[go: up one dir, main page]

JP3762700B2 - High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same - Google Patents

High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same Download PDF

Info

Publication number
JP3762700B2
JP3762700B2 JP2001394003A JP2001394003A JP3762700B2 JP 3762700 B2 JP3762700 B2 JP 3762700B2 JP 2001394003 A JP2001394003 A JP 2001394003A JP 2001394003 A JP2001394003 A JP 2001394003A JP 3762700 B2 JP3762700 B2 JP 3762700B2
Authority
JP
Japan
Prior art keywords
chemical conversion
strength
steel sheet
formability
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001394003A
Other languages
Japanese (ja)
Other versions
JP2003193192A (en
Inventor
政昭 水谷
力 岡本
裕一 谷口
展弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001394003A priority Critical patent/JP3762700B2/en
Publication of JP2003193192A publication Critical patent/JP2003193192A/en
Application granted granted Critical
Publication of JP3762700B2 publication Critical patent/JP3762700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性と化成処理性に優れた高強度鋼板およびその製造方法
に関する。
【0002】
【従来の技術】
近年、自動車の燃費向上のため、車体の軽量化がより一層要求されている。
車体の軽量化のためには、強度の高い鋼材を使用すれば良いが、強度が高くなるほど、プレス成形が困難となる。これは、一般に鋼材の強度が高くなるほど、鋼材の降伏応力が増大し、更に伸びが低下するからである。
これに対し、伸びの改善に対しては残留オーステナイトの加工誘起変態を利用した鋼板(以下TRIP鋼)などが発明されており、例えば、特開昭61−157625号公報に開示されている。
しかし、通常のTRIP鋼板は、多量のSi添加が必須であり鋼板表面の化成処理性が悪化するため適用可能な部材は制限される。更に、残留オーステナイト鋼において高強度を確保するためには多量のC添加が必要であり、ナゲット割れ等の溶接上の問題がある。
【0003】
鋼板表面の化成処理性については、残留オーステナイトTRIP鋼のSi低減を目的とした発明が特開2000-345288号公報に開示されているが、この発明では化成処理性と延性の向上は望めるものの、前述の溶接性の改善は望めないうえ、引張り強度980MPa以上のTRIP鋼板では、非常に高い降伏応力となるためプレス時等での形状凍結性が悪化するという問題点があった。
また、降伏応力を低減させる技術として、特開昭57−155329号公報に開示されているような、フェライトを含むDual Phase鋼(以下DP鋼という)が従来から知られているが、必ずしも十分な成形性および化成処理性を有していなかった。
【0004】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、成形性と化成処理性に優れた高強度鋼板およびその製造方法を工業的規模で実現することを課題とする。
【0005】
【課題を解決するための手段】
まず、本発明の技術思想を説明する。
本発明者らは、成形性と化成処理性に優れた高強度鋼板を鋭意検討した結果、鋼成分の最適化、すなわち、Si、Al、Tsのバランスを特定範囲とし、特にAl添加量を調整することで、降伏応力の低いDP鋼において、これまで以上の伸びが確保できる高強度鋼板を工業的に製造できることを見出した。
本発明の鋼板は従来の残留オーステナイト鋼並に準ずる程度に延性が向上し、また、Siを低減することにより化成処理性を向上させ、さらに合金化めっきをおこなっても特性が劣化することが少ない高強度鋼板を実現した。
さらに、遅れ破壊や二次加工脆性の問題が生じないように、不可避的に含まれる3%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まないDP鋼とした。
本発明の高強度鋼板は、590Mpaから1500Mpaの引張強度が実現できるが、980Mpa以上の高強度鋼板にて著しい効果を奏する。
本発明は、以上のような技術思想に基づくものであり、特許請求の範囲に記載した以下の内容をその要旨とする。
【0006】
(1)質量%で、
C :0.01〜0.30%、
Si:0.005〜0.2%、
Mn:0.1〜2.2%、
P :0.001〜0.06%、
S :0.001〜0.01%、
N :0.0005〜0.01%、
Al:0.25〜1.43 を含有し、残部Feおよび不可避的不純物からなり、
さらに、Si、Alの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、
さらに、
Mo: 0.05 0.5 %、
V:0.01〜0.1%、
Ti:0.01〜0.2%、
Nb:0.005〜0.05%、
B: 0.0005 0.002 のうち1種または2種以上を含有し、
金属組織がフェライトとマルテンサイトを含有することを特徴とする成形性と化成処理性に優れた高強度鋼板。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3×[Si] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMpa、
[Si]はSiの質量%
【0007】
(2)さらに、
Ca :0.0005〜0.005%、
REM:0.0005〜0.005%のうち1種または2種を含有することを特徴とする(1)に記載の成形性と化成処理性に優れた高強度鋼板。
(3)(1)または(2)に記載の高強度鋼板の製造方法であって、焼鈍工程においてAc1以上Ac3+100℃以下の温度域に加熱し、30秒以上30分以下保持した後、600℃以下の温度域まで冷却することを特徴とする成形性と化成処理性に優れた高強度鋼板の製造方法。
ここに、Ac1およびAc3は鋼材成分基づいてAndrewsの式により計算される値である。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
まず、本発明の高強度鋼板の成分および金属組織の限定理由を説明する。
Cは、強度確保の観点から、またマルテンサイトを安定化する基本元素として、必須の成分である。
Cが0.01%未満では強度が満足せず、またマルテンサイト相が形成されない。また、0.3%を超えると、強度が上がりすぎ、延性が不足するほか、溶接性の劣化を招くため工業材料として使用できない。
従って、本発明におけるCの範囲は、0.01〜0.3%とし、好ましくは、0.03〜0.15%である。
【0009】
Mnは強度確保の観点で添加が必要であることに加え、炭化物の生成を遅らせる元素でありフェライトの生成に有効な元素である。
Mnが0.1%未満では、強度が満足せず、またフェライトの形成が不十分となり延性が劣化する。
また、Mn添加量が2.2%を超えると、焼入れ性が必要以上に高まるため、マルテンサイトが多く生成し、強度上昇を招きこれにより、製品のバラツキが大きくなるほか、延性が不足し工業材料として使用できない。
従って、本発明におけるMnの範囲は、0.1〜2.2%とした。
Siは強度確保の観点で添加することに加え、通常、延性の確保のために添加される元素であるが、0.2%を超える添加により、化成処理性が劣化してしまう。従って、本発明におけるSiの範囲は、0.2%以下とし、さらに化成処理性を重視する場合には0.1%以下が好ましい。
【0010】
Pは鋼板の強度を上げる元素として必要な強度レベルに応じて添加する。しかし、添加量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、P上限値は0.06%とする。下限を0.001%としたのは、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。
Sは、MnSを生成することで局部延性、溶接性を劣化させる元素であり、鋼中に存在しない方が好ましい元素である。従って、上限を0.01%とする。下限を0.001%としたのは、Pと同様に、これ以上低減させることは、製鋼段階での精錬時のコストアップに繋がるためである。
【0011】
Alは、本発系において最も重要な元素である。 Alは添加によりフェライトの生成を促進し、延性向上に有効に作用する他、多量添加によっても化成処理性を劣化させない元素である。また、脱酸元素としても作用する。
延性を向上させるためには0.25%以上のAl添加が必要である、一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を1.8%とした。
Nは、不可避的に含まれる元素であるが、あまり多量に含有する場合は、時効性を劣化させるのみならず、AlN析出量が多くなってAl添加の効果を減少させるので、0.01%以下の含有が好ましい。 また、不必要にNを低減することは製鋼工程でのコストが増大するので通常0.0005%程度以上に制御することが好ましい。
【0012】
高強度鋼板とするためには一般に多量の元素添加が必要となり、フェライト生成が抑制される。このため、組織のフェライト分率が低減し、第2相の分率が増加するため、特に980MPa以上のDP鋼においては伸びが著しく低下する。この改善のために、Si添加、Mn低減が多く用いられるが、前者は化成処理性が劣化すること、後者は強度確保が困難となることから、本発明の目的とする鋼板においては利用できない。そこで、発明者らは鋭意検討した結果、Alの効果を見出し、式(A)の関係を満たすAl、Si、TSバランスを有するとき、十分なフェライト分率を確保することができ、優れた伸びを確保できることを見出した。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3×[Si] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMPa。[Si]はSiの質量%である。
Al添加量が(0.0012×[TS狙い値]-0.29-[Si])/1.45未満となると、延性を向上させるために十分でなく、1.5-3×[Si]を超えてしまうと、化成処理性が悪化する。
【0013】
本発明の金属組織がフェライトとマルテンサイトを含有することを特徴とする理由は、このような組織をとる場合は、強度延性バランスに優れた鋼板となるからである。ここでいう、フェライトは、ポリゴナルフェライト、ベイネティックフェライトを差し、マルテンサイトは通常の焼き入れにより得られるマルテンサイトの他、600℃以下の温度にて焼戻しを行ったマルテンサイトにおいても効果は変わらない。また、組織中にオーステナイトが残存すると2次加工脆性や遅れ破壊特性が悪化するため、本発明では不可避的に存在する3%以下の残留オーステナイトを許容し、実質的に残留オーステナイトを含まない。
【0014】
V、Ti 、Nbは、強度確保の目的でV:0.01〜0.1%、Ti:0.01〜0.2%、
Nb:0.005〜0.05%の範囲で添加してもよい。
Moは強度確保と焼入れ性に効果のある元素である。最低添加量を0.05%以下では、Moの強化が利用できないほか、Mo特有の焼き入れ性能が発揮されず、十分なマルテンサイトが形成されず強度不足となる。過多のMoの添加はDPにおけるフェライト生成を抑制し、延性の劣化を招くほか、化成処理性を劣化させることがあるので、上限を0.5%とした。
【0015】
CaおよびREMは、介在物制御、穴拡げ改善の目的で、Ca:0.0005〜0.005%、REM:0.0005〜0.005%の範囲で添加してもよい。
Bは、焼入れ性確保とBNによる有効Alの増大を目的として、B:0.0005〜0.002%の範囲で添加してもよい。
不可避的不純物として、例えば、Snなどがあるがこれら元素を0.02質量%以下の範囲で含有しても本発明の効果を損なうものではない。
【0016】
本発明の製造工程の限定理由は次の通りである。
本発明で用いる素材は通常の熱延工程を経て製造された熱延鋼板である。これらは酸洗、冷延をされもしくはそのまま直接、以下に述べる熱履歴を経ることにより得られる。
連続焼鈍工程では、まず、Ac1以上、Ac3+100℃以下の温度で焼鈍する。これ未満では組識が不均一となる。一方、これ以上の温度では、オーステナイトの粗大化によりフェライト生成が抑制されるため伸びの劣化を招く。また、経済的な点から焼鈍温度は900℃以下が望ましい。この際、層状の組識を解消するためには30秒以上の保持が必要であるが、30分を超えても効果は飽和し生産性も低下する。従って、30秒以上30分以下とする。
続いて、冷却終了温度を600℃以下の温度とする。600℃を超えるとオーステナイトが残留しやすくなり、2次加工性、遅れ破壊の問題が生じ易くなる。
本発明は、この熱処理の後、穴拡げ性、脆性の改善を目的とした、600℃以下の焼戻し処理を行っても効果は変わらない。
【0017】
【実施例】
表1に示した成分組成を有する鋼を真空溶解炉にて製造し、冷却凝固後1200℃まで再加熱し、880℃にて仕上圧延を行い、冷却後600℃で1時間保持することで、熱延の巻取熱処理を再現した。得られた熱延板を研削によりスケールを除去し、70%の冷間圧延した。その後連続焼鈍シミュレータを用い、770℃×60秒の焼鈍を行い、350℃まで冷却した後、10〜600秒その温度で保持したあと、さらに室温まで冷却した。
引張特性は、JIS5号引張試験片のL方向引張にて評価し、TS(MPa)×EL(%)の積が18000MPa%を以上を良好とした。金属組織は、工学顕微鏡で観察した。フェライトはナイタールエッチング。マルテンサイトはレペラーエッチングにより観察した。
【0018】
化成処理性は、通常の自動車用薬剤である、りん酸塩処理薬剤(Bt3080:日本パーカーライジング社製)を用いて標準仕様にて処理したのち、化成被膜の性状を肉眼、および走査型電子顕微鏡にて観察し、鋼板下地を緻密に被覆しているものを「○」、化成被膜に部分的に欠陥があるものを「×」とした。
表1および表2の結果から認められるように、本発明による鋼板は化成処理性が優れ、かついずれも強度・延性バランスに優れる高強度鋼板を製造できる。
一方、表1の成分範囲が本発明の範囲から外れる比較例、および、表2のAlの範囲が(A)式を満足しない比較例は、強度・延性バランスを示すTS×ELの値が18000Mpa%未満である、もしくは、化成処理性が×となっている。
【表1】

Figure 0003762700
【表2】
Figure 0003762700
【0019】
【発明の効果】
本発明によれば、Si、Al、Tsのバランスを特定範囲とし、特にAl添加量を調整することで、降伏応力の低いDP鋼において、これまで以上の伸びが確保できる成形性と化成処理性に優れた高強度鋼板およびその製造方法を工業的規模で実現することができ、産業上有用な、著しい効果を奏する。
【図面の簡単な説明】
【図1】 AlとSiの質量%と目標強度、化成処理性との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel plate excellent in formability and chemical conversion treatment and a method for producing the same.
[0002]
[Prior art]
In recent years, in order to improve the fuel efficiency of automobiles, the weight reduction of the vehicle body has been further demanded.
In order to reduce the weight of the vehicle body, a steel material having a high strength may be used. However, as the strength increases, press molding becomes more difficult. This is because, generally, the higher the strength of the steel material, the higher the yield stress of the steel material, and the lower the elongation.
On the other hand, a steel plate (hereinafter referred to as TRIP steel) using work-induced transformation of retained austenite has been invented for improving the elongation, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-157625.
However, in general TRIP steel sheets, a large amount of Si is indispensable and the chemical conversion treatment property of the steel sheet surface deteriorates, so that applicable members are limited. Furthermore, in order to secure high strength in the retained austenitic steel, a large amount of C is required, which causes welding problems such as nugget cracks.
[0003]
Regarding the chemical conversion processability of the steel sheet surface, an invention aimed at reducing Si in retained austenite TRIP steel is disclosed in JP 2000-345288A, but in this invention, improvement of chemical conversion processability and ductility can be expected, The above-mentioned improvement in weldability cannot be expected, and TRIP steel sheets with a tensile strength of 980 MPa or more have a problem that the shape freezing property at the time of pressing or the like deteriorates because of a very high yield stress.
Further, as a technique for reducing yield stress, a dual phase steel containing ferrite (hereinafter referred to as DP steel) as disclosed in JP-A-57-155329 has been conventionally known, but it is not always sufficient. It did not have moldability and chemical conversion treatment.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art and to realize a high-strength steel sheet excellent in formability and chemical conversion treatment and a manufacturing method thereof on an industrial scale.
[0005]
[Means for Solving the Problems]
First, the technical idea of the present invention will be described.
As a result of intensive studies on high-strength steel sheets with excellent formability and chemical conversion properties, the present inventors have optimized the steel components, that is, set the balance of Si, Al, and Ts within a specific range, and in particular adjusted the amount of Al added. As a result, it has been found that a high strength steel sheet capable of securing a higher elongation than before can be industrially produced in DP steel having a low yield stress.
The steel sheet of the present invention has improved ductility to the same extent as conventional retained austenitic steel, and also improves chemical conversion processability by reducing Si, and is less likely to deteriorate even if alloying plating is performed. Realized high strength steel plate.
Further, in order not to cause the problem of delayed fracture and secondary work brittleness, DP steel that allows unavoidable residual austenite of 3% or less and does not substantially contain residual austenite was obtained.
The high-strength steel sheet of the present invention can realize a tensile strength of 590 Mpa to 1500 Mpa, but has a remarkable effect with a high-strength steel sheet of 980 Mpa or higher.
The present invention is based on the technical idea as described above, and includes the following contents described in the claims.
[0006]
(1) In mass%,
C: 0.01 to 0.30%
Si: 0.005-0.2%,
Mn: 0.1-2.2%
P: 0.001 to 0.06%,
S: 0.001 to 0.01%,
N: 0.0005 to 0.01%,
Al: 0.25 to 1.43 % , consisting of the remainder Fe and inevitable impurities,
Furthermore, the mass% of Si and Al and the target strength value (TS) satisfy the following formula (A):
further,
Mo: 0.05 ~ 0.5%,
V: 0.01 to 0.1%
Ti: 0.01-0.2%
Nb: 0.005 to 0.05%,
B: Contains one or more of 0.0005 to 0.002 % ,
A high-strength steel sheet excellent in formability and chemical conversion processability, characterized in that the metal structure contains ferrite and martensite.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 × [Si] (A)
Here, [TS target value] is the strength design value of the steel sheet, the unit is Mpa,
[Si] is the mass% of Si
[0007]
(2) Furthermore,
Ca: 0.0005 to 0.005%,
REM: One high-strength steel sheet excellent in formability and chemical conversion treatment as described in (1), containing one or two of 0.0005 to 0.005%.
(3) A method for producing a high-strength steel sheet according to (1) or (2) , wherein the steel sheet is heated to a temperature range of Ac1 to Ac3 + 100 ° C or lower in the annealing step, and maintained at 30 seconds or longer and 30 minutes or shorter, and then 600 ° C. A method for producing a high-strength steel sheet excellent in formability and chemical conversion treatment, characterized by cooling to the following temperature range.
Here, Ac1 and Ac3 are values calculated by the Andrews formula based on the steel material components.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
First, the reasons for limiting the components and metal structure of the high-strength steel sheet of the present invention will be described.
C is an essential component from the viewpoint of securing strength and as a basic element for stabilizing martensite.
If C is less than 0.01%, the strength is not satisfied and a martensite phase is not formed. On the other hand, if it exceeds 0.3%, the strength is too high, the ductility is insufficient, and the weldability is deteriorated, so that it cannot be used as an industrial material.
Therefore, the range of C in the present invention is 0.011 to 0.3%, preferably 0.03 to 0.15%.
[0009]
Mn is an element that delays the formation of carbides and is effective for the formation of ferrite, in addition to the need for addition from the viewpoint of securing strength.
If Mn is less than 0.1%, the strength is not satisfied, and ferrite is not sufficiently formed, resulting in deterioration of ductility.
In addition, if the amount of Mn added exceeds 2.2%, the hardenability is increased more than necessary, so that a lot of martensite is generated, resulting in an increase in strength, resulting in increased product variation and insufficient ductility. Cannot be used as a material.
Therefore, the range of Mn in the present invention is set to 0.1 to 2.2%.
Si is an element that is usually added to ensure ductility in addition to ensuring strength. However, if it exceeds 0.2%, chemical conversion properties deteriorate. Therefore, the range of Si in the present invention is 0.2% or less, and 0.1% or less is preferable when the chemical conversion treatment is emphasized.
[0010]
P is added according to the strength level required as an element for increasing the strength of the steel sheet. However, if the addition amount is large, segregation to the grain boundary causes deterioration of local ductility. In addition, the weldability is deteriorated. Therefore, the P upper limit is set to 0.06%. The reason why the lower limit is set to 0.001% is that a further reduction leads to a cost increase during refining in the steelmaking stage.
S is an element that deteriorates local ductility and weldability by generating MnS, and is preferably an element that does not exist in steel. Therefore, the upper limit is made 0.01%. The reason why the lower limit is set to 0.001% is that, as in the case of P, reducing it further leads to an increase in cost during refining at the steelmaking stage.
[0011]
Al is the most important element in this system. Al is an element that promotes the formation of ferrite by addition and effectively works to improve ductility, and does not deteriorate the chemical conversion treatment property even when added in a large amount. It also acts as a deoxidizing element.
In order to improve the ductility, Al addition of 0.25% or more is necessary. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 1.8%.
N is an element that is inevitably included, but if it is contained in a large amount, not only deteriorates the aging property but also increases the amount of precipitated AlN and decreases the effect of Al addition, so 0.01% or less Containing is preferable. Further, unnecessarily reducing N increases the cost in the steelmaking process, so it is usually preferable to control it to about 0.0005% or more.
[0012]
In order to obtain a high-strength steel sheet, it is generally necessary to add a large amount of elements, and ferrite formation is suppressed. For this reason, the ferrite fraction of the structure is reduced and the fraction of the second phase is increased, so that the elongation is remarkably lowered particularly in DP steel of 980 MPa or more. For this improvement, Si addition and Mn reduction are often used. However, the former cannot be used in the steel sheet which is the object of the present invention because the chemical conversion processability is deteriorated and the latter is difficult to ensure the strength. Therefore, as a result of intensive studies, the inventors found out the effect of Al, and when having an Al, Si, TS balance satisfying the relationship of the formula (A), a sufficient ferrite fraction can be secured, and excellent elongation is achieved. It was found that it can be secured.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 × [Si] (A)
Here, [TS target value] is the strength design value of the steel sheet, and the unit is MPa. [Si] is the mass% of Si.
If the amount of Al added is less than (0.0012 × [TS target value] -0.29- [Si]) / 1.45, it is not sufficient to improve ductility, and if it exceeds 1.5-3 × [Si], chemical conversion treatment is performed. Sex worsens.
[0013]
The reason why the metal structure of the present invention is characterized by containing ferrite and martensite is that when such a structure is taken, the steel sheet has an excellent balance of strength and ductility. The ferrite here refers to polygonal ferrite and bainetic ferrite, and martensite is effective not only in martensite obtained by ordinary quenching but also in martensite tempered at a temperature of 600 ° C. or lower. does not change. In addition, if austenite remains in the structure, secondary work brittleness and delayed fracture characteristics deteriorate, so in the present invention, 3% or less of retained austenite that is unavoidably present is allowed, and substantially no retained austenite is contained.
[0014]
V, Ti, and Nb are V: 0.01 to 0.1%, Ti: 0.01 to 0.2% for the purpose of securing strength,
Nb: You may add in 0.005 to 0.05% of range.
Mo is an element effective in ensuring strength and hardenability. If the minimum addition amount is 0.05% or less, the strengthening of Mo cannot be used, the quenching performance peculiar to Mo cannot be exhibited, sufficient martensite is not formed, and the strength is insufficient. Excessive addition of Mo suppresses ferrite formation in DP, causes deterioration of ductility, and may deteriorate chemical conversion property, so the upper limit was made 0.5%.
[0015]
Ca and REM may be added in the range of Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.005% for the purpose of inclusion control and improvement of hole expansion.
B may be added in a range of B: 0.0005 to 0.002% for the purpose of ensuring hardenability and increasing effective Al by BN.
Inevitable impurities include, for example, Sn, but even if these elements are contained in the range of 0.02% by mass or less, the effect of the present invention is not impaired.
[0016]
The reasons for limiting the manufacturing process of the present invention are as follows.
The material used in the present invention is a hot-rolled steel sheet manufactured through a normal hot-rolling process. These can be obtained by pickling, cold rolling or directly passing through the heat history described below.
In the continuous annealing process, first, annealing is performed at a temperature of Ac1 or higher and Ac3 + 100 ° C or lower. Below this, the organization becomes uneven. On the other hand, at a temperature higher than this, since the formation of ferrite is suppressed by the coarsening of austenite, the elongation is deteriorated. Also, the annealing temperature is desirably 900 ° C. or less from an economical point. At this time, in order to eliminate the layered organization, it is necessary to hold for 30 seconds or more. However, even if it exceeds 30 minutes, the effect is saturated and the productivity is also lowered. Therefore, it is 30 seconds or more and 30 minutes or less.
Subsequently, the cooling end temperature is set to a temperature of 600 ° C. or lower. If it exceeds 600 ° C., austenite tends to remain, and problems of secondary workability and delayed fracture tend to occur.
The effect of the present invention does not change even if a tempering treatment at 600 ° C. or lower is performed for the purpose of improving hole expansibility and brittleness after this heat treatment.
[0017]
【Example】
Steel having the composition shown in Table 1 is produced in a vacuum melting furnace, reheated to 1200 ° C after cooling and solidification, finish-rolled at 880 ° C, and held at 600 ° C for 1 hour after cooling. The hot rolling coil heat treatment was reproduced. The obtained hot-rolled sheet was removed from the scale by grinding and cold-rolled by 70%. Thereafter, using a continuous annealing simulator, annealing was performed at 770 ° C. for 60 seconds, cooled to 350 ° C., held at that temperature for 10 to 600 seconds, and further cooled to room temperature.
Tensile properties were evaluated by tensile in the L direction of a JIS No. 5 tensile test piece, and the product of TS (MPa) × EL (%) was 18000 MPa%. The metal structure was observed with an engineering microscope. Ferrite is nital etching. Martensite was observed by repeller etching.
[0018]
The chemical conversion treatment is performed by using a phosphate treatment chemical (Bt3080: manufactured by Nihon Parker Rising Co., Ltd.), which is a normal automobile chemical, and then the properties of the chemical conversion film are visually observed and a scanning electron microscope is used. In this case, “○” indicates that the steel sheet substrate is densely coated, and “×” indicates that the chemical conversion film has a partial defect.
As can be seen from the results of Tables 1 and 2, the steel sheet according to the present invention can produce a high-strength steel sheet having excellent chemical conversion properties and excellent balance between strength and ductility.
On the other hand, in the comparative example in which the component range in Table 1 deviates from the range of the present invention, and in the comparative example in which the Al range in Table 2 does not satisfy the formula (A), the value of TS × EL indicating the strength / ductility balance is 18000 MPa. % Or the chemical conversion property is x.
[Table 1]
Figure 0003762700
[Table 2]
Figure 0003762700
[0019]
【The invention's effect】
According to the present invention, the balance of Si, Al, and Ts is within a specific range, and in particular, by adjusting the amount of Al added, DP steel with a low yield stress can be secured with formability and chemical conversion processability that can ensure more elongation than before. It is possible to realize a high-strength steel sheet and a manufacturing method thereof excellent in the industrial scale on the industrial scale, and there are remarkable effects which are industrially useful.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the mass% of Al and Si, target strength, and chemical conversion properties.

Claims (3)

質量%で、
C :0.01〜0.30%、
Si:0.005〜0.2%、
Mn:0.1〜2.2%、
P :0.001〜0.06%、
S :0.001〜0.01%、
N :0.0005〜0.01%、
Al:0.25〜1.43 を含有し、残部Feおよび不可避的不純物からなり、
さらに、Si、Alの質量%と、狙いの強度値(TS)とが、下記 (A) 式を満足し、
さらに、
Mo: 0.05 0.5 %、
V:0.01〜0.1%、
Ti:0.01〜0.2%、
Nb:0.005〜0.05%、
B: 0.0005 0.002 のうち1種または2種以上を含有し、
金属組織がフェライトとマルテンサイトを含有することを特徴とする成形性と化成処理性に優れた高強度鋼板。
(0.0012×[TS狙い値]-0.29-[Si])/1.45<Al<1.5-3×[Si] ・・・(A)
ここに、[TS狙い値]は鋼板の強度設計値で単位はMpa、
[Si]はSiの質量%
% By mass
C: 0.01 to 0.30%
Si: 0.005-0.2%,
Mn: 0.1-2.2%
P: 0.001 to 0.06%,
S: 0.001 to 0.01%,
N: 0.0005 to 0.01%,
Al: 0.25 to 1.43 % , consisting of the remainder Fe and inevitable impurities,
Furthermore, the mass% of Si and Al and the target strength value (TS) satisfy the following formula (A):
further,
Mo: 0.05 ~ 0.5%,
V: 0.01 to 0.1%
Ti: 0.01-0.2%
Nb: 0.005 to 0.05%,
B: Contains one or more of 0.0005 to 0.002 % ,
A high-strength steel sheet excellent in formability and chemical conversion processability, characterized in that the metal structure contains ferrite and martensite.
(0.0012 × [TS target value] -0.29- [Si]) / 1.45 <Al <1.5-3 × [Si] (A)
Here, [TS target value] is the strength design value of the steel sheet, the unit is Mpa,
[Si] is the mass% of Si
さらに、
Ca :0.0005〜0.005%、
REM:0.0005〜0.005%のうち1種または2種を含有することを特徴とする請求項1に記載の成形性と化成処理性に優れた高強度鋼板。
further,
Ca: 0.0005 to 0.005%,
REM: 1 type or 2 types are included among 0.0005-0.005%, The high-strength steel plate excellent in the formability and chemical conversion property of Claim 1 characterized by the above-mentioned.
請求項1または請求項に記載の高強度鋼板の製造方法であって、焼鈍工程においてAc1以上Ac3+100℃以下の温度域に加熱し、30秒以上30分以下保持した後、600℃以下の温度域まで冷却することを特徴とする成形性と化成処理性に優れた高強度鋼板の製造方法。It is a manufacturing method of the high strength steel plate of Claim 1 or Claim 2 , Comprising: It heats to the temperature range of Ac1 or more and Ac3 +100 degrees C or less in an annealing process, After holding for 30 seconds or more and 30 minutes or less, it is temperature of 600 degrees C or less The manufacturing method of the high strength steel plate excellent in the formability and chemical conversion processability characterized by cooling to a region.
JP2001394003A 2001-12-26 2001-12-26 High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same Expired - Fee Related JP3762700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394003A JP3762700B2 (en) 2001-12-26 2001-12-26 High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394003A JP3762700B2 (en) 2001-12-26 2001-12-26 High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003193192A JP2003193192A (en) 2003-07-09
JP3762700B2 true JP3762700B2 (en) 2006-04-05

Family

ID=27600854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394003A Expired - Fee Related JP3762700B2 (en) 2001-12-26 2001-12-26 High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same

Country Status (1)

Country Link
JP (1) JP3762700B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214006B2 (en) 2003-06-19 2009-01-28 新日本製鐵株式会社 High strength steel sheet with excellent formability and method for producing the same
JP4810788B2 (en) * 2003-07-29 2011-11-09 Jfeスチール株式会社 Helical machining core material and helical machining core with excellent iron loss characteristics
CA2546003A1 (en) * 2004-03-31 2005-10-13 Jfe Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
KR100881047B1 (en) * 2004-03-31 2009-02-05 제이에프이 스틸 가부시키가이샤 High Rigidity High Strength Steel Sheet and Manufacturing Method Thereof
BR112014017042B1 (en) 2012-01-13 2020-10-27 Nippon Steel Corporation cold rolled steel sheet and manufacturing process
TWI468532B (en) 2012-01-13 2015-01-11 Nippon Steel & Sumitomo Metal Corp A hot stamp molded article and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003193192A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
RU2606361C2 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
JP5206244B2 (en) Cold rolled steel sheet
JP2006176843A (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5655338B2 (en) Partially tempered softened steel sheet and press-formed parts using the steel sheet
JP2015507094A (en) Ultra-high-strength cold-rolled steel sheet excellent in weldability and bending workability and manufacturing method thereof
JP2022537932A (en) Cold rolled martensitic steel and its method of martensitic steel
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP5521562B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2023506476A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
CN115698365B (en) Heat-treated cold-rolled steel sheet and method for manufacturing same
JP4333379B2 (en) Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness
JP2024138480A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
JP4452157B2 (en) 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
RU2785760C1 (en) Cold-rolled martensitic steel and method for producing martensitic steel
JP2004346430A (en) Method for producing high-tension steel plate for working
JP2002020844A (en) Martensitic stainless steel for welded pipe excellent in workability and toughness of weld zone
KR20130059651A (en) High strength steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R151 Written notification of patent or utility model registration

Ref document number: 3762700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees