JP3752603B2 - Biofilm treatment method for wastewater - Google Patents
Biofilm treatment method for wastewater Download PDFInfo
- Publication number
- JP3752603B2 JP3752603B2 JP26201294A JP26201294A JP3752603B2 JP 3752603 B2 JP3752603 B2 JP 3752603B2 JP 26201294 A JP26201294 A JP 26201294A JP 26201294 A JP26201294 A JP 26201294A JP 3752603 B2 JP3752603 B2 JP 3752603B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- oil
- saponin
- treatment method
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 51
- 239000002351 wastewater Substances 0.000 title claims description 45
- 238000011282 treatment Methods 0.000 title claims description 38
- 238000005273 aeration Methods 0.000 claims description 34
- 229930182490 saponin Natural products 0.000 claims description 28
- 150000007949 saponins Chemical class 0.000 claims description 28
- 239000001397 quillaja saponaria molina bark Substances 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000002035 hexane extract Substances 0.000 claims description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 239000012264 purified product Substances 0.000 claims description 3
- 230000000813 microbial effect Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 235000017709 saponins Nutrition 0.000 description 22
- 239000000126 substance Substances 0.000 description 9
- 239000010802 sludge Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 238000004065 wastewater treatment Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 5
- 238000005339 levitation Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229930182470 glycoside Natural products 0.000 description 4
- 150000002338 glycosides Chemical class 0.000 description 4
- 235000019645 odor Nutrition 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000628997 Flos Species 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- PIGTXFOGKFOFTO-FVFWYJKVSA-N (2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8R,8aR,12aS,14aR,14bR)-8a-carboxy-4-formyl-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound O([C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)C[C@@H](O)[C@]1(CCC(C[C@H]14)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O PIGTXFOGKFOFTO-FVFWYJKVSA-N 0.000 description 1
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 1
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- 244000309456 Decussocarpus nagi Species 0.000 description 1
- 235000008375 Decussocarpus nagi Nutrition 0.000 description 1
- 239000001653 FEMA 3120 Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000009001 Quillaja saponaria Nutrition 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 241000694414 Sapindus saponaria Species 0.000 description 1
- 241000219287 Saponaria Species 0.000 description 1
- 244000295923 Yucca aloifolia Species 0.000 description 1
- 235000004552 Yucca aloifolia Nutrition 0.000 description 1
- 235000012044 Yucca brevifolia Nutrition 0.000 description 1
- 235000017049 Yucca glauca Nutrition 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- DKVBOUDTNWVDEP-NJCHZNEYSA-N teicoplanin aglycone Chemical compound N([C@H](C(N[C@@H](C1=CC(O)=CC(O)=C1C=1C(O)=CC=C2C=1)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)OC=1C=C3C=C(C=1O)OC1=CC=C(C=C1Cl)C[C@H](C(=O)N1)NC([C@H](N)C=4C=C(O5)C(O)=CC=4)=O)C(=O)[C@@H]2NC(=O)[C@@H]3NC(=O)[C@@H]1C1=CC5=CC(O)=C1 DKVBOUDTNWVDEP-NJCHZNEYSA-N 0.000 description 1
- 150000003648 triterpenes Chemical class 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Activated Sludge Processes (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、厨房排水や食品加工工場等の含油排水や含澱粉排水、或いは合併槽排水、下水その他高濃度の油分やSSの混入が避けられない排水を、油分やSS除去工程を経ずにそのまま接触濾材槽に導入して処理する、生物処理法の改良に関する。
【0002】
【従来の技術】
生物膜処理法とは排水の生物処理法の一種であり、槽や塔内に収納した接触濾材表面に生物膜を形成させ、この生物膜で排水中の有機物を処理するものである。生物膜処理法には、接触曝気、回転接触曝気、嫌気性浸漬濾床、撒水濾床など幾つかの方法があるがこの中で現在最も広く用いられているのは、接触曝気法である。これは、曝気槽内にプラスチック製の板や紐その他の接触材を固定し或いは浮遊させ、下方から曝気することによって接触材表面に生物膜を形成させるものである。そして、この生物膜が効率良く排水中の有機物を処理するので、BOD容積負荷が活性汚泥法の5倍前後もあり極めて効率のよい排水処理方法である。しかし、元々はBODが低く水量の多い場合に有利な処理法であり、3次処理に使用されていた。そして、ここ数年らい、BOD容積負荷が高い点に着目して1次処理や2次処理にも使用されるようになった。また、回転接触曝気法や嫌気性浸漬濾床、撒水濾床なども、BOD容積負荷が高い処理方法である。
【0003】
ところが、接触曝気法は排水中に油分が多く含まれていると、接触濾材やその上に付着している生物膜に油分が付着してその活動を妨げ、甚だしい場合には水や空気の通路を閉塞してしまって、処理不能に陥る難点がある。SS分が多い場合も、同様に接触濾材や生物膜の表面に付着し、ついには水や空気の通路を閉塞してしまって、処理不能に陥いらせる。これは、元来SSや油分に弱い接触曝気法の欠点に気が付かなかったことによる。尚この問題は、接触曝気法に限らず浸漬濾床法(接触曝気法において曝気をせずに嫌気状態で処理する方法)や、接触濾材の上から水を撒水する撒水濾床法、円盤や円盤状網を水中に半埋没状態で回転させる回転接触曝気法など、接触濾材を用いる排水処理の場合に、常に付きまとう問題である。
【0004】
そこで、接触濾材による生物膜処理に先立って、排水中の油分含有量を低下させることが行なわれるようになった。その程度は、接触曝気法の場合はノルマルヘキサン抽出物として10ppm 程度、余程良好に運転管理しても20ppm が上限とされる。他の処理法の場合も大同小異である。そして、この油分の除去は、現在では殆どが加圧浮上によって行われている。小規模排水の場合にはグリストラップも用いられるが、加圧浮上処理の場合は、同時にSS分も除去できる利点がある。
【0005】
【発明が解決しようとする課題】
しかし、この加圧浮上処理は多量の凝集剤を必要とするし、動力費もかかるうえに曝気された空気が悪臭を発散させるし、分離した油分が腐敗して悪臭を放つとかその処理に手間がかかるなど極めて問題のあるものである。尚、接触曝気法の場合は、それ自体が微生物の活発な活動を助けるために大量の酸素を必要として動力を消費するし、発生する汚泥も活性汚泥法に比べて多く、その処理も大きな負担になる。
【0006】
更に加圧浮上の最大の難点は、油分(SSも)を十分に除去出来ないことである。従来から、長時間曝気したり大量の凝集剤を投入してできるだけ低下させるようにしているが、10ppm はおろか30ppm 以下にすることすら至難の技である。従って、接触濾材が油分やSSに覆われたり、通路が閉塞したりして処理不能に陥ることが多いが、そのような場合には接触濾材を除去してしまうしか方法がない。この場合、接触濾材を再度設置できればよいが多くの場合不可能であり、接触濾材のないままに排水の処理が行われ、処理が不十分なまま排出される結果となる。
【0007】
【発明が解決しようとする課題】
以上のような現状に鑑み、本発明者は鋭意研究の結果本発明方法を完成させたものであり、その特徴とするところは、排水中から油分及びSSの除去を行わずに或いは余り行わずに、サポニン含有剤を添加した状態で排水を接触濾材槽に導入し、そのまま生物膜処理を行う点にある。
【0008】
ここで、排水とは、生活排水、工業排水等を含む被処理水すべてを言うが、特に油分を多く含む排水を主たる対象とする。例えば、外食産業や食品加工工場等の排水であり、家庭からの雑排水も多くの油分を含む。また油分とは、ノルマルヘキサン抽出物(ノルヘキ成分)のことを言う。ノルヘキ成分の処理水での水質基準は数ppm といわれているが、食品加工工場や外食産業からの排水中には600〜700ppm も含まれていることがある。また、油分は比較的少ないがSSが多く含まれる排水たとえば製麺工場など澱粉を多く含む排水、油分もSSも共に多く含まれる排水も本発明の好適な処理対象となる。
【0009】
次に、接触曝気法とは、曝気槽の中に鉱物、プラスチック、木材その他の板状や紐状、粒状などの接触濾材を設置し、或いは浮遊させ、下方或いは側方からエアレーションして処理する方法を言う。浮遊性のものとしては、プラスチック空容器、コルク、発砲スチロール、活性炭、バーミキュライト、パルプ屑、籾殻、おが屑等が用いられるが、これらが曝気で攪拌されるので流動濾床法とも言われる。また、これらを充填した槽に、上方から排水を散布するのが撒水濾床法である。尚、接触曝気法と同様な構造において曝気をしないものを嫌気性浸漬濾床法と言う。接触回転曝気法とは、円盤状の板や網、或いはプラスチック空容器等を収納した容器等を、被処理水中に半浸漬状態にして回転させるもので、好気、嫌気の両状態で処理するものを言う。これらはいずれも本発明に適用できるものである。これらの処理によって、次第に接触濾材の表面に微生物のコロニーができ、有機物質を効率良く処理するようになる。
【0010】
ここにサポニンとは、植物体に含有される配糖体の一種で、セッケンのように著しくアワ立つコロイド水溶液を作るものの総称であり、多くの植物から見出されている。本発明では用いるサポニンの種類は問わないが、コストや安定供給の点から、植物体中の含有量が多く且つその植物が大量に存在し安定して入手できるものが好ましい。この観点から、キラヤサポニンやユッカ、なぎいかだ、大豆、砂糖大根等から得られるサポニンが好ましい。この内特に、南米のチリー、ボリビア、ペルー等に自生するシャボンの木(学名:Quilaia saponaria Mol.バラ科)から抽出したキラヤサポニンが好適である。これは、化1の構造を有するキラヤ酸をアグリコン(配糖体の非糖質部分)とするトリテルペン系の配糖体であり化2で表わされもので、構造及び分析技術が解明されている数少ないサポニンであるし、比較的サポニン含有濃度の高い抽出液が得られることによる。
【化1】
【化2】
【0011】
サポニン含有剤は、植物体から抽出した抽出液(溶媒を含む)をそのまま用いてもよく、それを精製したもの自体でもよい。抽出の方法は通常の方法でよく、エタノール等の低級アルコール等で抽出できる。更に、精製物や抽出液を粉状、顆粒状、又は錠剤に加工したものも用いられる。
【0012】
ところで、本発明者はサポニンが汚水の生物学的処理工程に有効であることを見出したが、これはサポニンが配糖体であるため微生物の栄養分となり、酸素含有量が多いこととあいまって微生物の繁殖を助ける結果、処理効率が向上するものと推察されている。そこで、本発明者は本発明においても接触曝気槽にサポニン含有剤を供給してその状況を数ケ月にわって観察したところ、接触曝気槽中の生物層に変化がみられ、500ppm 以上の油分を充分に処理するようになった。但し、油分の分解物質が残るのか処理水中のBODやCODは幾分の上昇を見た。他の処理法の場合も、同様に良好な結果が得られた。
【0013】
サポニン含有剤の添加量は、排水中の油分の濃度によって異なるが、通常は、排水に対して精製物換算で0.01〜1.0 ppm 、特に0.12〜0.4 ppm (含有量4%液として、3〜10ppm )程度である。添加は、液状サポニン含有剤の場合定量ポンプで常時滴下する等の方法を採るとよい。錠剤や顆粒剤等の固型剤の場合は、適量を適宜間隔をおいて投入するとよい。また、サポニン含有剤の添加箇所は、当初は接触濾材槽に直接投入するが、安定状態(2〜3ケ月)になれば、調整槽に投入する方が良好な結果が得られる。
【0014】
尚、本発明は排水の生物学的処理工程において、2次処理にでも3次処理にでも使用できるものである。場合によっては、1次処理にも使用できる。
【0015】
【実施例】
(実施例 1)
次に、本発明を図面に示す一実施例に基づいて詳細に説明する。図1は、或る食品加工工場の排水処理施設のフローチャート(接触曝気法を採用)である。排水量は250トン/日で、従来から処理水の水質は安定していて問題はなかった。しかし、油分が多い(500ppm )ため、加圧浮上処理により油分を除去し、曝気槽へ送り込む排水中の油分は10ppm を目標に調整していた。しかし、現実には60ppm 以下には下がらず、接触曝気槽の処理能力が低下していった。尚、発生する浮上フロスを余剰汚泥として脱水処分しているが、脱水ケーキの発生量が約0.5トン/日となり、処分費が高くついていた。しかも、加圧浮上用の凝集剤や脱水用凝集剤の費用、加圧浮上に要する電気代等を勘案するとかなりのランニングコストになっていた。
【0016】
そこで、キラヤサポニン含有剤を1日1回処理水量に対して3ppm (サポニン含有量4%液の場合)添加した。この添加は、図1の曝気槽に行った。投入から1〜2ケ月間は、当初微生物が増加し、次第に曝気槽の生物層が変化して、原生動物(良好な処理槽に多く見られる)の現出が観察されるようになった。しかし、処理に要する費用は以前とかわらず、ただサポニン含有剤の費用が上積みされた程度であった。3ケ月目からは、曝気槽において形成されるフロックが大きくなり、良好時に発生する原生動物や微生物が多く観察されるようになった。それとともに、投入する排水中の油分の濃度を上げたため(50〜300ppm )、加圧浮上に要する薬剤や脱水用薬剤及び脱水ケーキ処分費が次第に低下してきて、サポニン含有剤の費用を加えても当初より低コストになってきた。
【0017】
3ケ月後から加圧浮上装置の使用を停止し、図2に示すように排水を調整槽から直接曝気槽に投入するようにした。そして、均一な添加をするために、サポニン含有剤をこの調整槽に投入するようにした。その結果、油分の回収に要する手間や費用が大幅に軽減されるとともに、悪臭も減って作業環境が向上した。また浮上フロスがなくなり、余剰汚泥として搬出していた量が減少したうえ、脱水し易くなるので脱水用凝集剤の使用量も大幅に減少した。そのため、余剰汚泥の処理費、脱水用薬品の大幅な費用の削減ができた。勿論、処理水の水質も安定している。しかも、微生物が活発に活動するので本来はDO(溶存酸素)が不足気味になるはずであるが、サポニン含有剤には溶存酸素増加効果があるので、かえって送気量を減少させることができ、その点においてもコストの低下が図られた。
【0018】
このような結果が生じたのは、油分がサポニン含有剤によって乳化され、バクテリアによって分解されやすい状態になったこと、またバクテリアの活性化が図れてこの乳化された油分及びSS分(デンプン質等)が効率良く分解されたことによると思われる。
【0019】
但し、油分が大量に消化されるので、その残分としてのBODやCODは、下記に示すように幾分増加した。しかし、その量は排水基準の範囲内に収まっている。
投入前(平均) mg/l
BOD COD SS ノルヘキ成分
原 水 1,000 265 403 500ppm
加圧浮上後 724 230 360 60
処 理 水 3.75 12 9.3 10
投入後(平均) mg/l
BOD COD SS ノルヘキ成分
処 理 水 4.7 5 14.1 6.8 2〜3ppm
【0020】
(実施例 2)
あるサービスエリアで、70m3 /日の厨房排水を加圧浮上した後に嫌気性浸漬濾床槽で処理していたところ、油分の除去が不十分なため接触濾材が油分で目詰まり起こし、ついには濾材が持ち上がって全く処理槽の体をなさない状態になっていた。この厨房排水は、平均でBODが550ppm 、油分が100〜150ppm であり、処理水はBODが100、油分が50程度であった。
【0021】
この状態で、接触濾材を交換して加圧浮上装置を外し、サポニン含有剤を3〜5ppm 投入し続けて2ケ月程度経過したところ、処理水はBODが15ppm 、油分(ノノルマルヘキサン抽出物)が5ppm 程度と安定した処理が行なえるようになった。
【0022】
【発明の効果】
以上、詳細に説明した本発明には、次のような大きな利点がある。
1) 接触曝気法など接触濾材槽を使用する排水処理方法の大きなネックであった油分やSSの除去が不要になり、これに費やしていた手間や費用が削減され、排水処理費は、サポニン含有剤の使用前に比べてほぼ半減した。
2) 活性汚泥も絶対量が減少(約3/1)し、併せて凝集剤の使用量も1/3になり、汚泥処理費が減少した。
3) 悪臭に曝され、取り扱いにくい油分の塊の処理が不要になるので、作業環境が大幅に改善される。
【図面の簡単な説明】
【図1】 従来の接触曝気法を基にしたサポニン含有剤の使用開始当初の本発明による排水処理のフローチャートの一例を示す。
【図2】 安定期における本発明の接触曝気法による排水処理のフローチャートの一例を示す。[0001]
[Industrial application fields]
The present invention provides oil-containing wastewater such as kitchen wastewater and food processing plants, starch-containing wastewater, combined tank wastewater, sewage and other wastewater that cannot be mixed with high-concentration oil or SS without oil and SS removal process. The present invention relates to an improvement of a biological treatment method in which it is directly introduced into a contact filter medium tank and processed.
[0002]
[Prior art]
The biofilm treatment method is a kind of wastewater biotreatment method, in which a biofilm is formed on the surface of a contact filter medium housed in a tank or a tower, and organic matter in the wastewater is treated with this biofilm. There are several biofilm treatment methods, such as contact aeration, rotary contact aeration, anaerobic submerged filter bed, and submerged filter bed. Among them, the contact aeration method is most widely used at present. In this method, a plastic plate, string or other contact material is fixed or floated in the aeration tank, and a biofilm is formed on the surface of the contact material by aeration from below. And since this biofilm efficiently treats organic matter in the wastewater, the BOD volumetric load is about five times that of the activated sludge method, which is an extremely efficient wastewater treatment method. However, it was originally an advantageous treatment method when the BOD was low and the amount of water was large, and was used for the tertiary treatment. In recent years, it has come to be used for primary processing and secondary processing, paying attention to the high BOD volumetric load. In addition, a rotating contact aeration method, an anaerobic submerged filter bed, a submerged filter bed, etc. are also processing methods with a high BOD volume load.
[0003]
However, in the contact aeration method, if a lot of oil is contained in the waste water, the oil adheres to the contact filter medium and the biofilm adhering to it, hindering its activity. There is a difficulty that it is blocked, and can not be processed. Even when there is a lot of SS, it adheres to the surface of the contact filter medium or biofilm, and eventually blocks the passage of water or air, making it impossible to process. This is because the defect of the contact aeration method that is inherently weak against SS and oil is not noticed. In addition, this problem is not limited to the contact aeration method, but is a submerged filter bed method (a method of treating in an anaerobic state without aeration in the contact aeration method), a submerged filter bed method in which water is submerged from the contact filter medium, This is always a problem with wastewater treatment using contact filter media, such as a rotating contact aeration method in which a disk-shaped net is rotated in a semi-buried state.
[0004]
Therefore, prior to the biofilm treatment with the contact filter medium, the oil content in the waste water has been reduced. In the case of the contact aeration method, the upper limit is about 10 ppm as a normal hexane extract, and 20 ppm is the upper limit even if the operation is managed so well. The other processing methods are also the same. And most of the removal of this oil is carried out by pressure levitation at present. In the case of small-scale drainage, grease traps are also used, but in the case of pressurized levitation treatment, there is an advantage that SS can be removed at the same time.
[0005]
[Problems to be solved by the invention]
However, this pressurized flotation process requires a large amount of flocculant, power costs, and the aerated air emits a bad odor, and the separated oil rots and gives off a bad odor. Is extremely problematic. In the case of the contact aeration method, a large amount of oxygen is required to support the active activity of microorganisms, and power is consumed. The amount of generated sludge is larger than that of the activated sludge method, and the treatment is also a heavy burden. become.
[0006]
Furthermore, the biggest difficulty in levitation is that oil (SS) cannot be removed sufficiently. Conventionally, aeration is performed for a long time or a large amount of aggregating agent is added to reduce the amount as much as possible. However, it is extremely difficult to reduce 10 ppm to 30 ppm or less. Therefore, the contact filter medium is often covered with oil or SS, or the passage is blocked, so that the treatment cannot be performed. In such a case, there is only a method of removing the contact filter medium. In this case, it is sufficient if the contact filter medium can be installed again, but in many cases it is impossible. As a result, wastewater is treated without the contact filter medium, and the process is discharged with insufficient treatment.
[0007]
[Problems to be solved by the invention]
In view of the present situation as described above, the present inventor has completed the method of the present invention as a result of earnest research, and the feature thereof is that the oil and SS are not removed from the wastewater or not so much. In addition, the waste water is introduced into the contact filter medium tank with the saponin-containing agent added, and the biofilm treatment is performed as it is.
[0008]
Here, the drainage refers to all treated water including domestic wastewater, industrial wastewater, and the like, but mainly drainage containing a large amount of oil. For example, wastewater from the restaurant industry, food processing factories, etc., and miscellaneous wastewater from homes also contains a lot of oil. The oil component means a normal hexane extract (normal hex component). Although the water quality standard for treated water of norhexi components is said to be several ppm, 600 to 700 ppm may be contained in wastewater from food processing plants and the food service industry. In addition, wastewater containing a relatively small amount of oil but containing a large amount of SS, such as a wastewater containing a large amount of starch such as a noodle factory, and a wastewater containing a large amount of both oil and SS are also suitable treatment targets of the present invention.
[0009]
Next, the contact aeration method is a process in which a contact filter medium such as mineral, plastic, wood or other plate, string or granular is placed in an aeration tank or floated and aerated from below or from the side. Say the way. As a floating thing, a plastic empty container, cork, foamed polystyrene, activated carbon, vermiculite, pulp waste, rice husk, sawdust, etc. are used. Since these are stirred by aeration, it is also called fluidized bed method. Moreover, it is a submerged filter bed method to spray waste water from the upper part to the tank filled with these. In addition, what does not aerate in the structure similar to a contact aeration method is called an anaerobic immersion filter bed method. The contact rotation aeration method is a method in which a disk-like plate or net, or a container containing an empty plastic container is rotated in a semi-immersed state in water to be treated, and is processed in both aerobic and anaerobic conditions. Say things. Any of these can be applied to the present invention. By these treatments, microbial colonies are gradually formed on the surface of the contact filter medium, and organic substances are efficiently treated.
[0010]
Here, saponin is a kind of glycoside contained in a plant body, and is a collective term for making a colloidal aqueous solution that is remarkably abundant like soap, and has been found in many plants. In the present invention, the type of saponin to be used is not limited. From the viewpoint of cost and stable supply, a saponin having a high content in the plant body and a large amount of the plant that can be stably obtained is preferable. From this point of view, saponins obtained from Kiraya saponin, yucca, nagi raft, soybean, sugar radish and the like are preferable. Of these, Quillaja saponin extracted from a soap tree (scientific name: Quilaia saponaria Mol. Rosaceae) that naturally grows in South America such as Chilly, Bolivia, and Peru is preferred. This is a triterpene-based glycoside having aglycone having the structure of Chemical Formula 1 as an aglycon (non-carbohydrate part of the glycoside), and is represented by Chemical Formula 2. This is due to the fact that an extract with a relatively high saponin concentration is obtained.
[Chemical 1]
[Chemical 2]
[0011]
As the saponin-containing agent, an extract (including a solvent) extracted from a plant body may be used as it is, or a purified product itself may be used. The extraction method may be a normal method, and can be extracted with a lower alcohol such as ethanol. Further, a refined product or an extract obtained by processing into a powder, granule, or tablet can also be used.
[0012]
By the way, the present inventor has found that saponin is effective in biological treatment processes of sewage, but this is a microorganism, because saponin is a glycoside and has a high oxygen content. It is speculated that the processing efficiency will improve as a result of helping breeding. Therefore, in the present invention, the present inventor also supplied a saponin-containing agent to the contact aeration tank and observed the situation for several months. As a result, a change was observed in the biological layer in the contact aeration tank, and an oil content of 500 ppm or more was observed. Has been fully processed. However, BOD and COD in the treated water saw some increase whether the oil decomposition substances remain. In the case of other treatment methods, good results were obtained as well.
[0013]
The amount of saponin-containing agent varies depending on the concentration of oil in the wastewater, but is usually 0.01 to 1.0 ppm, especially 0.12 to 0.4 ppm in terms of purified product (3% as a 4% solution). -10 ppm). In the case of a liquid saponin-containing agent, the addition may be carried out by a method such as constantly dropping with a metering pump. In the case of a solid preparation such as a tablet or granule, an appropriate amount may be added at an appropriate interval. Moreover, although the addition site | part of a saponin containing agent is initially injected | thrown-in directly to a contact filter medium tank, if it will be in a stable state (2 to 3 months), a better result will be obtained if it introduce | transduces into a adjustment tank.
[0014]
The present invention can be used for secondary treatment and tertiary treatment in the biological treatment process of waste water. In some cases, it can also be used for primary processing.
[0015]
【Example】
(Example 1)
Next, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a flowchart of a wastewater treatment facility of a certain food processing factory (adopting contact aeration method). The amount of discharged water was 250 tons / day, and the quality of treated water has been stable and has not been a problem. However, since there was a lot of oil (500 ppm), the oil was removed by pressurized flotation and the oil content in the wastewater sent to the aeration tank was adjusted to 10 ppm. However, in reality, it did not drop below 60 ppm, and the treatment capacity of the contact aeration tank decreased. Although the generated floating floss was dehydrated as surplus sludge, the amount of dehydrated cake generated was about 0.5 tons / day, and the disposal cost was high. Moreover, considering the cost of the flocculant for pressure floating and the flocculant for dehydration, the electricity cost required for pressure floating, etc., the running cost has become considerable.
[0016]
Therefore, 3 ppm (in the case of 4% saponin content liquid) of Kirayasaponin containing agent was added once a day with respect to the amount of treated water. This addition was performed in the aeration tank of FIG. During the period of 1 to 2 months from the introduction, the microorganisms initially increased, the biological layer of the aeration tank gradually changed, and the appearance of protozoa (which is often found in good treatment tanks) was observed. However, the cost required for the treatment was the same as before, but only the cost of the saponin-containing agent was added. From the third month onward, flocs formed in the aeration tank became larger, and many protozoa and microorganisms generated in good condition were observed. At the same time, since the concentration of oil in the wastewater to be added was increased (50 to 300 ppm), the chemicals required for pressurized levitation, the chemicals for dehydration, and the disposal costs for dehydrated cakes gradually declined. It has become cheaper than the beginning.
[0017]
After 3 months, the use of the pressure levitation device was stopped, and the waste water was directly fed from the adjustment tank to the aeration tank as shown in FIG. And in order to add uniformly, the saponin containing agent was thrown into this adjustment tank. As a result, the labor and cost required for oil recovery have been greatly reduced, and the working environment has been improved by reducing bad odors. In addition, the amount of the flocculant for dehydration was greatly reduced because there was no floating floss and the amount transported as surplus sludge decreased and it became easier to dehydrate. As a result, it was possible to reduce surplus sludge treatment costs and dehydration chemicals significantly. Of course, the quality of the treated water is also stable. Moreover, since microorganisms are active, originally DO (dissolved oxygen) should be deficient, but since the saponin-containing agent has an effect of increasing dissolved oxygen, the amount of air can be reduced. In that respect, the cost was reduced.
[0018]
Such a result occurred because the oil was emulsified by the saponin-containing agent and became easily degraded by bacteria, and the bacteria were activated and the emulsified oil and SS content (starch etc.) ) Is considered to be efficiently decomposed.
[0019]
However, since a large amount of oil was digested, BOD and COD as the residue increased somewhat as shown below. However, the amount is within the drainage standard.
Before input (average) mg / l
BOD COD SS Norhexa ingredients raw water 1,000 265 403 500ppm
After rising to pressure 724 230 360 60
Treatment water 3.75 12 9.3 10
After input (average) mg / l
BOD COD SS Norhexi component treatment water 4.7 5 14.1 6.8 2-3 ppm
[0020]
(Example 2)
In a certain service area, 70m 3 / day of kitchen wastewater was pressurized and floated and then treated in an anaerobic immersion filter bed tank. However, because the oil was not removed sufficiently, the contact filter medium was clogged with oil, and finally The filter medium was lifted up and did not form the body of the treatment tank at all. This kitchen wastewater had an average BOD of 550 ppm and an oil content of 100 to 150 ppm, and the treated water had a BOD of 100 and an oil content of about 50.
[0021]
In this state, the contact filter medium was replaced, the pressure flotation device was removed, and 3 to 5 ppm of the saponin-containing agent was continuously added. After about 2 months, the treated water had a BOD of 15 ppm and the oil content (non-normal hexane extract) However, it became possible to perform stable treatment at around 5ppm.
[0022]
【The invention's effect】
As described above, the present invention described in detail has the following great advantages.
1) The removal of oil and SS, which was a major bottleneck in wastewater treatment methods using contact filter media tanks such as contact aeration, is no longer necessary, reducing labor and costs spent on this, and wastewater treatment costs include saponin The amount was almost halved compared to before using the agent.
2) The absolute amount of activated sludge decreased (about 3/1), and the amount of flocculant used was also reduced to 1/3, reducing sludge treatment costs.
3) The working environment is greatly improved because it is no longer necessary to dispose of lump of oil that is exposed to bad odor and is difficult to handle.
[Brief description of the drawings]
FIG. 1 shows an example of a flowchart of wastewater treatment according to the present invention at the beginning of use of a saponin-containing agent based on a conventional contact aeration method.
FIG. 2 shows an example of a flowchart of waste water treatment by the contact aeration method of the present invention in a stable period .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26201294A JP3752603B2 (en) | 1993-09-30 | 1994-09-30 | Biofilm treatment method for wastewater |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-269902 | 1993-09-30 | ||
JP26990293 | 1993-09-30 | ||
JP26201294A JP3752603B2 (en) | 1993-09-30 | 1994-09-30 | Biofilm treatment method for wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07251187A JPH07251187A (en) | 1995-10-03 |
JP3752603B2 true JP3752603B2 (en) | 2006-03-08 |
Family
ID=26545345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26201294A Expired - Lifetime JP3752603B2 (en) | 1993-09-30 | 1994-09-30 | Biofilm treatment method for wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3752603B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09267100A (en) * | 1996-01-31 | 1997-10-14 | Eiichi Tashiro | Anaerobic method for sludge digestion |
JP3893545B2 (en) * | 1996-04-30 | 2007-03-14 | 榮一 田代 | Anaerobic digestion of sludge or ginger urine |
JP3974958B2 (en) * | 1996-05-23 | 2007-09-12 | 榮一 田代 | Oil content processing apparatus and method for treating oil content in waste water |
JP4460081B2 (en) * | 1997-09-28 | 2010-05-12 | 榮一 田代 | Anaerobic digestion of sludge |
JP4388147B2 (en) * | 1997-10-06 | 2009-12-24 | 榮一 田代 | Wastewater treatment method |
JPH11235599A (en) * | 1998-02-23 | 1999-08-31 | Nitto Kikai Kk | Reactivation device for bacteria for oil containing waste water treatment |
JPH11293739A (en) * | 1998-04-09 | 1999-10-26 | Juyou:Kk | Circulation type washing treatment device |
JPH11293748A (en) * | 1998-04-10 | 1999-10-26 | Juyou:Kk | Moving type unit toilet |
JP2001259673A (en) * | 2000-03-15 | 2001-09-25 | Japan Energy Corp | How to treat oily wastewater |
JP5103796B2 (en) * | 2006-06-09 | 2012-12-19 | 栗田工業株式会社 | Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same |
JP6812278B2 (en) * | 2017-03-14 | 2021-01-13 | 住友重機械工業株式会社 | Oil-containing wastewater treatment equipment |
CN113943075A (en) * | 2020-07-15 | 2022-01-18 | 湖南怡田美农业科技有限公司 | Pollution treatment method after extraction of tigogenin |
-
1994
- 1994-09-30 JP JP26201294A patent/JP3752603B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07251187A (en) | 1995-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansen et al. | Agricultural waste management in food processing | |
AU2005209522B2 (en) | Process for biological treatment of organic waste water and apparatus therefor | |
Borja et al. | Treatment of palm oil mill effluent by upflow anaerobic filtration | |
Cammarota et al. | Enzymatic pre-hydrolysis and anaerobic degradation of wastewaters with high fat contents | |
Wu et al. | Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes | |
US4510243A (en) | Anaerobic digestion process of wastes containing cellulose | |
US5389258A (en) | Method for the anaerobic decomposition of organic waste | |
JP3752603B2 (en) | Biofilm treatment method for wastewater | |
WO2004028981A1 (en) | Treatment of waste activated sludge | |
US20070056902A1 (en) | Process for treating septage to extract a bio-fuel | |
JP3145957B2 (en) | Waste treatment method | |
CN112573781A (en) | Synergistic treatment system and treatment method for performing nitrogen and phosphorus removal on low C/N sewage by using kitchen waste hydrolysis acidification liquid | |
Shabbir et al. | Revitalization of wastewater from the edible oil industry | |
KR20140073802A (en) | Fermentation treating apparatus and fermentation treating method for food waste | |
JP2005144361A (en) | Organic waste treating method | |
Rao et al. | Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR) | |
CN215208983U (en) | Synergistic treatment system for performing nitrogen and phosphorus removal on low C/N sewage by utilizing kitchen waste hydrolysis acidification liquid | |
JPH10272491A (en) | Treatment of decanter thick juice waste water of starch factory using potatoes and the like as raw materials and system therefor | |
IES20010342A2 (en) | Sludge and slurry destruction plant and process | |
US20040055953A1 (en) | Production process and composition of an enzymatic preparation, and its use for the treatment of domestic and industrial effluents of high fat, protein and/or carbohydrate content | |
JP2000325993A (en) | Garbage treatment method and equipment | |
KR100369237B1 (en) | Method for treating a food waste and livestock wastes at the same time | |
JP2008221179A (en) | Drainage treatment method | |
KR20100129108A (en) | Decomposition and Disposal of Raw Garbage by Combined Fermentation | |
JP3303906B2 (en) | Biological treatment of garbage and organic wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050614 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |