[go: up one dir, main page]

JP3763614B2 - Inorganic curable composition, inorganic molded body, and method for producing the same - Google Patents

Inorganic curable composition, inorganic molded body, and method for producing the same Download PDF

Info

Publication number
JP3763614B2
JP3763614B2 JP18613196A JP18613196A JP3763614B2 JP 3763614 B2 JP3763614 B2 JP 3763614B2 JP 18613196 A JP18613196 A JP 18613196A JP 18613196 A JP18613196 A JP 18613196A JP 3763614 B2 JP3763614 B2 JP 3763614B2
Authority
JP
Japan
Prior art keywords
inorganic
fiber
curable composition
fibers
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18613196A
Other languages
Japanese (ja)
Other versions
JPH1029844A (en
Inventor
俊紀 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP18613196A priority Critical patent/JP3763614B2/en
Publication of JPH1029844A publication Critical patent/JPH1029844A/en
Application granted granted Critical
Publication of JP3763614B2 publication Critical patent/JP3763614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00336Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無機硬化性組成物、無機質成形体およびその製造方法に関する。
【0002】
【従来の技術】
水硬性マトリックスと短繊維の混合分散スラリーを抄造して成形した成形品は、石綿スレート、硅酸カルシウム板、パルプセメント板、スラグ石膏板などの建築材料として古くから用いられている。これらの成形品には、石綿スレートに代表されるように、多量の石綿が含まれているのが通例である。この石綿は、抄造工程や品質物性に重要な役割を果たしている。
しかし、公害問題と関連して、石綿(アスベスト)の使用については世界的に厳しい規制が実施され、石綿を使用していた分野においては、石綿の使用量の低減、究極的には無石綿化が指向されている。石綿に代わる繊維として種々の繊維、例えば、天然繊維について解繊パルプ(特開昭59−131551号公報など)、合成繊維についてビニロン繊維やポリプロピレン繊維(特開昭62−78136号公報など)、無機質繊維について炭素繊維やガラス繊維などが検討されている。また、最近では森林資源の保護や資源のリサイクル化のため、解繊パルプとして古紙パルプを使用する方法も検討されている。
【0003】
このように、脱アスベスト化を目指して様々な繊維が検討されているが、繊維の種類に応じて、それぞれ、一長一短がある。例えば、有機合成繊維を使用する場合、添加量が少な過ぎると十分な補強効果を発揮できず、多過ぎると、難燃性が低下するばかりか、繊維自身の分散性の低下に伴って成形品が不均一になる。また、セメント系の養生方法として、蒸気養生・オートクレーブ養生を採用する製品では繊維自身の熱劣化が問題となる。
難燃性を解決する手段として、パルプ繊維又は無機繊維を使用する方法が提案されているが、パルプ繊維の添加量が少なすぎると十分な補強効果が発揮できず、補強効果を発揮する程度の量で添加すると、難燃性の低下に加えて、濾水性が低下し、抄造による生産性が大きく低下する。また、無機繊維としてガラス繊維を用いると、耐アルカリ性が問題となり、炭素繊維を用いると、濾水性が高過ぎるために均一な成形品が得られないばかりか、抄造時の粉粒体の漏れによる歩留まりが低下する。また、一般に無機繊維を使用した場合は、繊維自身の表面が滑らかであり、かつセメントとの密着性も小さいため、成形品を破断した際に、いわゆる繊維の擦り抜けが起こり、繊維自身の強度は強いものの、成形品として十分な強度が発現しない。
【0004】
これらの課題を解決するため、特公平5−80425公報には、ビニロン繊維やポリアクリルニトリル繊維の極細繊維と、通常の繊維とを組み合わせて使用することが提案されている。この方法は、極細繊維の良好な粉末捕捉性と通常繊維のセメントとの密着性とを同時に合わせ持たせることができる。しかし、有機合成繊維を使用すると、無機繊維ほどではないものの、繊維の剛直性に起因して、プレス法などによる賦形時に凸凹表面が生じる虞があり、成形体を精度よく成形することが困難である。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、抄造性、補強性とともに表面平滑性の高い無機硬化性組成物、無機質成形体およびその製造方法を提供することにある。
本発明の他の目的は、少量の添加により高い補強性を付与し、機械的特性を改善できる無機硬化性組成物、無機質成形体およびその製造方法を提供することにある。
本発明のさらに他の目的は、濾水性および歩留りが高く、抄造による生産性が高く、円滑に無機質成形体を得ることができる無機硬化性組成物、無機質成形体およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するため鋭意検討の結果、前記繊維と微小フィブリル化セルロース繊維とを組合せて使用すると、濾水性、歩留りおよび賦形時の表面性を大きく改善できることを見いだし、本発明を完成した。
すなわち、本発明の無機硬化性組成物は、無機硬化性物質と補強繊維とで構成された硬化性組成物であって、補強繊維が、(A)平均繊維径0.01〜1μm、平均繊維長300〜1000μmであり、かつ軸比(L/D)が2,000〜100,000の微小フィブリル化セルロースと、(B1)平均繊維径5〜50μm、平均繊維長1〜5mmの解繊パルプ繊維、(B2)平均繊維径5〜50μm、平均繊維長1〜10mmの有機合成繊維又は無機繊維とで構成されている。この組成物において、補強繊維の割合は、固形分換算で、硬化性組成物全体に対して1〜10重量%程度である。また、(B1)成分に対する(A)成分の割合は、(A)成分/(B1)成分=5〜80重量%程度の範囲から選択でき、(B2)成分の割合は、補強繊維全体の〜20重量%程度の範囲から選択する場合が多い。
【0007】
前記無機硬化性組成物は、無機質成形体、例えば、抄造体を得る上で有用である。
本発明の方法では、前記無機硬化性組成物の水性スラリーを抄造し、無機質成形体を製造する。この方法において、水性スラリーを抄造し、無機質抄造体を硬化させて無機質成形体を得てもよい。
なお、本明細書において、セルロース繊維の「平均繊維長」は、重さ加重平均繊維長を意味する。
【0008】
【発明の実施の形態】
本発明の無機硬化性組成物を構成する無機硬化性物質および補強繊維について詳細に説明する。
[無機硬化性物質]
無機硬化性物質には、セメント、例えば、気硬性セメント(セッコウ、消石灰やドロマイトプラスターなどの石灰);水硬性セメント(例えば、ポルトランドセメント、早強ポルトランドセメント、アルミナセメント、急硬高強度セメント、焼きセッコウなどの自硬性セメント;石灰スラグセメント、高炉セメントなど;混合セメント)などが含まれる。好ましいセメントには、例えば、セッコウ、ドロマイトプラスターおよび水硬性セメントなどが含まれる。
【0009】
無機硬化性物質の割合は、セメント成形体の用途や強度などに応じて選択でき、例えば、固形分換算で、無機硬化性組成物全体に対して30〜90重量%、好ましくは40〜90重量%、さらに好ましくは50〜90重量%程度である。
[補強繊維]
本発明の特色は、(A)微小フィブリル化セルロース(以下、単に微小セルロース繊維という場合がある)と、(B1)解繊パルプ繊維および(B2)有機合成繊維又は無機繊維から選択された少くとも一種の繊維(B)とを組合せて補強繊維を構成する点にある。
[微小フィブリル化セルロース(A)]
微小セルロース繊維(A)は、単に細かい繊維であるだけでなく、多数の枝分かれ構造を有し、フィブリル化している。そのため、抄造において少量の添加量でも濾水性・歩留まりを大幅に改善できる。特に耐火性を重要視する場合、有機繊維は多量に配合できず、炭素繊維などの無機繊維を配合すると、剛直で、表面が平滑であるため、濾水性が高過ぎ、しばしば製品の品質に悪影響を及ぼす。このような繊維系に、微小セルロース繊維を少量添加すると、濾水性を改善できるとともに、物性を低下させることなく抄造体を製造できる。また、微小セルロース繊維が互いに絡み合うため、網目状構造を形成し、その結果として微小粉末の白水への漏れが少なくなり歩留まりが向上するだけでなく、安定した品質の製品が製造可能となる。
【0010】
微小セルロース繊維(A)の平均繊維径は、例えば、0.01〜1μm(例えば、0.01〜0.8μm)、好ましくは0.03〜0.5μm、さらに好ましくは0.05〜0.3μm程度であり、平均繊維径0.1〜0.3μm程度である場合が多い。また、微状セルロース繊維の平均繊維長は、例えば、100〜1000μm(例えば、100〜900μm)、好ましくは200〜900μm、好ましくは300〜800μm程度であり、400〜600μm程度である場合が多い。さらに、微小セルロース繊維の軸比(L/D)は、例えば、2,000〜100,000、好ましくは5,000〜80,000、さらに好ましくは10,000〜70,000程度であり、25,000〜75,000程度である場合が多い。さらに、微小セルロース繊維の比表面積は、例えば、100〜300m2 /g、好ましくは150〜250m2 /g程度である。
【0011】
微小セルロース繊維のセルロース原料としては、例えば、パルプ(木材パルプ、竹パルプ、バガスパルプ、リンターパルプなど)が使用でき、パルプは、バージンパルプであってもよく、新聞紙などの古紙パルプなどであってもよい。
微小セルロース繊維の製造方法は特に制限されない。微小セルロース繊維は、例えば、高圧ホモジナイザーなどを用いて、高剪断力、高衝撃力をセルロース繊維に作用させ、セルロースを高度に裂解して、微細化するととも極度にミクロフィブリル化することにより調製できる。このような微小セルロース繊維は、例えば、ダイセル化学工業(株)から商品名「セリッシュ」として入手できる。
微小セルロース繊維の添加量は、スラリー粘度,濾水性などを損なわない範囲で選択でき、例えば、補強繊維全体の5〜50重量%、好ましくは10〜40重量%、さらに好ましくは15〜30重量%程度である。
【0012】
無機硬化性組成物全体に対する微小セルロース繊維の使用量は、例えば、無機硬化性組成物全体の0.1〜5重量%、好ましくは0.3〜3重量%、さらに好ましくは0.5〜1.5重量%程度である。
さらに、(B1)成分に対する(A)成分の割合は、例えば、(A)成分/(B1)成分=5〜80重量%、好ましくは10〜50重量%、さらに好ましくは10〜40重量%(例えば、10〜30重量%)程度である。
[解繊パルプ繊維(B1)]
解繊パルプ繊維(B1)、すなわちパルプ繊維としては、叩解により得られる種々のパルプ、例えば、木材パルプ、竹パルプ、バガスパルプ、リンターパルプなどが使用でき、木材パルプは、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプのいずれであってもよい。また、解繊パルプ繊維としては、NUKP,NBKPなどのバージンパルプ、新聞紙、段ボールなどの古紙パルプ、あるいはそれらの再生品などを使用することができる。
【0013】
解繊パルプ繊維(B1)は短繊維として使用される。解繊パルプ繊維(B1)の平均繊維径は、例えば、5〜50μm(例えば、10〜50μm)、好ましくは10〜40μm,さらに好ましくは10〜30μm程度であり、平均繊維長は、例えば、1〜5mm(例えば、2〜5mm)、好ましくは2〜4mm程度である。
パルプ繊維の添加量は、補強性などを損なわない範囲で選択でき、例えば、補強繊維全体の20〜90重量%、好ましくは30〜85重量%、さらに好ましくは50〜80重量%程度である。
無機硬化性組成物全体に対するパルプ繊維の使用量は、例えば、無機硬化性組成物全体の0.5〜10重量%、好ましくは1〜7重量%、さらに好ましくは2〜5重量%程度である。
【0014】
[有機合成繊維又は無機繊維(B2)]
補強繊維は、成型品に耐衝撃性を付与したり成形品の難燃性を向上させるため、有機合成繊維や無機繊維を含んでいてもよい。有機繊維には、例えば、レーヨン繊維、アセテート繊維、オレフィン系繊維(ポリエチレン、ポリプロピレンなど)、ポリアクリロニトリル繊維などのアクリル系繊維、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、ビニロン繊維(ポリビニルアルコール繊維)、ポリ塩化ビニル繊維、フェノール繊維などが含まれる。
無機繊維には、例えば、ガラス繊維、ロックウール、炭素繊維、炭化ケイ素繊維、アルミナ繊維、金属繊維などが例示できる。
有機合成繊維又は無機繊維はそれぞれ単独で又は二種以上混合して使用でき、有機合成繊維と無機繊維とを組合せて使用してもよい。
【0015】
有機合成繊維及び無機繊維(B2)は短繊維として使用される。有機合成繊維及び無機繊維(B2)の平均繊維径は、例えば、5〜50μm(例えば、10〜50μm)、好ましくは10〜40μm,さらに好ましくは10〜30μm程度であり、平均繊維長は、例えば、1〜10mm(例えば、2〜8mm)、好ましくは2〜10mm(例えば、3〜6mm)、さらに好ましくは3〜8mm(例えば、3〜6mm)程度である。
繊維(B2)の割合は、例えば、補強繊維全体の0〜20重量%、好ましくは3〜15重量%、さらに好ましくは5〜15重量%程度の範囲から選択できる。有機合成繊維及び/又は無機繊維(B2)の割合が20重量%を越えると、繊維の分散性が低下し、成形品の物性に悪影響を及ぼすとともに、表面平滑性,地合が低下しやすい。
【0016】
無機硬化性組成物全体に対する繊維(B2)の使用量は、例えば、無機硬化性組成物全体の0.1〜20重量%、好ましくは0.3〜15重量%、さらに好ましくは0.5〜10重量%程度である。
補強繊維は、(A)微小フィブリル化セルロースと、(B1)解繊パルプ繊維および(B2)繊維の少くともいずれか一方の繊維(B)とで構成されていればよいが、(A)微小フィブリル化セルロースと、(B1)解繊パルプ繊維と、(B2)有機合成繊維及び/又は無機繊維とで構成する場合が多い。
前記微小セルロース繊維(A)と、解繊パルプ繊維(B1)および繊維(B2)から選択された少くとも一種の繊維(B)とで構成された補強繊維の割合は、固形分換算で、硬化性組成物全体の1〜10重量%(例えば、1〜7重量%)、好ましくは2〜5重量%、さらに好ましくは3〜5重量%程度である。
【0017】
本発明の無機硬化性組成物、特にセメント系成形用組成物は、例えば、前記セメントと水とのペースト組成物(セメントペースト)として使用してもよく、セメントと水と骨材(例えば、砂、ケイ砂、パーライト、バーミキュライトなどの細骨材や軽量骨材、砕石、砂利などの粗骨材)を含むモルタル組成物やコンクリート組成物として使用してもよい。
無機硬化性組成物には、抄造体の寸法安定性を向上させるため、マイカなどの無機分散剤(充填剤)を添加してもよい。無機硬化性組成物は、さらに必要に応じて、セメント混和剤を含んでいてもよい。
セメント混和剤には、例えば、水溶性バインダー、減水剤や流動化剤、着色剤、硬化剤、塩化カルシウムなどの硬化促進剤、ポリアクリルアミドなどで構成された凝固剤、ポリビニルアルコール,ベントナイトなどの増粘剤、アルミニウム粉末などの発泡剤、合成樹脂エマルジョンなどの防水剤、可塑剤などの種々の添加剤を含んでいてもよい。
【0018】
前記水溶性バインダーとしては、例えば、水溶性セルロース誘導体[セルロースエーテル(例えば、メチルセルロース、エチルセルロースなどのアルキルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロースなどのカルボキシルアルキルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのヒドロキシアルキルアルキルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキルセルロースなど)]、ポリビニルアルコールなどが例示され、前記減水剤や流動化剤としては、例えば、リグニンスルホン酸塩、亜硫酸法パルプ廃液、オキシカルボン酸塩、ナフタレンスルホン酸塩、メラミンスルホン酸塩、メラミンスルホン酸塩のホルマリン縮合物などのスルホン酸塩(トリアジン系分散剤)、アビエチン酸などの松やに成分のアルカリ金属塩などで構成された、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤などが例示できる。
【0019】
前記無機硬化性組成物は、無機硬化性物質と、(A)微小フィブリル化セルロースと、(B1)解繊パルプ繊維および(B2)有機合成繊維又は無機繊維から選択された少くとも一種の繊維(B)とで構成された補強繊維とを、必要に応じて前記添加剤とともに混合することにより調製できる。
本発明の無機硬化性組成物は、成形性が高いため、種々の成形法、例えば、流し込み、抄造,吹き付け、プレスなどの種々の成形法で無機質成形体(繊維強化セメント成形体)を得ることができる。特に、無機硬化性組成物は抄造性に優れている。そのため、好ましい無機質成形体には、前記成分を含むスラリーを、ハチェック(丸網)式やプレス式などの抄造法を利用して抄造することにより得られる抄造体が含まれる。抄造体は、1枚の抄造シートであってもよく、複数枚の抄造シートを積層した積層体であってもよい。
【0020】
本発明の方法では、無機硬化性物質と補強繊維とで構成された水硬化性組成物の水性スラリーを抄造し、無機質成形体(繊維強化セメント成形体)を調製する。その際、前記補強繊維として、(A)微小フィブリル化セルロースと、(B1)解繊パルプ繊維、および(B2)有機合成繊維又は無機繊維から選択された少くとも一種の繊維(B)とで構成された補強繊維を用いる。このような抄造により高品質のコンクリート製品(セメント成形体)を効率よく生産できる。
前記スラリーの抄造は慣用の方法、例えば、抄造機を用いる抄造法などにより行うことができる。スラリー濃度は抄造性を損わない限り特に制限されず、例えば、0.1〜30重量%程度であってもよい。抄造による成形体は表面平滑性が高いとともに、前記(A)微小セルロース繊維と繊維(B)とで補強されている。特に、(A)微小セルロース繊維により、繊維間の絡み合いが強固であり、抄造体(成形体)の機械的特性を改善できるとともに、濾水性のみならず粉粒体に対する高い捕捉能により歩留りを高めることができる。
【0021】
前記無機質成形体(繊維強化セメント成形体)は、1又は複数の抄造シートを積層し、必要に応じて加圧成形した後、硬化させることにより得る場合が多い。繊維強化セメント成形体の硬化は、慣用の方法(例えば、常温常圧養生、常圧蒸気養生,水中養生、オートクレーブ養生など)で養生することにより行うことができる。
本発明の無機質成形体は、例えば、カーテンウォール、壁材などのコンクリートパネル、コンクリートブロックなどの製造に有用である。成形品は、形状などに応じて種々の用途、例えば、床材、内装材、外装材、遮音材などの建材用成形品として利用できる。
【0022】
【発明の効果】
本発明では、補強繊維が微小セルロース繊維と叩解セルロース繊維又は有機合成又は無機繊維との組合せにより構成されているため、抄造性、補強性とともに表面平滑性が高い。また、補強繊維の少量の添加により高い補強性を付与でき、曲げ強度や衝撃強度の大きな成形体を得ることができる。さらには、濾水性および歩留りが高く、抄造による生産性を改善でき、円滑に無機質成形体を得ることができる。
【0023】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1
石膏、スラグ、パーライト、ワラストナイト、ビニロン繊維(平均繊維径15μm,平均繊維長6mm,クラレ(株)製,ビニロンRM182−6)、消石灰、解砕パルプ繊維[ミキサー解砕処理したNUKP繊維(重さ加重平均繊維長2.76mm,平均繊維径15μm、軸比約200]および微小セルロース繊維[NUKPを高圧ホモジナイザーで処理した微小セルロース繊維(重さ加重平均繊維長0.51mm,平均繊維径0.1μm、軸比約5100)]を用い、表1に示される配合処方に従って、1リットルのスラリー(固形分濃度2重量%)を調製した。パルプ繊維1重量部に対する微小セルロース繊維の割合は25重量%である。セルロース繊維の繊維長は測定機(KAJAANI社製,型式FS-200)で測定し、重さ加重平均繊維長を記載し、繊維径は、光学顕微鏡を用いた観察結果に基づいて、最も代表的な値を記載した。
【0024】
そして、下記の方法で、濾水性および歩留りを測定したところ、表1に示す結果が得られた。
濾水性:
80メッショの金網を通過するスラリーの濾過速度を基準とし、スラリー500mlを濾過するのに要した時間を測定した。
歩留り:
仕込んだ固形分量と、濾水性の測定の際に金網上に残留した固形分の重量比とから算出した。
比較例1
微小セルロース繊維に代えて解砕セルロース繊維を用い、セルロース繊維を解砕パルプ繊維で構成する以外、実施例1と同様にして濾水性および歩留りを測定したところ、表1に示す結果が得られた。
【0025】
比較例2
解砕パルプ繊維に代えて微小セルロース繊維を用い、解砕パルプ繊維を微小セルロース繊維で構成する以外、実施例1と同様にして濾水性および歩留りを測定したところ、表1に示す結果が得られた。
【0026】
【表1】

Figure 0003763614
【0027】
表1に示されるように、比較例1および比較例2では濾水性および歩留りを高いレベルでバランスよく向上させることが困難であるのに対して、実施例1では、濾水性および歩留りの双方を向上できる。
実施例2および比較例3
石膏、スラグ、パーライト、ワラストナイト、ビニロン繊維(平均繊維径15μm,平均繊維長6mm,クラレ(株)製,ビニロンRM182−6)、消石灰、解砕パルプ繊維[解砕処理したNBKP繊維(重さ加重平均繊維長3.05mm,平均繊維径15μm、軸比約200)]および微小セルロース繊維[新聞故紙を高圧ホモジナイザーで処理して得られた微小セルロース繊維(重さ加重平均繊維長0.72mm,平均繊維径0.2μm、軸比約3500)]を用い、表2に示される配合処方に従って混合し、少量の凝集剤(市川毛織(株)製,IKフロック)を添加しながら、スラリー混合物を丸網抄造成形した後、60℃で1日蒸気養生し、60℃で1日乾燥することにより無機質板を得た。なお、パルプ繊維1重量部に対する微小セルロース繊維の割合は30重量%である。
【0028】
実施例2において、濃度14.4重量%のスラリーを抄造したところ、白水のスラリー濃度は1.4重量%であり、歩留り90%で抄造できた。
比較例3
微小セルロース繊維に代えて解砕パルプ繊維を用い、セルロース繊維を解砕パルプ繊維で構成する以外、実施例2と同様にして無機質板を得た。
得られた無機質板(抄造板)について、曲げ強度、衝撃強度、表面平滑性(地合)、難燃性を評価した。曲げ強度は、JIS A 1408に準じて測定し、衝撃強度は、球形重り(直径3cm、重さ300g)を高さ40cmと、高さ100cmから落下させ、落下に伴って生成する窪みの直径を測定することにより評価した。また、表面平滑性(地合)は目視で判定し、難燃性はJIS A 1321に準じて測定した。結果を表2に示す。
【0029】
【表2】
Figure 0003763614
【0030】
全セルロース繊維の添加量が同じであるため、実施例2および比較例3の難燃試験では大きな差が認められなかったが、比較例3に比べて実施例2の抄造板では、曲げ強度、衝撃強度、表面平滑性(地合)が大きく改善されている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inorganic curable composition, an inorganic molded body, and a method for producing the same.
[0002]
[Prior art]
Molded articles made by making a mixed dispersion slurry of hydraulic matrix and short fibers have been used for a long time as building materials such as asbestos slate, calcium oxalate board, pulp cement board, slag gypsum board. These molded articles usually contain a large amount of asbestos, as represented by asbestos slate. This asbestos plays an important role in the papermaking process and quality properties.
However, in relation to pollution problems, asbestos (asbestos) use is strictly regulated globally, and in the areas where asbestos was used, the amount of asbestos used was reduced, and ultimately it became non-asbestos. Is oriented. Various fibers as substitutes for asbestos, such as defibrated pulp for natural fibers (JP 59-131551 A, etc.), synthetic fibers for vinylon fibers and polypropylene fibers (JP 62-78136 A, etc.), inorganic Carbon fibers, glass fibers, etc. are being studied for the fibers. Recently, in order to protect forest resources and to recycle resources, a method of using waste paper pulp as a defibrated pulp has been studied.
[0003]
As described above, various fibers have been studied with the aim of deasbestos, but each has advantages and disadvantages depending on the type of fiber. For example, when using organic synthetic fibers, if the addition amount is too small, sufficient reinforcing effect cannot be exhibited, and if it is too much, not only the flame retardancy is lowered, but the molded product is accompanied by a decrease in the dispersibility of the fiber itself. Becomes uneven. In addition, as a cement-based curing method, thermal degradation of the fiber itself becomes a problem in products that employ steam curing / autoclave curing.
As a means for solving the flame retardancy, a method using pulp fibers or inorganic fibers has been proposed, but if the added amount of pulp fibers is too small, a sufficient reinforcing effect cannot be exhibited, and the reinforcing effect is exhibited. When added in an amount, in addition to the reduction in flame retardancy, the drainage is reduced and the productivity by papermaking is greatly reduced. In addition, when glass fiber is used as an inorganic fiber, alkali resistance becomes a problem, and when carbon fiber is used, not only a uniform molded product cannot be obtained due to too high drainage, but also due to leakage of powder during production. Yield decreases. In general, when inorganic fiber is used, the surface of the fiber itself is smooth and the adhesion to the cement is small, so when the molded product is broken, so-called fiber scrubbing occurs, and the strength of the fiber itself Is strong, but does not exhibit sufficient strength as a molded product.
[0004]
In order to solve these problems, Japanese Patent Publication No. 5-80425 proposes to use a combination of ultrafine fibers of vinylon fibers or polyacrylonitrile fibers and ordinary fibers. This method makes it possible to simultaneously combine good powder capturing properties of ultrafine fibers and adhesion of ordinary fibers with cement. However, when organic synthetic fibers are used, although not as good as inorganic fibers, there is a possibility that uneven surfaces may occur during shaping by the press method due to the rigidity of the fibers, and it is difficult to mold the molded body with high accuracy. It is.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an inorganic curable composition having high surface smoothness as well as papermaking and reinforcing properties, an inorganic molded body, and a method for producing the same.
Another object of the present invention is to provide an inorganic curable composition, an inorganic molded body, and a method for producing the same, which can impart high reinforcement by addition of a small amount and improve mechanical properties.
Still another object of the present invention is to provide an inorganic curable composition, an inorganic molded body, and a method for producing the same, which have high drainage and yield, high productivity by papermaking, and can obtain an inorganic molded body smoothly. It is in.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that when the fibers and the microfibrillated cellulose fibers are used in combination, the drainage property, the yield, and the surface property during shaping can be greatly improved. The present invention has been completed.
That is, the inorganic curable composition of the present invention is a curable composition composed of an inorganic curable substance and a reinforcing fiber, and the reinforcing fiber has (A) an average fiber diameter of 0.01 to 1 μm and an average fiber. Microfibrillated cellulose having a length of 300 to 1000 μm and an axial ratio (L / D) of 2,000 to 100,000, and (B1) an defibrated pulp having an average fiber diameter of 5 to 50 μm and an average fiber length of 1 to 5 mm and the fiber, and a (B2) 5 to 50 [mu] m average fiber diameter, organic synthetic fibers or inorganic textiles of average fiber length 1 to 10 mm. In this composition, the proportion of the reinforcing fiber is about 1 to 10% by weight in terms of solid content with respect to the entire curable composition. Moreover, the ratio of the (A) component to the (B1) component can be selected from the range of (A) component / (B1) component = about 5 to 80% by weight, and the ratio of the (B2) component is 3 % of the entire reinforcing fiber. It is often selected from a range of about ˜20% by weight.
[0007]
The inorganic curable composition is useful for obtaining an inorganic molded body, for example, a papermaking body.
In the method of the present invention, an aqueous slurry of the inorganic curable composition is made to produce an inorganic molded body. In this method, an inorganic slurry may be obtained by making an aqueous slurry and curing the inorganic paper.
In the present specification, the “average fiber length” of cellulose fibers means a weight-weighted average fiber length.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inorganic curable substance and the reinforcing fiber constituting the inorganic curable composition of the present invention will be described in detail.
[Inorganic curable substances]
Inorganic curable materials include cement, eg, air-cemented cement (lime, such as gypsum, slaked lime and dolomite plaster); hydraulic cement (eg, Portland cement, early strength Portland cement, alumina cement, rapid hardening high strength cement, baked Self-hardening cement such as gypsum; lime slag cement, blast furnace cement, etc .; mixed cement). Preferred cements include, for example, gypsum, dolomite plaster and hydraulic cement.
[0009]
The proportion of the inorganic curable substance can be selected according to the application and strength of the cement molded body, and is, for example, 30 to 90% by weight, preferably 40 to 90% by weight based on the whole inorganic curable composition in terms of solid content. %, More preferably about 50 to 90% by weight.
[Reinforcing fiber]
The feature of the present invention is that at least selected from (A) microfibrillated cellulose (hereinafter sometimes simply referred to as microcellulose fiber), (B1) defibrated pulp fiber, and (B2) organic synthetic fiber or inorganic fiber. A reinforcing fiber is formed by combining a kind of fiber (B).
[Microfibrillated cellulose (A)]
The fine cellulose fiber (A) is not only a fine fiber but also has a number of branched structures and is fibrillated. Therefore, the drainage and the yield can be greatly improved even with a small amount of addition in papermaking. Especially when fire resistance is important, organic fibers can not be blended in large amounts, and when blended with inorganic fibers such as carbon fibers, they are rigid and have a smooth surface, so the drainage is too high and often adversely affects the quality of the product. Effect. When a small amount of fine cellulose fiber is added to such a fiber system, drainage can be improved and a papermaking product can be produced without deteriorating physical properties. In addition, since the fine cellulose fibers are entangled with each other, a network structure is formed. As a result, the leakage of the fine powder into the white water is reduced and the yield is improved, and a product with stable quality can be manufactured.
[0010]
The average fiber diameter of the fine cellulose fibers (A) is, for example, 0.01-1 μm (for example, 0.01-0.8 μm), preferably 0.03-0.5 μm, and more preferably 0.05-0. The average fiber diameter is about 0.1 to 0.3 μm in many cases. The average fiber length of the fine cellulose fibers is, for example, 100 to 1000 μm (for example, 100 to 900 μm), preferably 200 to 900 μm, preferably about 300 to 800 μm, and often about 400 to 600 μm. Furthermore, the axial ratio (L / D) of the fine cellulose fibers is, for example, about 2,000 to 100,000, preferably about 5,000 to 80,000, more preferably about 10,000 to 70,000. In many cases, it is about 5,000-75,000. Furthermore, specific surface area of the fine cellulose fibers, for example, 100 to 300 m 2 / g, preferably from 150 to 250 2 / g approximately.
[0011]
As the cellulose raw material of the fine cellulose fibers, for example, pulp (wood pulp, bamboo pulp, bagasse pulp, linter pulp, etc.) can be used, and the pulp may be virgin pulp or used paper pulp such as newspaper. Good.
The production method of the fine cellulose fiber is not particularly limited. The fine cellulose fiber can be prepared by, for example, using a high-pressure homogenizer or the like to apply high shear force and high impact force to the cellulose fiber to highly rupture and refine the cellulose, and extremely microfibrillate. . Such a fine cellulose fiber can be obtained from Daicel Chemical Industries, Ltd. under the trade name “Serish”, for example.
The addition amount of the fine cellulose fiber can be selected within a range that does not impair the slurry viscosity, drainage, etc., for example, 5 to 50% by weight of the entire reinforcing fiber, preferably 10 to 40% by weight, more preferably 15 to 30% by weight. Degree.
[0012]
The amount of fine cellulose fibers used relative to the entire inorganic curable composition is, for example, 0.1 to 5% by weight, preferably 0.3 to 3% by weight, more preferably 0.5 to 1%, based on the entire inorganic curable composition. About 5% by weight.
Furthermore, the ratio of the component (A) to the component (B1) is, for example, (A) component / (B1) component = 5 to 80% by weight, preferably 10 to 50% by weight, more preferably 10 to 40% by weight ( For example, about 10 to 30% by weight).
[Defibrated pulp fiber (B1)]
As the defibrated pulp fiber (B1), that is, pulp fiber, various pulps obtained by beating, for example, wood pulp, bamboo pulp, bagasse pulp, linter pulp, etc., can be used. Any of chemical pulp may be used. Further, as the defibrated pulp fiber, virgin pulp such as NUKP and NBKP, waste paper pulp such as newspaper and cardboard, or a recycled product thereof can be used.
[0013]
The defibrated pulp fiber (B1) is used as a short fiber. The average fiber diameter of the defibrated pulp fiber (B1) is, for example, 5 to 50 μm (for example, 10 to 50 μm), preferably 10 to 40 μm, more preferably about 10 to 30 μm, and the average fiber length is, for example, 1 -5 mm (for example, 2-5 mm), preferably about 2-4 mm.
The added amount of the pulp fiber can be selected within a range that does not impair the reinforcing property, and is, for example, 20 to 90% by weight, preferably 30 to 85% by weight, more preferably about 50 to 80% by weight of the entire reinforcing fiber.
The amount of pulp fibers used relative to the entire inorganic curable composition is, for example, about 0.5 to 10% by weight, preferably 1 to 7% by weight, more preferably about 2 to 5% by weight, based on the entire inorganic curable composition. .
[0014]
[Organic synthetic fiber or inorganic fiber (B2)]
The reinforcing fiber may contain an organic synthetic fiber or an inorganic fiber in order to impart impact resistance to the molded product or improve the flame retardancy of the molded product. Examples of organic fibers include rayon fiber, acetate fiber, olefin fiber (polyethylene, polypropylene, etc.), acrylic fiber such as polyacrylonitrile fiber, polyester fiber, nylon fiber, polyurethane fiber, vinylon fiber (polyvinyl alcohol fiber), poly Examples include vinyl chloride fiber and phenol fiber.
Examples of inorganic fibers include glass fibers, rock wool, carbon fibers, silicon carbide fibers, alumina fibers, and metal fibers.
The organic synthetic fiber or the inorganic fiber can be used alone or in combination of two or more kinds, and the organic synthetic fiber and the inorganic fiber may be used in combination.
[0015]
Organic synthetic fibers and inorganic fibers (B2) are used as short fibers. The average fiber diameter of the organic synthetic fiber and the inorganic fiber (B2) is, for example, 5 to 50 μm (for example, 10 to 50 μm), preferably 10 to 40 μm, more preferably about 10 to 30 μm, and the average fiber length is, for example, It is about 1 to 10 mm (for example, 2 to 8 mm), preferably about 2 to 10 mm (for example, 3 to 6 mm), and more preferably about 3 to 8 mm (for example, 3 to 6 mm).
The ratio of the fiber (B2) can be selected, for example, from the range of 0 to 20% by weight, preferably 3 to 15% by weight, more preferably about 5 to 15% by weight of the entire reinforcing fiber. When the ratio of the organic synthetic fiber and / or the inorganic fiber (B2) exceeds 20% by weight, the dispersibility of the fiber is lowered, the physical properties of the molded product are adversely affected, and the surface smoothness and the texture are easily lowered.
[0016]
The amount of the fiber (B2) used with respect to the whole inorganic curable composition is, for example, 0.1 to 20% by weight, preferably 0.3 to 15% by weight, more preferably 0.5 to 0.5% by weight of the whole inorganic curable composition. About 10% by weight.
The reinforcing fiber may be composed of (A) microfibrillated cellulose and at least one of (B1) defibrated pulp fiber and (B2) fiber (B). It is often composed of fibrillated cellulose, (B1) defibrated pulp fiber, and (B2) organic synthetic fiber and / or inorganic fiber.
The ratio of the reinforcing fiber composed of the fine cellulose fiber (A) and at least one kind of fiber (B) selected from the defibrated pulp fiber (B1) and the fiber (B2) is hardened in terms of solid content. It is 1 to 10 weight% (for example, 1 to 7 weight%) of the whole sexual composition, Preferably it is 2 to 5 weight%, More preferably, it is about 3 to 5 weight%.
[0017]
The inorganic curable composition of the present invention, in particular, the cement-based molding composition may be used as, for example, a paste composition (cement paste) of the cement and water, and cement, water and aggregate (for example, sand) , Mortar compositions including concrete, fine aggregates such as silica sand, perlite, vermiculite, and coarse aggregates such as lightweight aggregates, crushed stones, and gravel).
In order to improve the dimensional stability of the papermaking product, an inorganic dispersant (filler) such as mica may be added to the inorganic curable composition. The inorganic curable composition may further contain a cement admixture as necessary.
Examples of cement admixtures include water-soluble binders, water reducing agents and fluidizing agents, colorants, curing agents, curing accelerators such as calcium chloride, coagulants composed of polyacrylamide, polyvinyl alcohol, bentonite and the like. Various additives such as a sticking agent, a foaming agent such as aluminum powder, a waterproofing agent such as a synthetic resin emulsion, and a plasticizer may be included.
[0018]
Examples of the water-soluble binder include water-soluble cellulose derivatives [cellulose ether (for example, alkyl cellulose such as methyl cellulose and ethyl cellulose, carboxyalkyl cellulose such as carboxymethyl cellulose and carboxyethyl cellulose, hydroxyalkylalkyl such as hydroxypropyl methylcellulose and hydroxyethyl methylcellulose). Cellulose, hydroxyethyl cellulose, hydroxyalkyl cellulose such as hydroxypropyl cellulose)], polyvinyl alcohol and the like. Examples of the water reducing agent and fluidizing agent include lignin sulfonate, sulfite pulp waste liquid, and oxycarboxylate. , Naphthalene sulfonate, melamine sulfonate, melamine sulfonate formal Examples include water-reducing agents, AE water-reducing agents, high-performance water-reducing agents, high-performance AE water-reducing agents composed of sulfonates such as condensates (triazine-based dispersants), pine trees such as abietic acid, and alkali metal salts. it can.
[0019]
The inorganic curable composition comprises an inorganic curable material, (A) microfibrillated cellulose, (B1) defibrated pulp fiber, and (B2) organic synthetic fiber or inorganic fiber selected from at least one type of fiber ( And the reinforcing fiber constituted by B) can be prepared by mixing with the additive as necessary.
Since the inorganic curable composition of the present invention has high moldability, an inorganic molded body (fiber reinforced cement molded body) can be obtained by various molding methods such as casting, papermaking, spraying, and pressing. Can do. In particular, the inorganic curable composition is excellent in papermaking. Therefore, a preferable inorganic molded body includes a papermaking body obtained by papermaking the slurry containing the above components using a papermaking method such as a check (round mesh) type or a press type. The papermaking body may be a single papermaking sheet or a laminate in which a plurality of papermaking sheets are laminated.
[0020]
In the method of the present invention, an aqueous slurry of a water curable composition composed of an inorganic curable substance and reinforcing fibers is made to prepare an inorganic molded body (fiber reinforced cement molded body). At that time, the reinforcing fiber is composed of (A) microfibrillated cellulose, (B1) defibrated pulp fiber, and (B2) at least one kind of fiber (B) selected from organic synthetic fibers or inorganic fibers. Reinforced fiber is used. Such papermaking enables efficient production of high-quality concrete products (cement moldings).
The slurry can be made by a conventional method, for example, a paper making method using a paper machine. The slurry concentration is not particularly limited as long as the papermaking property is not impaired, and may be, for example, about 0.1 to 30% by weight. The formed body by papermaking has high surface smoothness and is reinforced with the (A) fine cellulose fiber and the fiber (B). In particular, (A) the fine cellulose fibers have strong entanglement between the fibers, which can improve the mechanical properties of the papermaking product (molded product), and increase the yield by not only the drainage but also the high capturing ability for the granular material. be able to.
[0021]
The inorganic molded body (fiber reinforced cement molded body) is often obtained by laminating one or a plurality of paper-making sheets, press-molding as necessary, and then curing. The fiber-reinforced cement molded body can be hardened by curing by a conventional method (for example, normal temperature normal pressure curing, normal pressure steam curing, underwater curing, autoclave curing, etc.).
The inorganic molded body of the present invention is useful for producing, for example, concrete panels such as curtain walls and wall materials, and concrete blocks. The molded product can be used as a molded product for building materials such as a flooring material, an interior material, an exterior material, and a sound insulation material in accordance with various shapes.
[0022]
【The invention's effect】
In the present invention, the reinforcing fibers are composed of a combination of fine cellulose fibers and beaten cellulose fibers or organic synthetic or inorganic fibers, so that the surface smoothness is high as well as papermaking properties and reinforcing properties. Moreover, high reinforcement can be provided by addition of a small amount of reinforcing fibers, and a molded article having high bending strength and impact strength can be obtained. Furthermore, the drainage and the yield are high, the productivity by papermaking can be improved, and an inorganic molded body can be obtained smoothly.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
Example 1
Gypsum, slag, pearlite, wollastonite, vinylon fiber (average fiber diameter 15 μm, average fiber length 6 mm, manufactured by Kuraray Co., Ltd., Vinylon RM182-6), slaked lime, crushed pulp fiber [mixed crushed NUKP fiber ( Weight-weighted average fiber length 2.76 mm, average fiber diameter 15 μm, axial ratio of about 200] and fine cellulose fiber [NUKP treated with high pressure homogenizer, fine cellulose fiber (weight-weighted average fiber length 0.51 mm, average fiber diameter 0) 1 μm, axial ratio of about 5100)], and 1 liter of slurry (solid content concentration of 2% by weight) was prepared according to the formulation shown in Table 1. The ratio of fine cellulose fibers to 1 part by weight of pulp fibers was 25 The fiber length of cellulose fiber is measured with a measuring instrument (KAJAANI, model FS-200), and the weight-weighted average fiber length is described. The fiber diameter is the most representative value based on the observation result using an optical microscope.
[0024]
And when the drainage and the yield were measured by the following method, the results shown in Table 1 were obtained.
Freeness:
The time required to filter 500 ml of slurry was measured based on the filtration speed of the slurry passing through an 80 mesh wire mesh.
Yield:
The solid content was calculated from the amount of the solid content charged and the weight ratio of the solid content remaining on the wire net when measuring the drainage.
Comparative Example 1
The drainage and yield were measured in the same manner as in Example 1 except that the pulverized cellulose fiber was used instead of the fine cellulose fiber, and the cellulose fiber was composed of the pulverized pulp fiber. The results shown in Table 1 were obtained. .
[0025]
Comparative Example 2
When the drainage and the yield were measured in the same manner as in Example 1 except that fine cellulose fibers were used instead of the pulverized pulp fibers and the pulverized pulp fibers were composed of the fine cellulose fibers, the results shown in Table 1 were obtained. It was.
[0026]
[Table 1]
Figure 0003763614
[0027]
As shown in Table 1, in Comparative Example 1 and Comparative Example 2, it is difficult to improve drainage and yield in a balanced manner at a high level, whereas in Example 1, both drainage and yield are improved. Can be improved.
Example 2 and Comparative Example 3
Gypsum, slag, pearlite, wollastonite, vinylon fiber (average fiber diameter 15 μm, average fiber length 6 mm, manufactured by Kuraray Co., Ltd., Vinylon RM182-6), slaked lime, crushed pulp fiber [crushed NBKP fiber (heavy Weight-weighted average fiber length of 3.05 mm, average fiber diameter of 15 μm, axial ratio of about 200)] and fine cellulose fibers [microcellulose fibers obtained by treating old newspaper with a high-pressure homogenizer (weight-weighted average fiber length of 0.72 mm) , Average fiber diameter of 0.2 μm, axial ratio of about 3500)], and mixing according to the formulation shown in Table 2, and adding a small amount of flocculant (Ichikawa Moori Co., Ltd., IK Flock), slurry mixture Was formed into a round net, and then steam-cured at 60 ° C. for 1 day and dried at 60 ° C. for 1 day to obtain an inorganic plate. In addition, the ratio of the micro cellulose fiber with respect to 1 weight part of pulp fibers is 30 weight%.
[0028]
In Example 2, when a paper slurry having a concentration of 14.4% by weight was made, the slurry concentration of white water was 1.4% by weight, and paper making was possible at a yield of 90%.
Comparative Example 3
An inorganic plate was obtained in the same manner as in Example 2 except that pulverized pulp fibers were used instead of the fine cellulose fibers, and the cellulose fibers were composed of pulverized pulp fibers.
About the obtained inorganic board (papermaking board), bending strength, impact strength, surface smoothness (formation), and flame retardance were evaluated. The bending strength is measured according to JIS A 1408, and the impact strength is obtained by dropping a spherical weight (diameter: 3 cm, weight: 300 g) from a height of 40 cm and a height of 100 cm, and the diameter of the dent generated with the drop. Evaluation was made by measuring. Moreover, surface smoothness (formation) was determined visually and flame retardancy was measured according to JIS A1321. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0003763614
[0030]
Since the addition amount of all cellulose fibers is the same, a large difference was not recognized in the flame retardant test of Example 2 and Comparative Example 3, but in the papermaking plate of Example 2 compared to Comparative Example 3, the bending strength, Impact strength and surface smoothness (formation) are greatly improved.

Claims (11)

無機硬化性物質と補強繊維とで構成された硬化性組成物であって、補強繊維が、(A )平均繊維径0.01〜1μm、平均繊維長300〜1000μmであり、かつ軸比(L/D)が2,000〜100,000の微小フィブリル化セルロースと、(B1)平均繊維径5〜50μm、平均繊維長1〜5mmの解繊パルプ繊維と、(B2)平均繊維径5〜50μm、平均繊維長1〜10mmの有機合成繊維又は無機繊維とで構成されている無機硬化性組成物。  A curable composition composed of an inorganic curable substance and reinforcing fibers, wherein the reinforcing fibers have (A) an average fiber diameter of 0.01 to 1 μm, an average fiber length of 300 to 1000 μm, and an axial ratio (L / D) 2,000-100,000 microfibrillated cellulose, (B1) average fiber diameter of 5-50 μm, average fiber length of 1-5 mm defibrated pulp fiber, and (B2) average fiber diameter of 5-50 μm An inorganic curable composition composed of organic synthetic fibers or inorganic fibers having an average fiber length of 1 to 10 mm. 補強繊維の割合が、固形分換算で、硬化性組成物全体の1〜10重量%である請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the proportion of the reinforcing fibers is 1 to 10% by weight of the entire curable composition in terms of solid content. 補強繊維の割合が、固形分換算で、硬化性組成物全体の1〜5重量%である請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the proportion of the reinforcing fibers is 1 to 5% by weight of the entire curable composition in terms of solid content. (B1)成分に対する(A )成分の割合が、(A )成分/(B1)成分=5〜80重量%である請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the ratio of the component (A) to the component (B1) is (A) component / (B1) component = 5 to 80% by weight. (B1)成分に対する(A )成分の割合が、(A )成分/(B1)成分=10〜50重量%である請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the ratio of the component (A) to the component (B1) is (A) component / (B1) component = 10 to 50% by weight. (B2)成分の割合が、補強繊維全体の3〜20重量%である請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the proportion of the component (B2) is 3 to 20% by weight of the entire reinforcing fiber. 無機硬化性物質がセメントである請求項1記載の無機硬化性組成物。  The inorganic curable composition according to claim 1, wherein the inorganic curable substance is cement. 請求項1記載の無機硬化性組成物で構成されている無機質成形体。  The inorganic molded object comprised with the inorganic curable composition of Claim 1. 無機硬化性組成物の抄造体である請求項8記載の無機質成形体Inorganic electrolyte molded article according to claim 8, wherein the papermaking product of the inorganic curable composition. 請求項1記載の無機硬化性組成物の水性スラリーを抄造し、無機質形体を製造する方法。How the aqueous slurry papermaking, the production of mineral formation features of claim 1 inorganic curable composition. 水硬化性組成物の水性スラリーを抄造し、無機質抄造体を硬化させる請求項10記載の無機質成形体の製造方法。  The manufacturing method of the inorganic molded object of Claim 10 which makes an aqueous slurry of a water-curable composition, and hardens an inorganic papermaking body.
JP18613196A 1996-07-16 1996-07-16 Inorganic curable composition, inorganic molded body, and method for producing the same Expired - Fee Related JP3763614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18613196A JP3763614B2 (en) 1996-07-16 1996-07-16 Inorganic curable composition, inorganic molded body, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18613196A JP3763614B2 (en) 1996-07-16 1996-07-16 Inorganic curable composition, inorganic molded body, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1029844A JPH1029844A (en) 1998-02-03
JP3763614B2 true JP3763614B2 (en) 2006-04-05

Family

ID=16182920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18613196A Expired - Fee Related JP3763614B2 (en) 1996-07-16 1996-07-16 Inorganic curable composition, inorganic molded body, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3763614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231438A (en) * 2006-02-28 2007-09-13 Daicel Chem Ind Ltd Microfibrous cellulose and method for producing the same
JP6644546B2 (en) * 2015-12-28 2020-02-12 株式会社クラレ Cellulose nanofiber-supported reinforcing fiber for hydraulic molded article, hydraulic composition containing the same, hydraulic molded article
KR20200131918A (en) * 2016-04-04 2020-11-24 파이버린 테크놀로지스 리미티드 Compositions and methods for providing increased strength in ceiling, flooring, and building products

Also Published As

Publication number Publication date
JPH1029844A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
KR100829265B1 (en) Fiber cement composites using cellulose fibers loaded with inorganic and / or organic materials
US4101335A (en) Building board
KR20050097934A (en) Fiber cement composite materials using bleached cellulose fibers
JP6609474B2 (en) Fiber reinforced carbonated hydraulic inorganic molded plate and method for producing the same
NO318100B1 (en) Cement-containing composition; and self-leveling composition for floors, road repair composition, fire-retardant sprays and fire-retardant materials, fiberboard, water-resistant structural materials, and slab containing the cementitious composition; and process for making a structural material containing the cementitious composition.
US4781994A (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
JP4648668B2 (en) Inorganic board and method for producing the same
WO2018003612A1 (en) Fiber-reinforced carbonated cement molded product and method for producing same
WO2006025331A1 (en) Inorganic plate and process for production thereof
CN110229019A (en) A kind of EPS foamed board and its moulding process and application
Mukhametrakhimov et al. Water-resistant fiber-reinforced gypsum cement-pozzolanic composites
JPH0632643A (en) Hydraulic inorganic composition
JP3763614B2 (en) Inorganic curable composition, inorganic molded body, and method for producing the same
JP5350061B2 (en) Wood cement board and manufacturing method thereof
Stevulova et al. Cellulose fibres used in building materials
JPH0976217A (en) Dehydrate press molded form and manufacture thereof
JPH0669901B2 (en) Hydraulic inorganic papermaking product and method for producing the same
CN1091485C (en) High strength fibre plain gypsum board
JP2839724B2 (en) Cement composition
JP3355588B2 (en) Cellulose fiber-containing cement composition
JP2004051396A (en) Composite board of inorganic fiber and gypsum, and its production process
JP2006069807A (en) Inorganic board and its manufacturing method
JPS6021836A (en) Hydraulic inorganic board and manufacture
JPH0569787B2 (en)
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees