[go: up one dir, main page]

JP3751147B2 - Purification agent and water purification apparatus using the same - Google Patents

Purification agent and water purification apparatus using the same Download PDF

Info

Publication number
JP3751147B2
JP3751147B2 JP05951398A JP5951398A JP3751147B2 JP 3751147 B2 JP3751147 B2 JP 3751147B2 JP 05951398 A JP05951398 A JP 05951398A JP 5951398 A JP5951398 A JP 5951398A JP 3751147 B2 JP3751147 B2 JP 3751147B2
Authority
JP
Japan
Prior art keywords
water
photocatalyst
adsorbent
filtration filter
purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05951398A
Other languages
Japanese (ja)
Other versions
JPH11253931A (en
Inventor
義之 北村
安昭 坂根
英雄 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP05951398A priority Critical patent/JP3751147B2/en
Publication of JPH11253931A publication Critical patent/JPH11253931A/en
Application granted granted Critical
Publication of JP3751147B2 publication Critical patent/JP3751147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は飲料水、飼育魚用水槽水、風呂水、洗濯水などの浄水処理に用いられる浄化剤及び浄水装置に係り、水中の溶存物質の除去と水質維持を目的とした浄化剤及び浄水装置に関するものである。
【0002】
【従来の技術】
水にはゴミや砂などの汚れ、カルキやカビなどによる臭いや味がついていることがあり、生活用水に用いるには浄化を必要とする。また、鑑賞や養殖用の魚の水槽では飼育魚や水草へ与える飼料、飼育魚からの排泄物が原因となって、水の濁化や藻類の発生、水中のアンモニアの高濃度化が生じやすい。故に、飼育魚への悪影響を防ぐためには水槽水の浄化が必要となる。
【0003】
従来、浄水手段として濾過や、水中有害物質の吸着除去、オゾン処理、生物処理、光触媒による酸化分解処理、また水槽水についていえば定期的な水の交換といった各方法が用いられている。水槽水の交換は直接的な水の浄化ではあるが、煩わしい交換作業を1回/2週といった頻度で行う必要がある。濾過フィルターは目詰まりの度に交換する必要があり、また水中に溶存する物質の除去については対応できない。
【0004】
吸着除去は活性炭などを用いた物理吸着作業を利用したものと、イオン交換樹脂やゼオライトを用いた化学的吸着作用を利用したものがあるが、いずれの場合も吸着量に限界があり、吸着量が飽和すれば交換する必要がある。特に、活性炭は有機物やカルキの吸着除去能力は高いが、アンモニアなど無機物の吸着性能が低いという問題点があり、またゼオライトは製造方法や表面積、結晶相によって吸着能力が変化するという問題点がある。さらに、水中に溶存する物質の除去は可能だが、水の透明度維持や水槽内での藻類発生の抑制に対する直接的な手段とはなり得ない。
【0005】
オゾン処理は下水処理に利用されるもので、浄水・殺菌能力を有した方法ではあるが、残留オゾンの処理が必要であり、また装置が大型になるという問題を有している。生物処理は硝化能力を有する微生物を用いるものでアンモニアの硝化能力は高いが、微生物の培養や立ち上がりには数十日が必要という問題点がある。また、水の透明度維持や水槽内での藻類発生の抑制に対する手段とはなり得ない。
【0006】
光触媒による酸化分解処理としては、例えば特開平8-228636号公報ではゼオライトなどのSi及びO含有無機物質から成る吸着剤に光触媒を担持することで浄化剤を得ている。この浄化剤によると、水中のアンモニアを分解除去することができる。
【0007】
また、特願平8-339267号に開示されている浄水装置では、光触媒又はシリカを主成分とする吸着剤に光触媒を担持した浄化剤と、濾過フィルターが併用された浄水装置が開示されている。この浄水装置はアンモニア分解だけでなく、粒径の大きなゴミの捕集や有機物の分解も可能であり、水の透明度維持や水槽内での藻類発生の抑制に対する手段となり得るものである。
【0008】
【発明が解決しようとする課題】
しかしながら、上記特開平8-228636号公報、及び特願平8-339267号では水質維持、或いはカルキの分解について言及されていない。また、水中のアンモニアは硝化作用を有する微生物によって亜硝酸、硝酸に分解されるが、この化学物質の濃度が高くなると水のpHは酸性側へ移行して飼育魚の生存に影響する。この酸性化に対応する手段についても考慮されていない。
【0009】
また、特願平8-339267号の浄水装置では、供給された水が濾過フィルター上面に落ちる構成となっており、濾過フィルター上面の前記光触媒又は浄化剤の粒子は給水の勢いで散乱しないように固着されている。従って、この浄水装置を作成するには濾過フィルター上面に粒子を固着するための工程が必要になる。
【0010】
上記課題をかんがみて、本発明はより強力なアンモニアの分解に加えて、カルキの分解及び水質維持がなされる浄化剤を提供することを目的とする。また、その他の目的は水のpH調整を行うことが可能な浄水装置であり、簡単な構成の浄水装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本願の浄水装置で用いる浄化剤はSiO2とAl23を主成分とする吸着剤と、該吸着剤に担持された光触媒とから成るものである。この浄化剤では吸着剤にアンモニアが吸着し、光触媒作用によってそのアンモニアが分解される。また、光触媒では水中のカルキや有機物も分解する。
【0012】
また、上記構成の浄化剤において、吸着剤は固体酸であり、化学構成がHnAlnSi96-n192で表されることを特徴とする。吸着剤としては活性炭、アルミナボール、人工ゼオライト、天然鉱物など各種の多孔質体があるが、それぞれに吸着特性があり、吸着除去したい水中物質に合わせて吸着剤を選択する必要がある。本発明に用いる吸着剤としてはアンモニアの吸着能力に優れたものを選択する必要があり、アンモニアは水中でアルカリ性を示すことを考慮すると、使用する吸着剤としては構成成分に水素イオンを含む固体酸が好ましい。
【0013】
また、上記構成の浄化剤において、SiO2とAl23 とから成る吸着剤のモル比(SiO2/Al23)10以上とするとよい。この吸着剤は固体酸強度が高く、アンモニアを吸着しやすい。
【0014】
また、上記構成の浄化剤において、光触媒二酸化チタン、又は表面に貴金属を蒸着した二酸化チタンとするとよい。光触媒についてはエネルギーギャップや酸化還元電位の異なる様々な金属酸化物が存在しているが、光活性や酸化力などを考慮すると二酸化チタンが好ましい。また、表面に貴金属を蒸着した二酸化チタンでは分解能力がさらに向上して好ましい。
【0015】
本願の浄水装置は、水を供給する給水口と、上面に光触媒又は浄化剤が備えられた濾過フィルターと、前記濾過フィルターの上面に紫外線を照射する紫外線照射手段と、前記給水口から供給された水の勢いを緩衝させて、前記濾過フィルターに緩やかに水を流入させる水流緩衝部と、前記濾過フィルターを透過した水を貯蓄する貯水部とを備え、前記光触媒又は前記浄化剤は前記濾過フィルターに固着されておらず、前記浄化剤は吸着剤と該吸着剤に担持された光触媒とから成り、前記吸着剤はSiO2とAl23を主成分とする固体酸であり、前記吸着剤の化学構成はHnAlnSi96-n192で表され、前記光触媒は二酸化チタン又は表面に貴金属を蒸着した二酸化チタンであることを特徴とする。
また、上記構成の浄水装置において、前記貯水部内の水位を一定に保つ排水パイプが前記貯水部の底面に直立して備えられており、前記濾過フィルター全体が前記貯水部内の水に浸される構成とするとよい。
また、上記構成の浄水装置において、底面に穴が形成された保持トレイを備え、該保持トレイは前記濾過フィルターを保持する構成とするとよい。
また、上記構成の浄水装置において、前記保持トレイの上端部が前記貯水部内の水位よりも高く位置する構成とするとよい。
【0016】
この浄水装置では、水流緩衝部によって勢いの弱まった水が濾過フィルターに送られ、濾過フィルターを透過して粒径の大きいゴミが取り除かれる。このとき、フィルター上面の浄化剤又は光触媒と接触して、吸着剤には水中に溶存する無機物や有機物が吸着される。また、光触媒では紫外線が照射されることで酸化分解が行われ、水中に溶存する又は吸着剤に吸着した無機物や有機物が除去される。濾過フィルターで捕集された有機物も光触媒によって分解される。
【0017】
また、上記構成の浄水装置において、水のpHを中性域に保つpH調整剤を貯水部内の水中に浸漬したことを特徴とする。浄水装置では、アンモニアが亜硝酸、硝酸へ分解されていくに従って被処理水のpHが酸性側に移行する。故に、貯水部の水中にpH調整剤を浸漬することでpHを中性域に調整する。
【0018】
また上記構成の浄水装置において、pH調整剤はサンゴ石又はアルカリ金属化合物又はアルカリ土類金属化合物であることを特徴とする。このpH調整剤より溶出するミネラルによってpHを中性域に保持する。
【0019】
【発明の実施の形態】
以下、本発明の実施形態について説明する。本発明に係る浄化剤は吸着剤に光触媒を担持したものである。吸着剤にはSiO2とAl23より得られた固体酸で、化学的構成がHnAlnSi96-n192で表されるように水素イオンを含むものを用いる。これによって、水中でアルカリ性を示すアンモニアを吸着するには好適なものとなる。また、SiO2とAl23のモル比(SiO2/Al23)を10/1以上として得られるものであれば、固体酸強度が高くなってアンモニアの吸着により好ましい。
【0020】
光触媒には二酸化チタン、又は表面に貴金属を蒸着させた二酸化チタンを用いる。二酸化チタンは光活性や酸化力などにおいて他の光触媒よりも酸化分解能力が高い。また、二酸化チタンの表面に貴金属を蒸着させると分解能力がさらに向上する。
【0021】
吸着剤に光触媒を担持するには、例えばゾルゲル法によって行うとよい。まず、チタニアゾル中に顆粒状に成型した吸着剤を浸漬して引き上げ、乾燥、熱風乾燥を行って表面のチタニアゾルをゲル化する。その後、150℃以上の温度で焼成すると、本発明の浄化剤が得られる。尚、吸着剤に光触媒を担持する方法はこれに限られるものではない。
【0022】
本発明に係る浄水装置については後述する第2実施例においてその詳細な構成を説明する。
【0023】
[第1実施例]
第1実施例では、本発明に係る浄化剤を用いて実際に水を浄化したときのアンモニア分解能力を調べる。ここでは、吸着剤にSiO2とAl23のモル比(SiO2/Al23)が92/1の日産ガードラー(株)製ハイシリカゼオライトを用い、光触媒にチタンキレート剤(松本製薬(株)製TC-200)を用いる。ハイシリカゼオライトをTC-200内に浸漬して5分間よく撹拌し、引き上げる。常温乾燥を5分、熱風乾燥を100℃で1時間行った後、500℃、2時間の条件で焼成して浄化剤を得る。
【0024】
図1はこの実験に用いられる浄水装置の側断面概略図である。貯水容器4内には浄化剤保持トレイ3が設けられている。この保持トレイ3は底面がメッシュ状になっており、各側面には径6mmの穴31が12個ずつ形成されている。また、保持トレイ3内には上記浄化剤2が入っており、被処理水10に浸漬されている。
【0025】
被処理水10は撹拌部材5によって撹拌されており、保持トレイ3の穴31及びメッシュ部を介して効率よく浄化剤2と接触するようになっている。また、被処理水10の水面より上方には紫外線ランプ1((株)NEC製の殺菌灯GL-4(4W)1本)が設けられており、保持トレイ3内の浄化剤2を照射するようになっている。
【0026】
被処理水10は蒸留水3Lに25%アンモニア水を添加してアンモニア濃度を20ppmに調整してあり、水温を25℃とする。また、浄化剤2は5g用いられており、被処理水10をよく撹拌しながらそのアンモニア濃度を測定した。
【0027】
図2はこの浄水装置において時間経過に伴うアンモニア濃度の測定結果である。尚、比較実験として吸着剤(ハイシリカゼオライト)のみ5gを用いた場合の測定値も併せて記録している。実験開始時は紫外線は未照射である。アンモニアが浄化剤(又は、ハイシリカゼオライト)に吸着されてアンモニア濃度が一定になると(実験開始から4時間)、紫外線の照射を開始して実験開始より28時間アンモニア濃度を測定した。この図によると、光触媒によって吸着剤に吸着されたアンモニアが分解されており、吸着剤の吸着量が飽和することなく、水中のアンモニア分解除去が進んでいることが認められる。
【0028】
[第2実施例]
第2実施例では、本発明に係る浄水装置を用いて実際に水を浄化したときの濁度、COD、pHについて調べる。図3はこの実験に用いられる浄水装置の側断面概略図である。浄水装置本体8内には底面に穴61が形成されたフィルター保持トレイ6が設けられている。この保持トレイ6には底面と平行に濾過フィルター11が設けられており、該濾過フィルター11の上面には粒状の光触媒2(石原産業(株)製ST-B11)が散在されている。
【0029】
9は水流緩衝部であり、緩衝材9aが入っている。ポンプによって汲み上げられた被処理水は給水口13より水流緩衝部9へ送られ、保持トレイ6へ緩やかに流入する。故に、濾過フィルター11上の光触媒2は濾過フィルター11より脱落することがないので、光触媒2を濾過フィルター11上面に固着させなくてもよい。
【0030】
排水パイプ7は貯水容器4の底面に直立して設けられており、これによって浄水装置本体8内の被処理水10の水位は一定となる。保持トレイ6の濾過フィルター11は全体が被処理水10に浸り、かつ保持トレイ6の側面上端部は被処理水10の水位よりも高く位置するように構成されている。このように、濾過フィルター11を被処理水10に常に浸漬し、また濾過フィルター11上面では水流が生じていることから、水は光触媒2と効率よく接触する。
【0031】
被処理水10の水面より上方には紫外線ランプ1((株)NEC製の殺菌灯GL-10(10W)1本)が設けられており、保持トレイ6内の光触媒2を照射するようになっている。また、浄水装置本体8内の排水パイプ7付近にはpH調整剤であるサンゴ石12が浸漬されており、被処理水10はこのサンゴ石12と接触して排水口から排水される。
【0032】
このpH調整剤はサンゴ石の他に次のようなものも用いることができる。即ち、迅速にpHを調整するには水酸化カリウムなどのアルカリ金属化合物が好適である。また、ゆっくり水に溶けて程よくpHを調整するには、炭酸マグネシウム、乳酸マグネシウムなどのアルカリ土類金属化合物が好適である。
【0033】
上記浄水装置を使用して熱帯魚水槽の浄水実験を行った。水槽には熱帯魚を30匹、エビを10匹、水草を6種入れ、水温は25〜30℃に調整する。また、1日に10時間だけ10Wの蛍光灯2本を使用して光照射を行い、飼料は2回/日の頻度で投入した。そして、実験開始から40日後に浄水装置本体8内にサンゴ石12を投入し、100日間水槽の水質を調べた。
【0034】
図4(イ),(ロ),(ハ)は、この浄水装置を用いた水槽において時間経過に伴う濁度、COD、pHの測定結果である。尚、比較実験としてバイオ式浄化水槽による測定値も併せて記録している。これによると、上記浄水装置によって水槽水の透明度など水質維持効果が認められる。また、pH調整剤によって水のpHが中性域に調整されることが認められる。
【0035】
[実施例3]
第3実施例では、第1実施例で用いた浄水装置を用いて光触媒により実際に水を浄化したときのカルキ分解能力を調べる。ここでは、光触媒に石原産業(株)製ST-B11を用いる。また、被処理水は蒸留水3Lに0.3%塩素水を添加して塩素濃度を2ppmに調整してあり、水温を25℃とする。紫外線ランプ((株)NEC製ブラックライトFL-4BL(4W)1本)で光触媒を照射し、被処理水をよく撹拌しながら被処理水中の残留塩素濃度を6時間測定した。
【0036】
図5はこの浄水装置において、時間経過に伴う残留塩素濃度の測定結果である。尚、比較実験として紫外線を照射するだけの場合、光触媒だけを浸漬して光照射を行わない場合、被処理水を撹拌するだけの場合(ブランク)についての測定値も併せて記録している。この図によると、光触媒によって塩素が分解されていることが確認できる。
【0037】
【発明の効果】
以上説明したように、 i 2 とA l 2 3 を主成分とする吸着剤と該吸着剤に担持された光触媒とから成る浄化剤は吸着剤でアンモニアを吸着し、光触媒がそのアンモニアを酸化分解するので吸着剤の吸着量は飽和しない。故に、本発明の浄化剤は吸着剤の吸着量が飽和してそれ以上の浄水作用は得られなくなるといった問題がない。さらに、カルキや有機物については光触媒で酸化分解されるので、脱カルキや水質維持にも効果がある。
【0038】
また、吸着剤として固体酸を用いたことにより、各種吸着剤の中でも抜群のアンモニア吸着性能が得られ、アンモニアの吸着効率を向上させることができる。
【0039】
また、吸着剤において、SiO2とAl23のモル比(SiO2/Al23)を10以上とすることで吸着剤の固体酸強度を高め、アンモニアに対する吸着能力をさらに向上させることができる。
【0040】
また、光触媒として二酸化チタン、又は表面に貴金属を蒸着した二酸化チタンを担持したことから、酸化分解能力がさらに向上する。
【0041】
また本願の浄水装置は水流緩衝部を設けたことで濾過フィルターには緩やかに被処理水が流れる。故に、浄化剤又は光触媒を濾過フィルターに固着する必要がなく、簡単な構成ですむ。また、浄化剤又は光触媒と被処理水が効率よく接触して水中の溶存物質の吸着、酸化分解が行われやすい。さらに、光触媒が吸着剤に吸着した無機物や有機物、及び濾過フィルターで捕集された有機物を分解することから、吸着剤の吸着量飽和や有機物による濾過フィルターの目詰まりが発生せず、メンテナンスフリーとなる。
【0042】
また、本願の浄水装置では特別な処理を行わずにpH調整剤を浸漬しておくだけで、浄水処理中に起こる水のpHの酸性側への移行が防がれ、水は常に中性を保つことができる。
【0043】
また、本願の浄水装置ではpH調整剤としてミネラルを溶出する自然な物質を利用しているので、人体や動物に害がなく安全である。
【図面の簡単な説明】
【図1】第1実施例における浄化装置の側断面概略図。
【図2】第1実施例において、水中アンモニア濃度の経時変化を示すグラフ。
【図3】本発明に係る浄化装置の一実施形態であり、第2実施例で用いられる浄化装置の側断面概略図。
【図4】第2実施例において、(イ)濁度、(ロ)COD、(ハ)pHの経時変化を示すグラフ。
【図5】第3実施例において、残留塩素濃度の経時変化を示すグラフ。
【符号の説明】
1 紫外線ランプ
2 浄化剤又は光触媒
3 浄化剤保持トレイ
4 貯水容器
5 撹拌部
6 フィルター保持トレイ
7 排水パイプ
8 浄水装置本体
9 水流緩衝部
9a 緩衝材
10 被処理水
11 濾過フィルター
12 pH調整剤
13 給水口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purifier and a water purifier used for water purification treatment of drinking water, aquarium water for breeding fish, bath water, washing water, etc., and a purifier and a water purifier for the purpose of removing dissolved substances in water and maintaining water quality It is about.
[0002]
[Prior art]
Water may have dirt, sand, and other odors and tastes due to chlor and fungi, and needs to be purified before it can be used for domestic water. In addition, fish tanks for appreciation and aquaculture tend to cause turbidity of water, generation of algae, and high concentration of ammonia in water due to feeds given to domestic fish and aquatic plants and excretion from domestic fish. Therefore, it is necessary to purify the aquarium water in order to prevent adverse effects on the domestic fish.
[0003]
Conventionally, various methods such as filtration, adsorption / removal of harmful substances in water, ozone treatment, biological treatment, oxidative decomposition treatment using a photocatalyst, and regular water exchange have been used as water purification means. Replacing the aquarium water is a direct purification of water, but it is necessary to perform troublesome replacement work at a frequency of once every two weeks. The filtration filter must be replaced every time it is clogged, and it cannot cope with the removal of substances dissolved in water.
[0004]
There are two types of adsorption removal, one using physical adsorption using activated carbon and the other using chemical adsorption using ion-exchange resin or zeolite. If saturates, it must be replaced. In particular, activated carbon has a high ability to adsorb and remove organic matter and alkyds, but has a problem that the ability to adsorb inorganic substances such as ammonia is low, and zeolite has a problem that the adsorption ability varies depending on the production method, surface area, and crystal phase. . Furthermore, although it is possible to remove substances dissolved in water, it cannot be a direct means for maintaining the transparency of water and suppressing the generation of algae in the aquarium.
[0005]
Although the ozone treatment is used for sewage treatment and is a method having water purification and sterilization ability, it requires treatment of residual ozone and has a problem that the apparatus becomes large. Biological treatment uses microorganisms having nitrification ability and has high nitrification ability of ammonia, but there is a problem that several tens of days are required for culturing and starting up microorganisms. Moreover, it cannot be a means for maintaining the transparency of water or suppressing the generation of algae in the water tank.
[0006]
As the oxidative decomposition treatment using a photocatalyst, for example, in JP-A-8-228636, a purification agent is obtained by carrying a photocatalyst on an adsorbent composed of Si and O-containing inorganic substances such as zeolite. According to this cleaning agent, ammonia in water can be decomposed and removed.
[0007]
In addition, in the water purifier disclosed in Japanese Patent Application No. 8-339267, a water purifier is disclosed in which a purifying agent carrying a photocatalyst on an adsorbent mainly composed of a photocatalyst or silica and a filtration filter are used in combination. . This water purifier is not only capable of decomposing ammonia, but also capable of collecting large-size dust and decomposing organic matter, and can be a means for maintaining the transparency of water and suppressing the generation of algae in the water tank.
[0008]
[Problems to be solved by the invention]
However, the above Japanese Patent Application Laid-Open No. 8-228636 and Japanese Patent Application No. 8-339267 do not mention maintenance of water quality or decomposition of chalk. In addition, ammonia in water is decomposed into nitrous acid and nitric acid by microorganisms having a nitrifying action, but when the concentration of this chemical increases, the pH of water shifts to the acidic side and affects the survival of domestic fish. There is no consideration of means for this acidification.
[0009]
Moreover, in the water purifier of Japanese Patent Application No. 8-339267, the supplied water falls on the upper surface of the filtration filter so that the particles of the photocatalyst or the purifier on the upper surface of the filtration filter are not scattered by the momentum of the water supply. It is fixed. Therefore, a process for fixing the particles on the upper surface of the filtration filter is required to produce this water purifier.
[0010]
In view of the above problems, it is an object of the present invention to provide a purifying agent capable of decomposing chlorine and maintaining water quality in addition to more powerful decomposition of ammonia. Another object of the present invention is to provide a water purifier capable of adjusting the pH of water and having a simple configuration.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the purifier used in the water purifier of the present application is composed of an adsorbent mainly composed of SiO 2 and Al 2 O 3 and a photocatalyst supported on the adsorbent. In this cleaning agent, ammonia is adsorbed on the adsorbent, and the ammonia is decomposed by photocatalysis. In addition, the photocatalyst also breaks down water and organic matter.
[0012]
In the purification agent having the above-described configuration , the adsorbent is a solid acid, and the chemical configuration is represented by H n Al n Si 96-n O 192 . There are various porous materials such as activated carbon, alumina balls, artificial zeolite, and natural minerals as adsorbents. Each has adsorbing characteristics, and it is necessary to select an adsorbent according to the substance in water to be adsorbed and removed. As the adsorbent used in the present invention, it is necessary to select an adsorbent excellent in ammonia adsorption ability. Considering that ammonia exhibits alkalinity in water, the adsorbent used is a solid acid containing hydrogen ions as a component. Is preferred.
[0013]
Further, in the purifying agent of the above-described structure, the molar ratio of the absorbent comprising SiO 2 and Al 2 O 3 Metropolitan the (SiO 2 / Al 2 O 3 ) may be 10 or more. This adsorbent has a high solid acid strength and easily adsorbs ammonia.
[0014]
Further, in the purifying agent of the above-described structure, the photocatalytic titanium dioxide, or when the titanium dioxide was deposited a noble metal on the surface. As for the photocatalyst, there are various metal oxides having different energy gaps and oxidation-reduction potentials, but titanium dioxide is preferable in consideration of photoactivity and oxidizing power. Titanium dioxide having a noble metal deposited on the surface is preferable because the decomposition ability is further improved.
[0015]
The water purifier of the present application is supplied from a water supply port for supplying water, a filtration filter provided with a photocatalyst or a purification agent on its upper surface, an ultraviolet irradiation means for irradiating ultraviolet light on the upper surface of the filtration filter, and the water supply port. A water flow buffer unit for buffering the momentum of water and allowing water to gently flow into the filter, and a water storage unit for storing water that has passed through the filter, the photocatalyst or the purifying agent being added to the filter. The adsorbent is composed of an adsorbent and a photocatalyst supported on the adsorbent, and the adsorbent is a solid acid mainly composed of SiO 2 and Al 2 O 3 . The chemical composition is represented by H n Al n Si 96-n O 192 , and the photocatalyst is titanium dioxide or titanium dioxide having a noble metal deposited on the surface.
Further, in the water purifier having the above-described configuration, a drain pipe that maintains a constant water level in the water reservoir is provided upright on the bottom surface of the water reservoir, and the entire filtration filter is immersed in the water in the water reservoir. It is good to do.
Moreover, the water purifier of the said structure WHEREIN: It is good to provide the holding tray with which the hole was formed in the bottom face, and this holding tray hold | maintains the said filtration filter.
Moreover, the water purifier of the said structure WHEREIN: It is good to set it as the structure which the upper end part of the said holding tray is located higher than the water level in the said water storage part.
[0016]
In this water purifier, the water whose momentum has been weakened by the water buffer is sent to the filter, and the dust having a large particle diameter is removed through the filter. At this time, in contact with the purifier or photocatalyst on the upper surface of the filter, the adsorbent adsorbs inorganic substances and organic substances dissolved in water. In addition, the photocatalyst is oxidatively decomposed by irradiation with ultraviolet rays, and inorganic substances and organic substances dissolved in water or adsorbed on the adsorbent are removed. The organic matter collected by the filter is also decomposed by the photocatalyst.
[0017]
In the water purification apparatus having the above-described configuration, a pH adjuster that maintains the pH of water in a neutral region is immersed in water in the water storage section. In the water purifier, the pH of the water to be treated shifts to the acidic side as ammonia is decomposed into nitrous acid and nitric acid. Therefore, the pH is adjusted to the neutral range by immersing the pH adjusting agent in the water of the water storage section.
[0018]
In the water purifier having the above-described configuration , the pH adjuster is coral stone, an alkali metal compound, or an alkaline earth metal compound. The pH is maintained in a neutral range by the mineral eluted from the pH adjuster.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described. The purifying agent according to the present invention is one in which a photocatalyst is supported on an adsorbent. As the adsorbent, a solid acid obtained from SiO 2 and Al 2 O 3 and containing a hydrogen ion such that its chemical composition is represented by H n Al n Si 96-n O 192 is used. This makes it suitable for adsorbing ammonia showing alkalinity in water. In addition, if the molar ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) is 10/1 or more, the solid acid strength is increased and it is preferable for adsorption of ammonia.
[0020]
As the photocatalyst, titanium dioxide or titanium dioxide having a surface deposited with a noble metal is used. Titanium dioxide has higher oxidative decomposition ability than other photocatalysts in terms of photoactivity and oxidizing power. Further, when noble metal is deposited on the surface of titanium dioxide, the decomposition ability is further improved.
[0021]
In order to support the photocatalyst on the adsorbent, for example, a sol-gel method may be used. First, an adsorbent molded in a granular form in a titania sol is dipped and pulled up, dried and dried with hot air to gel the surface titania sol. Then, if it bakes at the temperature of 150 degreeC or more, the purification agent of this invention will be obtained. The method for supporting the photocatalyst on the adsorbent is not limited to this.
[0022]
About the water purifier which concerns on this invention, the detailed structure is demonstrated in 2nd Example mentioned later.
[0023]
[First embodiment]
In the first embodiment, the ammonia decomposing ability when water is actually purified using the purifying agent according to the present invention is examined. Here, high-silica zeolite manufactured by Nissan Gardler Co., Ltd. having a molar ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) of 92/1 is used as the adsorbent, and a titanium chelating agent (Matsumoto Pharmaceutical) is used as the photocatalyst. TC-200 manufactured by KK) is used. High silica zeolite is immersed in TC-200, stirred well for 5 minutes, and then pulled up. After drying at room temperature for 5 minutes and hot-air drying at 100 ° C. for 1 hour, baking is performed at 500 ° C. for 2 hours to obtain a cleaning agent.
[0024]
FIG. 1 is a schematic side sectional view of a water purifier used in this experiment. A purifier holding tray 3 is provided in the water storage container 4. The holding tray 3 has a mesh bottom, and 12 holes 31 each having a diameter of 6 mm are formed on each side. Further, the purifying agent 2 is contained in the holding tray 3 and is immersed in the water to be treated 10.
[0025]
The water to be treated 10 is agitated by the agitating member 5 and efficiently comes into contact with the purifier 2 through the holes 31 and the mesh portion of the holding tray 3. Further, an ultraviolet lamp 1 (one sterilizing lamp GL-4 (4W) manufactured by NEC Corporation) is provided above the surface of the water to be treated 10 to irradiate the cleaning agent 2 in the holding tray 3. It is like that.
[0026]
To-be-treated water 10 has 25% ammonia water added to 3 L of distilled water to adjust the ammonia concentration to 20 ppm, and the water temperature is 25 ° C. Further, 5 g of the purifying agent 2 was used, and the ammonia concentration was measured while thoroughly stirring the water to be treated 10.
[0027]
FIG. 2 shows the measurement results of ammonia concentration over time in this water purifier. In addition, as a comparative experiment, a measured value when only 5 g of the adsorbent (high silica zeolite) is used is also recorded. At the start of the experiment, no ultraviolet rays were irradiated. When ammonia was adsorbed on the purifying agent (or high silica zeolite) and the ammonia concentration became constant (4 hours from the start of the experiment), ultraviolet irradiation was started and the ammonia concentration was measured for 28 hours from the start of the experiment. According to this figure, it can be seen that ammonia adsorbed on the adsorbent by the photocatalyst has been decomposed, and that the amount of adsorbent adsorbed is not saturated, and ammonia decomposition and removal in water has progressed.
[0028]
[Second Embodiment]
In the second embodiment, turbidity, COD, and pH when water is actually purified using the water purifier according to the present invention are examined. FIG. 3 is a schematic side sectional view of the water purifier used in this experiment. A filter holding tray 6 having a hole 61 formed in the bottom surface is provided in the water purifier main body 8. The holding tray 6 is provided with a filtration filter 11 parallel to the bottom surface, and granular photocatalysts 2 (ST-B11 manufactured by Ishihara Sangyo Co., Ltd.) are scattered on the upper surface of the filtration filter 11.
[0029]
Reference numeral 9 denotes a water buffer, which contains a buffer material 9a. The water to be treated pumped up by the pump is sent from the water supply port 13 to the water buffer 9 and gradually flows into the holding tray 6. Therefore, since the photocatalyst 2 on the filtration filter 11 does not fall off from the filtration filter 11, it is not necessary to fix the photocatalyst 2 to the upper surface of the filtration filter 11.
[0030]
The drain pipe 7 is provided upright on the bottom surface of the water storage container 4, whereby the water level of the treated water 10 in the water purifier main body 8 becomes constant. The filtration filter 11 of the holding tray 6 is entirely immersed in the water to be treated 10, and the upper end of the side surface of the holding tray 6 is configured to be higher than the water level of the water to be treated 10. Thus, since the filtration filter 11 is always immersed in the water to be treated 10 and a water flow is generated on the upper surface of the filtration filter 11, the water efficiently contacts the photocatalyst 2.
[0031]
An ultraviolet lamp 1 (one sterilization lamp GL-10 (10 W) manufactured by NEC Corporation) is provided above the surface of the water to be treated 10 and irradiates the photocatalyst 2 in the holding tray 6. ing. Further, coral stone 12 as a pH adjusting agent is immersed in the vicinity of the drain pipe 7 in the water purifier main body 8, and the water to be treated 10 comes into contact with the coral stone 12 and is drained from the drain outlet.
[0032]
As the pH adjuster, the following can be used in addition to coral stone. That is, an alkali metal compound such as potassium hydroxide is suitable for quickly adjusting the pH. Also, alkaline earth metal compounds such as magnesium carbonate and magnesium lactate are suitable for slowly dissolving in water and adjusting the pH appropriately.
[0033]
The water purification experiment of the tropical fish tank was performed using the said water purifier. Put 30 tropical fish, 10 shrimp, 6 kinds of aquatic plants in the tank, and adjust the water temperature to 25-30 ° C. Further, light irradiation was performed using two fluorescent lamps of 10 W for 10 hours a day, and feed was introduced twice a day. And 40 days after the start of the experiment, the coral stone 12 was put into the water purifier main body 8, and the water quality of the water tank was examined for 100 days.
[0034]
4 (a), (b), and (c) show the measurement results of turbidity, COD, and pH over time in a water tank using this water purifier. In addition, the measured value by a bio-type purified water tank is also recorded as a comparative experiment. According to this, water quality maintenance effects, such as transparency of aquarium water, are recognized by the above-mentioned water purifier. It can also be seen that the pH adjuster adjusts the pH of the water to a neutral range.
[0035]
[Example 3]
In the third embodiment, the ability of decomposing chlorine when water is actually purified by a photocatalyst using the water purifier used in the first embodiment is examined. Here, ST-B11 manufactured by Ishihara Sangyo Co., Ltd. is used as the photocatalyst. In addition, the water to be treated is adjusted to a chlorine concentration of 2 ppm by adding 0.3% chlorine water to 3 L of distilled water, and the water temperature is 25 ° C. The photocatalyst was irradiated with an ultraviolet lamp (one black light FL-4BL (4W) manufactured by NEC) and the residual chlorine concentration in the treated water was measured for 6 hours while thoroughly stirring the treated water.
[0036]
FIG. 5 shows measurement results of residual chlorine concentration with time in this water purifier. In addition, as a comparative experiment, when only ultraviolet rays are irradiated, when the photocatalyst alone is immersed and no light irradiation is performed, measured values are also recorded for the case where the water to be treated is only stirred (blank). According to this figure, it can be confirmed that chlorine is decomposed by the photocatalyst.
[0037]
【The invention's effect】
As described above, S i O 2 and A l 2 O 3 adsorbent composed mainly of the adsorbent purifying agent composed of a supported photocatalyst adsorbs ammonia with an adsorbent, a photocatalyst is the Since the ammonia is oxidatively decomposed, the adsorbent adsorption amount is not saturated. Therefore, the purification agent of the present invention does not have a problem that the adsorption amount of the adsorbent is saturated and no further water purification action can be obtained. Furthermore, since chlorinated organic substances are oxidatively decomposed by a photocatalyst, they are also effective for decalcifying and maintaining water quality.
[0038]
Further, by using a solid acid as the adsorbent, outstanding ammonia adsorption performance among various adsorbents can be obtained, and the ammonia adsorption efficiency can be improved.
[0039]
Also, in the adsorbent, the solid acid strength of the adsorbent can be increased by further increasing the adsorption capacity for ammonia by increasing the molar ratio of SiO 2 to Al 2 O 3 (SiO 2 / Al 2 O 3 ) to 10 or more. Can do.
[0040]
Further, since titanium dioxide as a photocatalyst or titanium dioxide having a noble metal deposited on the surface thereof is supported, the oxidative decomposition ability is further improved.
[0041]
Moreover , the water purifier of this application provided the water buffer part, and to-be-processed water flows into a filtration filter gently. Therefore, it is not necessary to fix the purification agent or the photocatalyst to the filtration filter, and a simple configuration is required. Further, the purification agent or the photocatalyst and the water to be treated are efficiently brought into contact with each other, so that the dissolved substances in the water are easily adsorbed and oxidized and decomposed. Furthermore, since the photocatalyst decomposes inorganic and organic substances adsorbed on the adsorbent and organic substances collected by the filter, the adsorption amount of the adsorbent is not saturated and the filter is not clogged with organic substances, and maintenance-free. Become.
[0042]
Moreover, in the water purifier of the present application , only by immersing the pH adjusting agent without performing any special treatment, the pH shift of the water during the water purification treatment to the acidic side is prevented, and the water is always neutral. Can keep.
[0043]
Moreover, since the water purifier of this application uses the natural substance which elutes a mineral as a pH adjuster, it is safe and harmless to a human body or an animal.
[Brief description of the drawings]
FIG. 1 is a schematic side sectional view of a purification device according to a first embodiment.
FIG. 2 is a graph showing the change over time in the ammonia concentration in water in the first example.
FIG. 3 is a schematic side sectional view of the purification apparatus used in the second embodiment, which is an embodiment of the purification apparatus according to the present invention.
FIG. 4 is a graph showing changes over time in (a) turbidity, (b) COD, and (c) pH in the second example.
FIG. 5 is a graph showing the change over time in the residual chlorine concentration in the third example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ultraviolet lamp 2 Purifier or photocatalyst 3 Purifier holding tray 4 Water storage container 5 Stirring part 6 Filter holding tray 7 Drain pipe 8 Water purifier main body 9 Water buffer part 9a Buffer material 10 Water to be treated 11 Filtration filter 12 pH adjuster 13 Water supply mouth

Claims (6)

水を供給する給水口と、
上面に光触媒又は浄化剤が備えられた濾過フィルターと、
前記濾過フィルターの上面に紫外線を照射する紫外線照射手段と、
前記給水口から供給された水の勢いを緩衝させて、前記濾過フィルターに緩やかに水を流入させる水流緩衝部と、
前記濾過フィルターを透過した水を貯蓄する貯水部とを備え、
前記光触媒又は前記浄化剤は前記濾過フィルターに固着されておらず、
前記浄化剤は吸着剤と該吸着剤に担持された光触媒とから成り、
前記吸着剤はSiO2とAl23を主成分とする固体酸であり、前記吸着剤の化学構成はHnAlnSi96-n192で表され、
前記光触媒は二酸化チタン又は表面に貴金属を蒸着した二酸化チタンであることを特徴とする浄水装置。
A water supply port for supplying water;
A filtration filter with a photocatalyst or purifier on the top surface;
Ultraviolet irradiation means for irradiating the upper surface of the filtration filter with ultraviolet rays;
Buffer the momentum of the water supplied from the water supply port, and a water flow buffer unit for gently flowing water into the filtration filter;
A water storage part for storing water that has passed through the filtration filter;
The photocatalyst or the purification agent is not fixed to the filtration filter,
The purifier comprises an adsorbent and a photocatalyst carried on the adsorbent,
The adsorbent is a solid acid mainly composed of SiO 2 and Al 2 O 3 , and the chemical composition of the adsorbent is represented by H n Al n Si 96-n O 192 ,
The water purification apparatus according to claim 1, wherein the photocatalyst is titanium dioxide or titanium dioxide having a surface deposited with a noble metal.
前記貯水部内の水位を一定に保つ排水パイプが前記貯水部の底面に直立して備えられており、
前記濾過フィルター全体が前記貯水部内の水に浸されていることを特徴とする請求項1に記載の浄水装置。
A drainage pipe for keeping the water level in the water reservoir constant is provided upright on the bottom surface of the water reservoir,
The water purifier according to claim 1, wherein the entire filtration filter is immersed in water in the water storage section.
底面に穴が形成された保持トレイが備えられ、
該保持トレイは前記濾過フィルターを保持することを特徴とする請求項1又は2に記載の浄水装置。
A holding tray with holes on the bottom is provided,
The water purifier according to claim 1 or 2, wherein the holding tray holds the filtration filter.
前記保持トレイの上端部が前記貯水部内の水位よりも高く位置することを特徴とする請求項3に記載の浄水装置。  The water purifier according to claim 3, wherein an upper end portion of the holding tray is positioned higher than a water level in the water storage portion. 水のpHを中性域に保つpH調整剤を前記貯水部内の水中に浸漬したことを特徴とする請求項14のいずれか1項に記載の浄水装置。The water purifier according to any one of claims 1 to 4, wherein a pH adjuster that maintains the pH of water in a neutral region is immersed in water in the water storage section. 前記pH調整剤はサンゴ石又はアルカリ金属化合物又はアルカリ土類金属化合物であることを特徴とする請求項5に記載の浄水装置。  The water purifier according to claim 5, wherein the pH adjuster is coral stone, an alkali metal compound, or an alkaline earth metal compound.
JP05951398A 1998-03-11 1998-03-11 Purification agent and water purification apparatus using the same Expired - Fee Related JP3751147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05951398A JP3751147B2 (en) 1998-03-11 1998-03-11 Purification agent and water purification apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05951398A JP3751147B2 (en) 1998-03-11 1998-03-11 Purification agent and water purification apparatus using the same

Publications (2)

Publication Number Publication Date
JPH11253931A JPH11253931A (en) 1999-09-21
JP3751147B2 true JP3751147B2 (en) 2006-03-01

Family

ID=13115429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05951398A Expired - Fee Related JP3751147B2 (en) 1998-03-11 1998-03-11 Purification agent and water purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP3751147B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231395A (en) * 2000-02-21 2001-08-28 Nakajima Suisan Co Ltd System for improving collapsed death rate of fry using photocatalyst
FR2853813B1 (en) * 2003-04-15 2005-05-20 Amblard Overseas Trading METHOD AND INSTALLATION FOR RECONDITIONING LIVE AQUATIC ANIMALS, IN PARTICULAR FOR AQUARIUMS
US7662295B2 (en) 2004-11-05 2010-02-16 Hitachi, Ltd. Method for removing organic material in oilfield produced water and a removal device therefor
JP2007061776A (en) * 2005-09-01 2007-03-15 Tio Systems Co Ltd Water purifying apparatus
CN100371063C (en) * 2006-04-21 2008-02-27 太原理工大学 Labyrinth cross-flow bubbling photocatalytic reaction device and its organic wastewater treatment method

Also Published As

Publication number Publication date
JPH11253931A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
EP0634363B1 (en) Process for preparing a photocatalyst and process for purifying water
JPH11290848A (en) Method and apparatus for filtration
JP3751147B2 (en) Purification agent and water purification apparatus using the same
JP2008302308A (en) Photocatalyst and production method thereof, water treatment method and apparatus using the same
JP2008141986A (en) Apparatus for treating tank water for fish, and method for treating tank water for fish
KR200346263Y1 (en) The photocatalyst sterilization water purifier with direct connection form which uses a photocatalyst sterilization water purifying device
KR100446039B1 (en) Water purification port by titanium dioxide photocatalyst
JP2020025952A (en) Water purification treatment apparatus
JP2844071B2 (en) Water purification device
JP3230742U (en) Water purification equipment
JP2010017504A (en) Method for cleaning air with photocatalytic ceramic filter using purified water and air cleaning apparatus
JPH0515885A (en) Method and device for cleaning water tank by ozone
JPH10174968A (en) Water purifying apparatus
JP2000325970A (en) Photocatalytic water purifying apparatus
JPH07214053A (en) Water purifier
KR20030030583A (en) Water Purification System and Water Purification Method for Household Water
JP2002209471A (en) Filtration equipment with germicidal lamp
JP2005131559A (en) Re-purification treatment method of tap water and re-purification treatment equipment therefor
JP3552773B2 (en) How to purify closed water
KR200259748Y1 (en) Water Purifier for Household Water
JPH08228636A (en) Cleaning agent and cleaner for water tank for raising fishes and shellfishes
KR20100025195A (en) Water treatment apparatus using rb ceramic
JP3051920U (en) Water purification equipment for ornamental fish tanks or aquarium tanks with titanium dioxide coating.
JPH0778A (en) Cleaning device for feeding water
JPH08323129A (en) Gas treatment equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees