[go: up one dir, main page]

JP3761919B2 - Curing accelerator for epoxy resin - Google Patents

Curing accelerator for epoxy resin Download PDF

Info

Publication number
JP3761919B2
JP3761919B2 JP12736195A JP12736195A JP3761919B2 JP 3761919 B2 JP3761919 B2 JP 3761919B2 JP 12736195 A JP12736195 A JP 12736195A JP 12736195 A JP12736195 A JP 12736195A JP 3761919 B2 JP3761919 B2 JP 3761919B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing
curing accelerator
formula
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12736195A
Other languages
Japanese (ja)
Other versions
JPH08301836A (en
Inventor
進 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP12736195A priority Critical patent/JP3761919B2/en
Priority to GB9606953A priority patent/GB2300187B/en
Priority to US08/629,223 priority patent/US5719320A/en
Priority to DE19616601A priority patent/DE19616601A1/en
Publication of JPH08301836A publication Critical patent/JPH08301836A/en
Priority to US08/925,426 priority patent/US5892111A/en
Application granted granted Critical
Publication of JP3761919B2 publication Critical patent/JP3761919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、エポキシ樹脂およびジシアンジアミドからなる系に添加すると、エポキシ樹脂を低温で硬化させることのできる、分子中にハロゲン原子を含有しないエポキシ樹脂用硬化促進剤に関する。
【0002】
【従来の技術】
エポキシ樹脂は、接着性、機械強度、電気絶縁性等に優れ、さらに基体樹脂、硬化剤、変性剤、促進剤などの組合せにより、多様な用途に適合し、その機能を持たせることができる。そのため多くの分野で用いられている。例えば塗料、接着剤、電子材料用封止剤および炭素繊維複合材料(以後CFRPと略称する)など多岐にわたっており、近年多くの分野で多様化し高度化する要求性能に対応するべく研究開発が進められている。
【0003】
一般に用いられているエポキシ樹脂組成物は、二液性である。主剤と硬化剤とを別々に保管し使用時に混合する。室温でも硬化する反面、作業者の配合ミス発生の可能性、可使時間の制約などの欠点を有する。これらの欠点を解決するために、一液性エポキシ樹脂用の潜在性硬化剤(エポキシ樹脂と室温付近では反応せず、所定の温度に加熱すると速やかに反応しうる硬化剤)が開発されている。この種の潜在性硬化剤としては、エポキシ樹脂に分散させ、加熱溶解させる型の化合物が知られている。その代表的なものとしてジシアンジアミドがある。しかしながらこのものは硬化が遅く、高温で硬化させる必要がある。一方、応用の範囲を広げるためには、硬化温度を低くしなければならない。硬化温度の低下は省エネルギ−につながるという利点も有する。このため、ジシアンジアミドに不足している性質を付加できるような、硬化促進剤の出現が望まれている。
【0004】
現在知られている硬化促進剤としては、尿素化合物、イミダゾ−ル化合物などがあり、具体的には3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(以後DCMUと略称する)、2−メチルイミダゾ−ルなどが代表的化合物として知られている。しかしながら硬化剤の存在によって、エポキシ樹脂組成物の反応性が増加し、エポキシ樹脂組成物の保存安定性は逆に低下するので、未だに硬化性と保存安定性とを同時に満足させるものはなく、また電子材料用封止剤のように金属腐食の点から、ハロゲン原子を含有する化合物は問題点を有しており、この分野においても現在多くの検討がなされている。
【0005】
【発明が解決しようとする課題】
上記したような各種要求に対していくつかの発明が行なわれている。特公昭62−44768号公報には、炭素繊維強化エポキシ樹脂組成物の硬化促進剤としてDCMUを用い、硬化樹脂の耐熱性を損なうことなく、低温硬化性、保存安定性等を改善している。しかしながら、DCMUは分子中にハロゲン原子を有しているため、電子材料分野への使用には問題があり、他に環境問題もある。特開平5−310890号公報には複合材料用プリプレグについて、同様に上記尿素化合物が使用されている。この場合もやはり、電子材料分野への使用には問題があり、他に環境問題もある。
【0006】
上記事項に鑑み、本発明の目的は、エポキシ樹脂、ジシアンジアミドをベ−スとした熱硬化性組成物に添加する硬化促進剤であって、化合物中にハロゲン原子を含まず、保存安定性が良く、低温硬化性の優れたエポキシ樹脂用硬化促進剤を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために種々の尿素化合物について検討を行なった結果、新規な尿素誘導体が化合物中にハロゲン原子を含まず、保存安定性が良く、低温硬化性を有するエポキシ樹脂用硬化促進剤に適していることを見い出し、本発明を完成するに至った。
【0008】
すなわち本発明は、[1−1]式で表される尿素誘導体であり、
【化7】

Figure 0003761919
[1−2]式で表される尿素誘導体であり、
【化8】
Figure 0003761919
2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンである。
また本発明は、[1−1]式で表される化合物、[1−2]式で表される化合物、および2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンをエポキシ樹脂の硬化に用いることを特徴とする、エポキシ樹脂用硬化促進剤である。さらに本発明は、[1−1]式で表される化合物、[1−2]式で表される化合物、および2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンをエポキシ樹脂用硬化促進剤として使用することを特徴とする、エポキシ樹脂硬化促進方法である。
【0009】
本発明において、一般式[化1]表される尿素誘導体は、以下の反応によって製造することができる。一つの方法は、ジアルキルトルエンジアミンに、N,N−ジメチルカルバモイルクロライドを、有機塩基または無機塩基の存在下および/または相間移動触媒の存在下に、化学量論量以上で不活性有機溶媒中で反応させることによって製造する方法である。別の方法は、ジアルキルトルエンジアミンをホスゲン化し、ジアルキルトルエンジイソシアナートとした後、ジメチルアミンを、化学量論量以上で反応させることによって製造する方法である。
【0010】
本発明の尿素誘導体において、ベンゼン環に置換する低級アルキル基は、メチル基、およびエチル基である。
【0011】
本発明の尿素誘導体の具体例としては、次の化合物を挙げることができる。
(1)2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン
(2)2,4−ジエチル−6−メチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン
(3)2,5−ジエチル−6−メチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン
(4)4,5−ジエチル−6−メチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン
(5)4,5−ジエチル−2−メチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン
【0012】
本発明の尿素誘導体による硬化促進効果は、一般に市販されているエポキシ樹脂とジシアンジアミドに本発明の硬化促進剤を添加した樹脂組成物によって、達成することができる。またこの場合に、他の硬化促進剤を樹脂組成物中に混合して使用することもできる。
【0013】
本発明で使用されるエポキシ樹脂としては、公知の各種エポキシ樹脂すべてが使用可能であり、特に限定されない。好ましいタイプとしては、2個以上のエポキシ基が隣接するものが挙げられる。具体的にはビスフェノールAジグリシジルエーテル(シェル化学(株)製のEp−808、Ep−827、Ep−828等)が挙げられる。
【0014】
本発明の硬化促進剤は、(A)エポキシ樹脂、(B)ジシアンジアミド(C)硬化促進剤とを配合し、示差走査熱量計(以下DSCと略称する)を使用して反応熱を測定することによって、容易にその硬化促進剤の効果を評価をすることができる。(Adv.polym.Soc.72,112〜154)
【0015】
本発明にかかわるエポキシ樹脂の配合割合は、B成分がA成分に対して2〜15重量部、好ましくは3〜12重量部である。B成分が2重量部より少なくなると硬化性が悪くなり、B成分が15重量部を越えると耐熱性が低下する。
【0016】
本発明の硬化促進剤の配合割合は、A成分に対して1〜20重量部、好ましくは3〜12重量部である。1重量部以下では低温硬化性が悪くなり、20重量部を越えると耐熱性が低下する。
【0017】
本発明のエポキシ樹脂組成物は、その目的に応じて次のような他の添加剤を併用して使用することができる。例えば、可塑剤、有機溶媒、粘度調整剤、流動調整剤、充填剤、増量剤、顔料、染料、殺微生物剤、酸化防止剤等である。
【0018】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
[実施例1]ジエチル−メチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンの製造方法
コンデンサー、温度計、かきまぜ装置が付属している1リットルの四ツ口フラスコ中に、トルエン400ml、ジエチルトルエンジアミン(アルベマール浅野株式会社品)50g(0.281モル)およびトリエチルアミン68.2g(0.674モル)を仕込み、この中に N,N-ジメチルカルバモイルクロライド66.5g(0.619モル)を、10〜20℃、1時間で滴下し、滴下終了後ゆっくりと昇温し、80℃で3時間反応させた。次にこの系を10℃まで冷却し、水200mlを添加して良くかき混ぜた後、ろ過、水洗、乾燥した。得量71.9g(収率80%)
元素分析値は次の通りであった。
Figure 0003761919
IR(KBr)測定の結果、ν(C=O)は1638cm−1であった。
【0019】
[実施例2]
エポキシ樹脂(エピコート−828、油化シェルエポキシ品)10g、ジシアンジアミド(Dyhard 100S SKW、TROSTBERG品)0.7g、さらに硬化促進剤として、実施例1で製造したジエチル-メチル-1,3-ビス(3,3-ジメチルウレイド)ベンゼン0.7gを加えて、室温で良く混合分散させ、この組成物をDSCを用いて測定したところ、147℃に発熱ピークが認められ、この温度で硬化したことを示した。結果を[表1]に示す。
【0020】
[実施例3]
実施例2と同様の方法で実施し、硬化促進剤の量を変化させて測定した。結果を[表1]に示す。
【0021】
[比較例1]
硬化促進剤を使用せずに、エポキシ樹脂(エピコート−828、油化シェルエポキシ品)10gとジシアンジアミド(Dyhard 100S SKW、TROSTBERG品)0.7gとを室温で良く混合分散させ、この組成物をDSCを用いて測定したところ、199℃に発熱ピークが認められ、この温度で硬化したことを示した。結果を[表1]に示す。
【0022】
[比較例2]
実施例2の硬化促進剤の代わりに、DCMU(保土谷化学品)0.7gを使用し、実施例2と同様の方法で実施して測定した。結果を[表1]に示す。
【0023】
【表1】
Figure 0003761919
【0024】
【発明の効果】
新規な尿素誘導体をエポキシ樹脂用硬化促進剤に使用することによって、エポキシ樹脂を低温で硬化させることができ、また、エポキシ樹脂の保存安定性を向上させることができる。さらに、分子中にハロゲン原子を含有しないため、本発明にかかわるエポキシ樹脂は塗料、接着剤、CFRP、特に電子材料用封止剤として優れた性質を発揮する。[0001]
[Industrial application fields]
The present invention relates to a curing accelerator for an epoxy resin that does not contain a halogen atom in the molecule and can cure the epoxy resin at a low temperature when added to a system composed of an epoxy resin and dicyandiamide.
[0002]
[Prior art]
Epoxy resins are excellent in adhesiveness, mechanical strength, electrical insulation, and the like, and can be adapted to various uses and have functions by a combination of a base resin, a curing agent, a modifier, an accelerator, and the like. Therefore, it is used in many fields. For example, paints, adhesives, sealants for electronic materials, and carbon fiber composite materials (hereinafter abbreviated as CFRP) are widely used, and research and development have been promoted to meet the increasingly demanded performance in many fields in recent years. ing.
[0003]
Generally used epoxy resin compositions are two-part. The main agent and curing agent are stored separately and mixed at the time of use. Although it hardens even at room temperature, it has drawbacks such as the possibility of operator formulation errors and restrictions on pot life. In order to solve these drawbacks, a latent curing agent for a one-part epoxy resin (a curing agent that does not react with the epoxy resin near room temperature but can react quickly when heated to a predetermined temperature) has been developed. . As this type of latent curing agent, a compound of a type that is dispersed in an epoxy resin and dissolved by heating is known. A typical example is dicyandiamide. However, it is slow to cure and must be cured at high temperatures. On the other hand, in order to expand the application range, the curing temperature must be lowered. Lowering the curing temperature also has the advantage of leading to energy saving. For this reason, the appearance of a curing accelerator that can add properties deficient to dicyandiamide is desired.
[0004]
Currently known curing accelerators include urea compounds, imidazole compounds and the like, specifically, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (hereinafter abbreviated as DCMU), 2-methylimidazole and the like are known as representative compounds. However, since the reactivity of the epoxy resin composition is increased due to the presence of the curing agent, and the storage stability of the epoxy resin composition is decreased, there is still nothing that satisfies both the curability and the storage stability at the same time. A compound containing a halogen atom has a problem from the viewpoint of metal corrosion like a sealing agent for electronic materials, and many studies are currently being conducted in this field.
[0005]
[Problems to be solved by the invention]
Several inventions have been made to meet the various requirements as described above. Japanese Examined Patent Publication No. 62-44768 uses DCMU as a curing accelerator for a carbon fiber reinforced epoxy resin composition to improve low temperature curability, storage stability, etc. without impairing the heat resistance of the cured resin. However, since DCMU has a halogen atom in the molecule, there are problems in use in the field of electronic materials, and there are other environmental problems. In JP-A-5-310890, the above urea compounds are similarly used for prepregs for composite materials. Again, there are problems in use in the field of electronic materials, and there are other environmental problems.
[0006]
In view of the above, the object of the present invention is a curing accelerator to be added to a thermosetting composition based on epoxy resin and dicyandiamide, which does not contain halogen atoms in the compound and has good storage stability. An object of the present invention is to provide an epoxy resin curing accelerator having excellent low-temperature curability.
[0007]
[Means for Solving the Problems]
As a result of studying various urea compounds to achieve the above object, a novel urea derivative does not contain a halogen atom in the compound, has good storage stability, and has a low temperature curability as a curing accelerator for epoxy resins. The present invention has been found to be suitable, and the present invention has been completed.
[0008]
That is, the present invention is a urea derivative represented by the formula [1-1]
[Chemical 7]
Figure 0003761919
[1-2] a urea derivative represented by the formula:
[Chemical 8]
Figure 0003761919
2,4,6-Trimethyl-1,3-bis (3,3-dimethylureido) benzene.
The present invention also provides a compound represented by the formula [1-1], a compound represented by the formula [1-2], and 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido. ) A curing accelerator for epoxy resins, characterized in that benzene is used for curing epoxy resins. Furthermore, the present invention relates to a compound represented by the formula [1-1], a compound represented by the formula [1-2], and 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido ) Epoxy resin curing accelerating method characterized in that benzene is used as a curing accelerator for epoxy resin.
[0009]
In the present invention, the urea derivative represented by the general formula [Chemical Formula 1] can be produced by the following reaction. One method involves dialkyltoluenediamine, N, N-dimethylcarbamoyl chloride, in the presence of an organic or inorganic base and / or in the presence of a phase transfer catalyst in a stoichiometric amount or more in an inert organic solvent. It is a method of manufacturing by making it react. Another method is a method in which dialkyltoluenediamine is phosgenated to form dialkyltoluene diisocyanate, and then dimethylamine is reacted in a stoichiometric amount or more.
[0010]
In the urea derivative of the present invention, the lower alkyl group substituted on the benzene ring is a methyl group or an ethyl group.
[0011]
Specific examples of the urea derivative of the present invention include the following compounds.
(1) 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido) benzene (2) 2,4-diethyl-6-methyl-1,3-bis (3,3-dimethylureido ) Benzene (3) 2,5-diethyl-6-methyl-1,3-bis (3,3-dimethylureido) benzene (4) 4,5-diethyl-6-methyl-1,3-bis (3 3-dimethylureido) benzene (5) 4,5-diethyl-2-methyl-1,3-bis (3,3-dimethylureido) benzene
The curing acceleration effect by the urea derivative of the present invention can be achieved by a resin composition obtained by adding the curing accelerator of the present invention to a commercially available epoxy resin and dicyandiamide. In this case, other curing accelerators can also be used by mixing in the resin composition.
[0013]
As the epoxy resin used in the present invention, all known various epoxy resins can be used, and are not particularly limited. Preferred types include those in which two or more epoxy groups are adjacent. Specific examples include bisphenol A diglycidyl ether (Ep-808, Ep-827, Ep-828, etc., manufactured by Shell Chemical Co., Ltd.).
[0014]
The curing accelerator of the present invention comprises (A) an epoxy resin and (B) dicyandiamide (C) a curing accelerator, and measures reaction heat using a differential scanning calorimeter (hereinafter abbreviated as DSC). Thus, the effect of the curing accelerator can be easily evaluated. (Adv.polym.Soc.72,112-154)
[0015]
The compounding ratio of the epoxy resin according to the present invention is such that the B component is 2 to 15 parts by weight, preferably 3 to 12 parts by weight with respect to the A component. When the B component is less than 2 parts by weight, the curability is deteriorated, and when the B component exceeds 15 parts by weight, the heat resistance is lowered.
[0016]
The blending ratio of the curing accelerator of the present invention is 1 to 20 parts by weight, preferably 3 to 12 parts by weight with respect to the component A. If it is 1 part by weight or less, the low-temperature curability deteriorates, and if it exceeds 20 parts by weight, the heat resistance is lowered.
[0017]
The epoxy resin composition of the present invention can be used in combination with the following other additives depending on the purpose. For example, plasticizers, organic solvents, viscosity modifiers, flow modifiers, fillers, extenders, pigments, dyes, microbicides, antioxidants and the like.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1] Method for producing diethyl-methyl-1,3-bis (3,3-dimethylureido) benzene 400 ml of toluene in a 1 liter four-necked flask equipped with a condenser, thermometer and stirring device. , Diethyltoluenediamine (Albemarle Asano Co., Ltd.) 50 g (0.281 mol) and triethylamine 68.2 g (0.674 mol) were charged, and N, N-dimethylcarbamoyl chloride 66.5 g (0.619 mol) was added to 10-20. The solution was added dropwise at 1 ° C. for 1 hour, slowly heated after completion of the addition, and reacted at 80 ° C. for 3 hours. Next, this system was cooled to 10 ° C., and 200 ml of water was added and stirred well, followed by filtration, washing with water and drying. Yield 71.9g (80% yield)
Elemental analysis values were as follows.
Figure 0003761919
As a result of IR (KBr) measurement, ν (C═O) was 1638 cm −1 .
[0019]
[Example 2]
10 g of epoxy resin (Epicoat-828, oil-coated shell epoxy product), 0.7 g of dicyandiamide (Dyhard 100S SKW, TROSTBERG product), and diethyl-methyl-1,3-bis produced in Example 1 as a curing accelerator ( 3,3-dimethylureido) benzene (0.7 g) was added and mixed and dispersed well at room temperature. When this composition was measured using DSC, an exothermic peak was observed at 147 ° C., indicating that it was cured at this temperature. Indicated. The results are shown in [Table 1].
[0020]
[Example 3]
It implemented by the method similar to Example 2, and changed and changed the quantity of the hardening accelerator. The results are shown in [Table 1].
[0021]
[Comparative Example 1]
Without using a curing accelerator, 10 g of epoxy resin (Epicoat-828, oiled shell epoxy product) and 0.7 g of dicyandiamide (Dyhard 100S SKW, TOSTBERG product) were well mixed and dispersed at room temperature, and this composition was subjected to DSC. As a result, an exothermic peak was observed at 199 ° C., indicating that the composition was cured at this temperature. The results are shown in [Table 1].
[0022]
[Comparative Example 2]
In place of the curing accelerator of Example 2, 0.7 g of DCMU (Hodogaya Chemical) was used, and the measurement was carried out in the same manner as in Example 2. The results are shown in [Table 1].
[0023]
[Table 1]
Figure 0003761919
[0024]
【The invention's effect】
By using a novel urea derivative as a curing accelerator for epoxy resin, the epoxy resin can be cured at a low temperature, and the storage stability of the epoxy resin can be improved. Furthermore, since the halogen atom is not contained in the molecule, the epoxy resin according to the present invention exhibits excellent properties as a coating material, an adhesive, CFRP, particularly a sealing agent for electronic materials.

Claims (9)

[1−1]式で表される尿素誘導体。[1-1] A urea derivative represented by the formula:
Figure 0003761919
Figure 0003761919
[1−2]式で表される尿素誘導体。[1-2] A urea derivative represented by the formula:
Figure 0003761919
Figure 0003761919
2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼン。2,4,6-trimethyl-1,3-bis (3,3-dimethylureido) benzene. [1−1]式で表される化合物をエポキシ樹脂の硬化に用いることを特徴とする、エポキシ樹脂用硬化促進剤。[1-1] A curing accelerator for epoxy resin, wherein the compound represented by the formula is used for curing of the epoxy resin.
Figure 0003761919
Figure 0003761919
[1−2]式で表される化合物をエポキシ樹脂の硬化に用いることを特徴とする、エポキシ樹脂用硬化促進剤。[1-2] A curing accelerator for epoxy resins, wherein the compound represented by the formula is used for curing epoxy resins.
Figure 0003761919
Figure 0003761919
2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンをエポキシ樹脂の硬化に用いることを特徴とする、エポキシ樹脂用硬化促進剤。A curing accelerator for epoxy resin, characterized in that 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido) benzene is used for curing the epoxy resin. [1−1]式で表される化合物をエポキシ樹脂用硬化促進剤として使用することを特徴とする、エポキシ樹脂硬化促進方法。[1-1] A method of accelerating epoxy resin curing, comprising using a compound represented by the formula as a curing accelerator for epoxy resin.
Figure 0003761919
Figure 0003761919
[1−2]式で表される化合物をエポキシ樹脂用硬化促進剤として使用することを特徴とする、エポキシ樹脂硬化促進方法。[1-2] A method of accelerating epoxy resin curing, comprising using a compound represented by the formula as a curing accelerator for epoxy resin.
Figure 0003761919
Figure 0003761919
2,4,6−トリメチル−1,3−ビス(3,3−ジメチルウレイド)ベンゼンをエポキシ樹脂用硬化促進剤として使用することを特徴とする、エポキシ樹脂硬化促進方法。An epoxy resin curing accelerating method comprising using 2,4,6-trimethyl-1,3-bis (3,3-dimethylureido) benzene as a curing accelerator for an epoxy resin.
JP12736195A 1995-04-28 1995-04-28 Curing accelerator for epoxy resin Expired - Fee Related JP3761919B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12736195A JP3761919B2 (en) 1995-04-28 1995-04-28 Curing accelerator for epoxy resin
GB9606953A GB2300187B (en) 1995-04-28 1996-04-02 Cure-accelerator for epoxy resin
US08/629,223 US5719320A (en) 1995-04-28 1996-04-08 Cure-accelerator for epoxy resin
DE19616601A DE19616601A1 (en) 1995-04-28 1996-04-25 Hardening accelerator for an epoxy resin
US08/925,426 US5892111A (en) 1995-04-28 1997-09-08 Cure-accelerator for epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12736195A JP3761919B2 (en) 1995-04-28 1995-04-28 Curing accelerator for epoxy resin

Publications (2)

Publication Number Publication Date
JPH08301836A JPH08301836A (en) 1996-11-19
JP3761919B2 true JP3761919B2 (en) 2006-03-29

Family

ID=14958056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12736195A Expired - Fee Related JP3761919B2 (en) 1995-04-28 1995-04-28 Curing accelerator for epoxy resin

Country Status (1)

Country Link
JP (1) JP3761919B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111032724B (en) 2017-08-22 2022-04-29 盛势达技研株式会社 Curable composition

Also Published As

Publication number Publication date
JPH08301836A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
EP3401351B1 (en) Phthalonitrile resin
JPH0689120B2 (en) Composition containing (acylthiopropyl) polyphenol
US5719320A (en) Cure-accelerator for epoxy resin
JPH03193753A (en) New hydrazide and latent curing agent comprising the same compound for epoxy resin
JP3716416B2 (en) Novel sulfonium salt compounds and polymerization initiators
JP3761919B2 (en) Curing accelerator for epoxy resin
CA2185207C (en) 1-imidazolylmethyl-2-naphthols as catalysts for curing epoxy resins
JP4181797B2 (en) Novel ester compound having isocyanuric acid ring and epoxy resin composition using the compound
EP3546496B1 (en) Compound
JPH04356523A (en) Latent curing agent for epoxy resin
JP3354594B2 (en) Aminophosphazene epoxy resin curing agent
JP3563154B2 (en) Curing accelerator for epoxy resin
JP4565489B2 (en) Curing agent for epoxy resin, epoxy resin composition, and cured product thereof
KR101201229B1 (en) Thermal latent initiator for epoxy resin and preparation the same, epoxy resin compound comprising the same
JPH0241312A (en) epoxy resin composition
JPH0320325A (en) Thermosetting resin composition
JP3214642B2 (en) Curable epoxy resin composition
JPS61183316A (en) Latent curing agent for one-component epoxy resin
JPS6312093B2 (en)
JP2012017292A (en) New phosphonium compound, and curing promoter for epoxy resin
JP4036289B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JPS63238129A (en) Phenol aralkyl resin and production thereof
JPH03221516A (en) Epoxy resin manufacturing method and epoxy resin composition
JPS60178851A (en) Novel hydrazide and latent curing agent for epoxy resin composed of said compound
JPH0559157A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees