ultrasonic probes 7 and 8 having different arrangement positions, the position of the defect e from the intersection point p of the predicted defect trajectory in the direction perpendicular to the scanning obtained from each set of the ultrasonic probes 7 and 8. Seeking.
[0029]
Therefore, only by scanning the probes 3, 4, 5 and 6 in one direction (welding line direction), the propagation time difference between the diffracted waves 11 and 12 received by the two receiving probes 5 and 6 causes the defect e. The position Δy can be detected.
[0030]
In the first reference example , the ultrasonic probes 7 and 8 are arranged so as to be shifted by a predetermined distance ΔD in the weld line direction. However, the two ultrasonic probes 7 and 8 are arranged in a line. Then, it may be detected. In this case, the intersection point p of the elliptical trajectories 13 and 14 can be obtained without correcting the scanning direction.
[0031]
FIG. 2 is a drawing showing an ultrasonic flaw detection method according to a second reference example , where (a) is a front view and (b) is a plan view. As shown in the figure, in the second reference example , one transmission probe 15 and two reception probes 16 and 17 are provided at distances S 1 and S 2 with the flaw detection portion 2 of the inspection object 1 interposed therebetween. It has been. In the second reference example , as a method of giving a difference in the propagation time of the diffracted wave from the same defect e, two receiving probes 16 and 17 having different arrangement distances in the scanning perpendicular direction are provided.
[0032]
According to the second reference example, one of the diffraction waves 19 and 20 ultrasound 18 which originated has diffraction defective e from the transmission probe 15, two receiving probe 16 which is provided at different distances, By receiving at 17, the position Δy of the defect e can be detected based on the propagation time difference of the diffracted waves 19 and 20 from the defect e received by the two receiving probes 16 and 17.
[0033]
In the case of this second reference example, similarly to the first reference example, an elliptical trajectory 21 and 22 different from the diffraction waves 19 and 20 at the location of the receiving probe 16, 17 determined by the formula 1 The position Δy of the defect e is detected by obtaining the intersection point p of the elliptical trajectories 21 and 22.
[0034]
In the case of this second reference example , the probes 15, 16, and 17 are provided on the same line in the scanning perpendicular direction, so the probes 15, 16, and 17 are scanned in one direction (welding line direction). However, if the two receiving probes 16 and 17 are shifted in the welding line direction as in the first reference example , the receiving probes 16 and 17 are shifted as described above. The position of the defect e may be detected by correcting the amount ΔD (FIG. 1 (b)).
[0035]
Further, as in the first and second reference examples , in addition to providing the transmission probes 3, 4, 15 and the reception probes 5, 6, 16, 17, one reception probe and two more transmit probe, or by the use of two receive probe and two or more transmission depth probe, for detecting the position of the same scanning direction perpendicular defects e from the propagation time difference between the diffraction wave It is possible.
[0036]
Furthermore, if one ultrasonic probe and three or more separately arranged reception probes are provided for ultrasonic flaw detection, detection accuracy can be further improved. This is the same even when three or more transmission probes and one reception probe are provided.
[0037]
FIG. 3 is a drawing showing an ultrasonic flaw detection method according to a third reference example , wherein (a) is a front view and (b) is a plan view. As shown in the figure, in this third reference example , a transmission probe 23 and a reception probe 24 are provided with the flaw detection part 2 of the object 1 to be inspected. In this third reference example , the same defect is provided. As a method of giving a difference in the propagation time of the diffracted wave from e, the distance between the probes 23 and 24 is changed by allowing the reception probe 24 to move back and forth in the direction perpendicular to the scanning. I have to.
[0038]
According to the third reference example , the reception probe 24 is moved in the front-rear direction, and at each measurement point (distance S 1 , S 2 , S 3 ) at the moved position, the ultrasonic wave 25 is detected by the defect e. receiving the diffraction waves 26, 27, 28 which is folded, seeking the position Δy of the defect e from the difference in propagation time of the received diffraction waves 26, 27 and 28. In this example, it detects the diffraction waves 26, 27, 28 at a distance S 2 in the moving range intermediate portion of the receiving probe 24 and the distance S 1, S 3 of the front and rear ends.
[0039]
In the case of this third reference example, similarly to the first reference example, using Equation 1, in each arrangement of the probes 23 and 24 at a position for receiving each time folding waves 26, 27 and 28 obtains an elliptical trajectory 29, 30, 31 from the diffraction waves 26, 27, 28, and detects the position Δy of the defect e by finding the intersection p of the ellipse trajectory 29, 30, 31.
[0040]
In the third reference example , the reception probe 24 is moved back and forth, but the transmission probe 23 may be moved back and forth.
[0041]
In the third reference example , one transmission probe 23 and one reception probe 24 are used. However, one transmission probe 23 and a plurality of reception depth probes 24, or a plurality of reception probes 24, or A transmission probe 23 and one reception probe 24 are provided, and either the transmission or reception probe 23, 24 is moved back and forth, and at each measurement point (for example, a predetermined position for every fixed pitch). be configured to measure the diffraction waves 26, 27 and 28 can achieve the same effect.
[0042]
FIG. 4 is a front view showing an ultrasonic flaw detection method according to an embodiment of the present invention. FIG. 5 is a front view for explaining a diffracted wave by an ultrasonic wave reflected once by the ultrasonic flaw detection method. As shown in FIG. 4, in this embodiment, the transmission probe 32 and the reception probe 33 are provided at a distance S 1 with the flaw detection part 2 of the inspection object 1 interposed therebetween. In this embodiment, as a method of giving a difference in the propagation time of the diffracted wave from the same defect e, the diffracted wave 35 in which the ultrasonic wave 34 transmitted from the transmission probe 32 is directly diffracted by the defect e, and the inspection object 1 The reception probe 33 receives the diffracted wave 37 diffracted by the defect e from the ultrasonic wave 36 reflected once on the other surface (back surface).
[0043]
Ultrasonic 36 reflected once utilized in this embodiment, as shown in FIG. 5, no ultrasound 36 that diffraction by reflection to defects e in the rear surface of the inspection object 1 of a limited thickness reflected In this case, an elliptical locus 38 is obtained, and the elliptical locus 38 is obtained as an elliptical locus 39 reflected at the back surface position of the object 1 to be inspected.
[0044]
For implementation form of this, the first using equations 1 and 2 in the same manner as in Reference Example, the diffraction waves 35 by ultrasound 34 to direct the transmitted probe 32, vertex to the ultrasonic probe side calculated as an ellipse locus 40 having the diffraction waves 37 by ultrasound 36 reflected once on the rear surface of the inspection object 1, as ultrasound 36 originating from the back side of the inspection object 1 as described above A position Δy of the defect e is detected by obtaining an elliptical trajectory 39 having vertices on the anti-ultrasonic probe side and obtaining intersection points p of the elliptical trajectories 40 and 39 whose vertices are in opposite directions.
[0045]
Lever by such a method, by a set of ultrasonic probe 32, and to have a difference in propagation time of the diffracted waves from the same defect e, it is possible to detect the position Δy of the defect e .
[0046]
FIG. 6 is a front view showing an ultrasonic flaw detection method according to a fourth reference example . In the fourth reference example , when the position of the defect e is obtained in the TOFD method, the ultrasonic wave transmitted by the longitudinal wave is diffracted at the defect e instead of using the flaw detection result of only the longitudinal wave of the ultrasonic wave. The three-dimensional position of the defect e is detected by the difference in propagation time from the same defect e by receiving the transverse wave generated at the time and utilizing the difference in the sound speed between the longitudinal wave and the transverse wave of the obtained flaw detection result.
[0047]
As shown in the figure, a transmission probe 41 and a reception probe 42 are provided across the flaw detection portion 2 of the object 1 to be inspected, and a longitudinal wave ultrasonic wave 43 is transmitted from the transmission probe 41, wave 43 is the diffraction waves 44 of the longitudinal wave diffraction defective e, and diffraction waves 45 of the transverse wave is received by the receiving probe 42.
[0048]
A longitudinal wave oblique angle probe mainly used for longitudinal wave detection is used as a reception probe 42 that receives a longitudinal wave and a transverse wave after diffraction using a longitudinal wave oblique angle probe for the transmission probe 41. If a transverse wave oblique angle probe whose main purpose is transverse wave detection is used, the longitudinal wave and the transverse wave after diffraction can be efficiently received by the respective probes 41 and 42.
[0049]
Thus receives the diffraction waves 45 of the diffraction waves 44 and shear vertical wave at the receiving probe 42, the controller for detecting the position Δy of the defect e from the sound velocity difference of these diffraction waves 44 and 45 It is provided, by utilizing the acoustic velocity difference between the transverse wave of the diffraction waves 44 and 45, the position Δy of the defect e the amount of defects e is shifted in the scanning direction orthogonal to the flaw portion 2 efficiently detect and Can be specified.
[0050]
That is, according to this fourth reference example , the propagation path and propagation distance of both the longitudinal wave and the transverse wave of the ultrasonic wave are the same, but the fact that waves having different sound speeds propagate through the same path, Using two different propagation times (different ultrasonic modes), the amount of deviation of the defect e from the flaw detection center f is obtained.
[0051]
This longitudinal wave diffraction ultrasound propagation time t LL is represented by the formula shown in Equation 3, the propagation time t LS of ultrasonic waves transverse mode conversion after diffraction in the formula shown in [Expression 4] expressed.
[0052]
[Equation 3]
Figure 0003765417
[0053]
[Expression 4]
Figure 0003765417
[0054]
In the formula, W 1 and W 2 are distances in the figure, V L is longitudinal wave sound velocity, and V S is transverse wave sound velocity. From these mathematical formulas [Equation 3] and [Equation 4], the distances W 1 and W 2 in the figure are represented by the following mathematical equations [Equation 5] and [Equation 6].
[0055]
[Equation 5]
Figure 0003765417
[0056]
[Formula 6]
Figure 0003765417
[0057]
Here, when the reflection source is obtained with the arrangement of FIG. 6, the reflection source position (y, z) satisfies the following mathematical formulas [Equation 7] and [Equation 8].
[0058]
[Expression 7]
Figure 0003765417
[0059]
[Equation 8]
Figure 0003765417
[0060]
Therefore, the reflection source position (y F , z F ) can be obtained by substituting the equations [Equation 5] and [Equation 6] into these equations [Equation 7] and [Equation 8]. These are performed by a controller (not shown).
[0061]
In this way, by utilizing the acoustic velocity difference between the longitudinal wave 44 and transverse 45 of diffraction wave ultrasound 43 is folded times, to detect the position Δy defects e is shifted from the center position f of the flaw detection section 2 be able to.
[0062]
Furthermore, when the ultrasonic wave 43 incident as a longitudinal wave propagates as a longitudinal wave even after diffraction, the echo is expected to be received and when the ultrasonic wave 43 incident as a longitudinal wave propagates as a transverse wave after diffraction, If the range expected to be received is displayed on the time axis of the TOFD flaw detection screen, it is possible to assist the inspector in selecting a waveform for identifying the defect e while looking at the screen.
[0063]
On the other hand, in the fourth reference example , a transverse wave ultrasonic wave is transmitted from the transmission probe 41, and a longitudinal wave ultrasonic wave and a transverse wave ultrasonic wave generated when this ultrasonic wave is diffracted at the defect e are received and received. You may make it receive with the touch element 42. FIG. In this case, a transverse wave oblique probe is used as the transmission probe 41, and a longitudinal wave oblique probe mainly intended for longitudinal wave detection is used as the reception probe 42 that receives the longitudinal wave and the transverse wave after diffraction. If a transverse wave oblique angle probe whose main purpose is transverse wave detection is used, each of the probes 41 and 42 can efficiently receive the transverse wave and longitudinal wave after diffraction. Thus even if the by acoustic velocity difference between the transverse wave of the resulting diffraction waves upon reception, it is possible to detect the three-dimensional position of the defect e.
[0064]
In addition, the reception of echo is expected when the ultrasonic wave incident on the longitudinal wave propagates in the longitudinal wave after diffraction, and the reception of the echo when the ultrasonic wave incident on the longitudinal wave propagates in the transverse wave after diffraction. There the expected range, if to display on the time axis of the inspection window to view the diffraction waves can inspector to assist when selecting the diffraction waves while watching the inspection window.
[0065]
According to the embodiment as described above, the displacement position (Δy) of the defect e in the direction perpendicular to the scanning can be detected without performing scanning in the probe direction (B scan) by the TOFD method, and the depth Since the detection accuracy also improves for the position in the direction, the inspection accuracy for accurately detecting the position of the defect e can be improved by the ultrasonic flaw detection test. In addition, even when a defective portion such as a welded joint is repaired, the position of the identified defect e need only be repaired directly, and the work can be efficiently performed with no waste of repair work.
[0066]
In addition, a combination of the reception probe 5,6,17,24,33,42 and the transmission probe 3,4,15,23,32,41, the diffraction wave 19,20,26~28 , 35, 37, 44, and 45, it is possible to stably detect the defect e in the flaw detection unit 2 based on the difference in propagation time and sound speed. An ultrasonic flaw detection apparatus capable of performing an ultrasonic flaw inspection stably with respect to a wire welded joint of m can also be realized, and an ultrasonic flaw detection apparatus capable of realizing automation thereof can be obtained.
[0067]
Incidentally, it is also possible to implement in combination with the embodiment of the reference example described above, it may be used in combination as appropriate depending on the inspection object and conditions. In the above-described embodiment, it is possible to further improve the measurement accuracy by increasing the number of ultrasonic probes arranged and the number of probes. In this case as well, if the number is appropriately increased according to the inspection object and conditions. Good.
[0068]
Furthermore, the implementation form described above is an embodiment, various modifications within a range that does not impair the gist of the present invention can be, the present invention is not limited to the embodiments described above.
[0069]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0070]
Ultrasonic wave transmitted from the transmitting probe is to have a difference in propagation time of the diffraction waves folding times the defect, the amount of defects from the difference between the propagation time is shifted in the scanning direction perpendicular flaw detection portion readily detected Thus, it is possible to perform a quick ultrasonic flaw detection work.
[Brief description of the drawings]
1A and 1B are diagrams showing an ultrasonic flaw detection method according to a first reference example, wherein FIG. 1A is a front view and FIG. 1B is a plan view.
FIG. 2 is a drawing showing an ultrasonic flaw detection method according to a second reference example, wherein (a) is a front view and (b) is a plan view.
FIG. 3 is a drawing showing an ultrasonic flaw detection method according to a third reference example, wherein (a) is a front view and (b) is a plan view.
FIG. 4 is a front view showing an ultrasonic flaw detection method according to an embodiment of the present invention.
5 is a front view for explaining a diffracted wave by ultrasonic waves reflected once by the ultrasonic flaw detection method shown in FIG. 4;
FIG. 6 is a front view showing an ultrasonic flaw detection method according to a fourth reference example.
FIG. 7A is a schematic diagram showing an example of an ultrasonic flaw detection method, and FIG. 7B is a schematic diagram of the flaw detection waveform.

Claims (2)

所定厚さの被検査体の一方の面から送信探触子により超音波を発信し、該超音波の直射による欠陥からの回折波と、該超音波の被検査体他面での一回反射による欠陥からの回折波とを前記送信探触子に対して同一面側でかつ探傷部を挟んだ位置に配置された受信探触子により受信し、該受信したそれぞれの回折波の伝搬時間差から欠陥の位置を求める超音波探傷方法。An ultrasonic wave is transmitted from one surface of an object to be inspected with a predetermined thickness by a transmission probe, and a diffracted wave from a defect caused by direct irradiation of the ultrasonic wave and a single reflection of the ultrasonic wave on the other surface of the object to be inspected. And a diffracted wave from the defect by the receiving probe arranged on the same plane side with respect to the transmitting probe and sandwiching the flaw detection portion , and from the propagation time difference of the received diffracted waves An ultrasonic flaw detection method for determining the position of a defect. 所定厚さの被検査体の一方の面から超音波を発信する送信探触子と、該送信探触子から発信した超音波の直射による欠陥からの回折波、及び該超音波の被検査体他面での一回反射による欠陥からの回折波を受信するように前記送信探触子に対して同一面側でかつ探傷部を挟んだ位置に配置された受信探触子と、該受信探触子で受信したそれぞれの回折波の伝搬時間差から欠陥の位置を求める制御機を設けた超音波探傷装置。A transmission probe that transmits ultrasonic waves from one surface of an object to be inspected of a predetermined thickness, a diffracted wave from a defect caused by direct irradiation of the ultrasonic waves transmitted from the transmission probe, and the object to be inspected by the ultrasonic waves A receiving probe arranged on the same surface side with respect to the transmitting probe so as to receive a diffracted wave from a defect caused by a single reflection on the other surface and sandwiching a flaw detection unit ; and the receiving probe An ultrasonic flaw detector provided with a controller for determining the position of a defect from the propagation time difference of each diffracted wave received by a toucher.
JP2002356650A 2002-12-09 2002-12-09 Ultrasonic flaw detection method and apparatus Expired - Lifetime JP3765417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356650A JP3765417B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356650A JP3765417B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detection method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005146640A Division JP4148959B2 (en) 2005-05-19 2005-05-19 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004191088A JP2004191088A (en) 2004-07-08
JP3765417B2 true JP3765417B2 (en) 2006-04-12

Family

ID=32756932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356650A Expired - Lifetime JP3765417B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3765417B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143111B2 (en) * 2009-11-30 2013-02-13 日立Geニュークリア・エナジー株式会社 Nondestructive inspection apparatus and nondestructive inspection method using guide wave
KR101129726B1 (en) * 2009-12-29 2012-03-28 한국과학기술원 Damage detection method using dual-sensors
JP5733504B2 (en) * 2011-03-09 2015-06-10 株式会社Ihi Defect detection method for welds
JP5628856B2 (en) * 2012-03-29 2014-11-19 三井造船株式会社 Defect inspection apparatus and defect inspection method
JP6934440B2 (en) * 2018-03-20 2021-09-15 日立Astemo株式会社 Manufacturing method of high-pressure fuel supply pump using ultrasonic inspection method, ultrasonic inspection device and ultrasonic inspection method

Also Published As

Publication number Publication date
JP2004191088A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP2124046B1 (en) Method for controlling quality of tubular body and tubular body manufacturing method
JP4884930B2 (en) Ultrasonic flaw detection apparatus and method
US9063059B2 (en) Three-dimensional matrix phased array spot weld inspection system
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPS6391554A (en) Ultrasonic flaw detection method and device for steel pipe welds
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP5846367B2 (en) Flaw detection method and flaw detection apparatus for welds using TOFD method
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
JP2014077708A (en) Inspection device and inspection method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2018100852A (en) Ultrasonic inspection device, ultrasonic inspection method and joint block material manufacturing method
JP2006138672A (en) Ultrasonic inspection method and apparatus
JP4175762B2 (en) Ultrasonic flaw detector
JP4633268B2 (en) Ultrasonic flaw detector
JP5250248B2 (en) Defect end detection method and defect end detection device
KR20070065934A (en) Phased array ultrasonic flaw length evaluation device and method
JPH11316215A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP2007327747A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP3725126B2 (en) Ultrasonic flaw detection method and apparatus
JPS62192653A (en) Ultrasonic flaw detection method for steel pipe weld seams

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

EXPY Cancellation because of completion of term