JP3750574B2 - 薄膜電磁石およびこれを用いたスイッチング素子 - Google Patents
薄膜電磁石およびこれを用いたスイッチング素子 Download PDFInfo
- Publication number
- JP3750574B2 JP3750574B2 JP2001247239A JP2001247239A JP3750574B2 JP 3750574 B2 JP3750574 B2 JP 3750574B2 JP 2001247239 A JP2001247239 A JP 2001247239A JP 2001247239 A JP2001247239 A JP 2001247239A JP 3750574 B2 JP3750574 B2 JP 3750574B2
- Authority
- JP
- Japan
- Prior art keywords
- movable
- movable part
- magnetic yoke
- thin film
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 181
- 230000005415 magnetization Effects 0.000 claims description 35
- 239000000696 magnetic material Substances 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 3
- 239000005300 metallic glass Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 71
- 238000000034 method Methods 0.000 description 33
- 229910045601 alloy Inorganic materials 0.000 description 32
- 239000000956 alloy Substances 0.000 description 32
- 239000010408 film Substances 0.000 description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 229920002120 photoresistant polymer Polymers 0.000 description 19
- 229910003271 Ni-Fe Inorganic materials 0.000 description 16
- 230000004907 flux Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000009713 electroplating Methods 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 239000011241 protective layer Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- 229910003962 NiZn Inorganic materials 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910017881 Cu—Ni—Fe Inorganic materials 0.000 description 1
- 229910017104 Fe—Al—Ni—Co Inorganic materials 0.000 description 1
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 1
- -1 Fe—Ta—N Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F2007/068—Electromagnets; Actuators including electromagnets using printed circuit coils
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- Electromagnets (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Description
【発明が属する技術分野】
本発明は薄膜電磁石及びこれを用いたスイッチング素子に関し、直流からギガヘルツ以上の幅広い周波数の信号をオン/オフするスイッチ、波長変換可能な半導体レーザや光学フィルタ、光スイッチ等のなどに適用するマイクロ エレクトロニクス メカニカル システム(MEMS)スイッチに関する。
【0002】
【従来の技術】
薄膜プロセスを用いたMEMSスイッチでは、従来、静電気力によって可動部を動作させることによりスイッチをオン/オフさせる方式のものが多く提案されている。例えば、USP5578976、USP6069540、USP6100477、USP5638946、USP5964242、USP6046659、USP6057520、USP6123985、USP5600383、USP5535047などが挙げられる。これらの中からUSP5578976、「Micro Electromechanical RF Switch」に記載の発明を例にして、従来技術を説明する。
【0003】
図17は、USP5578976に開示されたMEMSスイッチの平面図(a)、及び、O−O´での断面図(b)を示す。図17において、基体101上には、支柱103と、金からなる下部電極102と、金からなる信号線106とが設けられている。そして、支柱103の上にはシリコン酸化膜からなる片持ちアーム104が設けられ、この片持ちアーム104は、下部電極102を越えて信号線106の位置まで延在しており、これらと空間的な隙間を介して対向している。片持ちアーム104の上側には、アルミニウムからなる上部電極105が支柱103から下部電極102に対向する位置まで形成されている。また、片持ちアーム104の下側には、信号線106に対向する位置に金からなる接触電極107が形成されている。
【0004】
以上の構造のMEMSスイッチにおいて、上部電極105と下部電極102との間に電圧を印加すると、静電気力により上部電極105に基板方向(矢印108の下向き)に引力が働く。このため、片持ちアーム104が基板側に変形し、接触電極107が信号線106の両端と接触する。通常の状態では、接触電極107と信号線106との間には隙間が設けられているため、2本の信号線106は互いに切り離されている。このため、上部電極105と下部電極102との間に電圧が印加されない状態では、信号線106に電流は流れない。上部電極105と下部電極102との間に電圧が印加されて接触電極107が信号線106と接触した状態では、2本の信号線106は短絡し、両者の間を電流が流れることができる。したがって、上部電極105と下部電極102との間への電圧印加によって、信号線106を通る電流あるいは信号のオン/オフを制御することができる。
【0005】
ところで、前述の静電力を用いた従来の構成のMEMSスイッチには、以下に述べる問題点が明らかとなってきている。
【0006】
第一に、静電力を用いているために引力が小さいことである。図20に静電力および電磁力の寸法依存性を示す。MEMSスイッチに適用される数μmから数百μmの領域では、静電力は電磁力に比べて1桁から3桁小さい。
【0007】
図17の構造の応用として挙げられるリレースイッチなどでは、電気接点の接触抵抗を抑制し良好な電気的接続を得るために、10-2N程度の接圧が必要とされている。今、電極間の距離を100μm、接触面積を10000μm2とした場合、3×106V/cmもの高電圧を印加しても10-5N程度の力しか得られないことが図20より分かる。
【0008】
第二に、図17に示すスイッチをオンの状態に保つためには、電極102と電極105との間に、常に高電圧を印加し続けなければならないことである。このことは電力を常に消費していることを意味する。更に、狭い電極間に高電圧が印加され続けていることは、素子の劣化、サージ電流の発生による素子の破壊などの障害発生の原因となる。
【0009】
第三に、リレースイッチのように大きな接圧が要求されない場合でも、例えば、USP5018256、USP5083857、USP5099353、USP5216537等に開示されているデジタルマイクロミラーデバイス(DMD)の場合、対を成す電極が静電力で接触する際に吸着を起こし、これを静電力では引き離すことが出来ず、動作不良を起こすという問題が発生している。DMDについてはUSP5331454、USP5535047、USP5617242、USP5717513、USP5939785、USP5768007、USP5771116などの発明により、DMD固有の解決方法が実現してきている。しかしながら、DMDはMEMSデバイスの中でも最も小型な部類のデバイスであり、可動部の寸法は数μm程度であるので、静電力としては比較的大きな力が得られる領域に属している。しかし、DMDでの解決策が、100μm程度、あるいはそれ以上の寸法を有する一般的なMEMSスイッチに必ずしも当てはまるわけではない。
【0010】
第四に、USP6201629、USP6123985に開示されているMEMSミラーを用いた光スイッチの場合のように、アナログ的な動作を行う場合、制御可能な動作範囲が限られることである。平行に対向する2枚の電極の場合、電極間隔がその初期の値の2/3よりも小さくなると途端に、両電極は急速に接触しようとして制御不能に陥る。これは解析的にも求めることの出来る一般的な原則である。よって、前記ミラーの振れ角を大きくしようとすると、電極間隔を必然的に大きくすることとなり、静電力としては益々、力の弱い領域での使用が強いられることになる。逆に、小さな振れ角でデバイスを構成しようとすると、1000×1000、あるいは4000×4000という大規模なアレイ化が要求される光スイッチでは、極めて大きなスイッチ部を構成することとなり現実的でなくなる。
【0011】
以上のように、数μmから数百μmというMEMSスイッチが構成される寸法領域では、静電力を使うことに起因する致命的な問題が多数発生する。
【0012】
この問題を解決するための1つの方法が、静電力に代えて電磁力を使用することである。図20に示されるように、MEMSスイッチに適用される数μmから数百μmの領域では、電磁力は静電力に比べて1桁から3桁以上大きい。この電磁力をMEMSスイッチに適用した例としてUSP6124650が挙げられる。図18を用いて電磁力を用いたMEMSスイッチの例を説明する。
【0013】
図18はUSP6124650に開示された電磁力を用いたMEMSスイッチの構成を示す。基体201上に電流線203が複数形成され、これを跨ぐように片持ち梁202が形成される。片持ち梁202上には磁性層204、および、電気接点206が設けられている。一方、固定されたもう一方の基体208には、前記片持ち梁202に対向する側に磁性層205、および、電気接点207が設けられている。磁性層204は軟磁性体、磁性層205は硬質磁性体からなる。
【0014】
本スイッチの動作は以下のように行われる。電流線203に流れる電流により形成された磁界により、磁性層204が一方向に磁化される。図18中の磁性層204において、例えば、磁性層204の左端がN極、右端がS極となる。この磁性層204の極性に対して、磁性層205を予め左端はS極、右端はN極となるように磁化させておく。これにより磁性層204の右端と磁性層205の右端の間には引力が発生し、片持ち梁202が上側の基体208の方向に反り上がる。電気接点206および電気接点207が接触することでスイッチオンとなる。また、電流線203に流れる電流を切っても、磁性層204および磁性層205には残留磁化が生じていることから、スイッチオンの状態が保たれる。
【0015】
電流線203に前記と逆方向の電流を流すと、電流を徐々に増大させる過程で磁性層204の残留磁化が減少し、やがて、磁性層間に働く引力よりも、片持ち梁のばねが元に戻ろうとする力が上回る。この状態で電流を切ることにより、電気接点206および207が引き離され、スイッチオフとなる。
【0016】
【発明が解決しようとする課題】
しかしながら、上記の図18に示した電磁力を用いたMEMSスイッチには以下の問題点がある。
【0017】
第一に、電流線203に流れる電流が作る磁界によって磁性体204が磁化されるわけであるが、磁性体204の反磁界が大きいために十分な磁化ができないことである。これは、片持ち梁の上に磁性体204が配置されることによる寸法限界による。反磁界を小さくして弱い電流磁界でも十分に磁化させるためには、磁性体204を磁化方向に縦長で、かつ、薄くしなければならない。しかしながら、縦長で薄い磁性体としてしまうと、磁性体が発生する本来の磁束が減少してしまう。結果として、もう一方の磁性体205との間の引力が小さくなってしまう。磁性体204の幅を広くし、かつ、厚さを厚くすると反磁界が大きくなるので、これを磁化させるためには大きな電流量が必要となる。結果として、消費電力が大きくなる。以上のように、図18の構造は、本質的に二律背反な問題を有している。
【0018】
第二に、図18の構造は製造が困難な点である。これは、可動部である片持ち梁が、固定された基体201と208の間隙に配置された構成となっていることに起因する。図18に示すように、可動体である片持ち梁202を形成するためには、プロセスの最終段階で除去する犠牲層を予め形成し、その上に片持ち梁202、磁性層204、電気接点206を形成する。さらに、これら片持ち梁部上に、再度、犠牲層を形成した後に、磁性層205、電気接点207を含む基体208を形成する。プロセスの最終段階で、前述の片持ち梁部の上下に存在する犠牲層を、エッチングなどの方法で除去する。
【0019】
この際に、以下に示す主に二つの障害が生じる。その第一番目は、エッチング後に、片持ち梁部および、基体201、基体208の表面に汚れ、エッチング残り、再付着物等が形成されることである。これにより、電気接点の劣化、可動部の動作不良、汚染物に粘性が生じた場合には可動部の吸着などの障害が生じる。第二番目は、犠牲層をウエットエッチングした場合、または、ドライエッチングした後にウエット洗浄を行った場合、エッチング液や洗浄液の表面張力によって、片持ち梁が基体201あるいは208に吸着し、剥がれなくなるという障害である。以上の障害は、可動部である片持ち梁部が固定された基体の間に配置されていることで、より頻繁に発生することとなり、製造歩留まりの低下、製造コストの増大を招く。
【0020】
以上の障害を回避するために、磁性層205と電気接点207を含む基体208を、片持ち梁部や電流線203を含む基体201と別個に作製し、最終段階で両者を張り合わせる方法が考えられる。しかしながら、この方法では、基体となるセラミック等のウエハが2倍必要となり、製造コストの増大は免れない。
【0021】
また、可動部である片持ち梁部が固定された基体間にあることは、片持ち梁部の観察や検査を困難なものにしている。これは、前述した吸着などの障害を確認し難くするものであり、障害の原因解明を妨げる。結果として、更なる製造歩留まりの低下、製造コストの増大を招くことになっている。
【0022】
また、USP6124650では、図19に示す構造を開示している。この構造は、基体301上に電流線303が形成され、これを跨ぐように片持ち梁302が形成される。片持ち梁302上には磁性層304、および、電気接点307が設けられている。一方、前記基体301には、前記片持ち梁302に対向する側に磁性層305、および、電気接点306が設けられている。磁性層304は軟磁性体、磁性層305は硬質磁性体からなる。
【0023】
図19に示す構造は、前述した第二の問題点に対する解決策を示すものとなっている。しかしながら、第一の本質的な問題点に対しては解決を与えてはいない。そこで、本発明は、電磁力によるMEMSスイッチング素子を提供するものであり、磁極間の引力と反発力を使い、大きな動作を実現し、光スイッチ、リレースイッチ、波長可変な半導体レーザや光学フィルタなどに好適で製造し易いMEMSスイッチ素子を提供することを課題としている。
【0024】
【課題を解決するための手段】
上記の課題を解決するための本発明の電磁石は、磁気ヨークと薄膜コイルを有する薄膜電磁石であって、磁気ヨークが第1磁気ヨーク部および第2磁気ヨーク部を有し、第1磁気ヨーク部が薄膜コイルの巻線中心部で薄膜コイルに交差し、第2磁気ヨークが薄膜コイルの下層もしくは上層の一部もしくは全体に配置されており、第1磁気ヨークと第2磁気ヨークとが接続している。
【0025】
この薄膜電磁石の磁極が、第1磁気ヨーク部の端面であって、第1磁気ヨークと第2磁気ヨークとが接続している側と反対側の面、および、第2磁気ヨークの外周に形成される。
【0026】
以上の薄膜電磁石の構造により、薄膜コイルの形成する磁界によって磁化される磁気ヨークの長さを十分に長くすることが可能となり、反磁界を減少させられる。実質的に磁気ヨークの長さを制限するものは、この薄膜電磁石が形成されている基体の大きさである。このとき、第1磁気ヨークと第2磁気ヨークとが接続している。結合の意味としては、第一には直接に接していることであり、第二には磁気的に接続していることである。
【0027】
薄膜工程を用いて電磁石を作製することは、大面積なウエハ上に複数の電磁石を任意の配列で作製することを可能とし、かつ、従来の機械加工では不可能な小さい電磁石の作製を可能とする。さらに、電磁石の集積度を高くすることで、1枚のウエハ当りの電磁石の数量を多くすることができ、コストの低減が可能である。
【0028】
また、本発明のスイッチング素子は、上述した薄膜電磁石とこの薄膜電磁石と対をなす可動構造体とからなり、可動構造体が支柱部、可動部を有する可動構造体であって、薄膜電磁石と可動構造体の可動部との間に作用する電磁力によってスイッチングを行う。これにより、薄膜コイルの形成する磁界によって磁化される磁気ヨークの長さを十分に長くすることが可能となり、反磁界を減少させられる。
【0029】
【発明の実施の形態】
[第1の実施の形態]
図1(a)および(b)に、本発明の第1の実施の形態を示す。(a)は上面構造を、(b)はA−A´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a)が配置され、さらに、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図1(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。
【0030】
図2に、図1に示した本発明の第1の実施の形態の製造工程を示す。基体1aはアルミナを主成分とするセラミックである(図2(a))。基体1aとしては、その他のセラミックやシリコンなどでも良い。
【0031】
まず、基体1a上に第2磁気ヨーク(2a)を形成する(図2(b))。第2磁気ヨーク(2a)としては膜厚5μmのNi−Fe合金であり、電気めっき法により形成する。第2磁気ヨーク(2a)としては飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第2磁気ヨーク(2a)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。
【0032】
次に、第2磁気ヨーク(2a)と薄膜コイルとを絶縁するための絶縁層2eを形成する(図2(c))。絶縁層としては250℃でベークしたフォトレジストを用いる。絶縁層としては他に、アルミナやSiO2のスパッタ膜などを用いることができる。
【0033】
次に、この絶縁層2e上に薄膜コイルを形成する(図2(d))。薄膜コイルとしては、予めコイルの形状を抜いたフォトレジストマスクを形成し、電気めっき法によりCuをマスクされていない部分に成長させ、所望のコイル形状を得る。
【0034】
次に、この薄膜コイルを絶縁しかつ保護するための絶縁層2fを形成する(図2(e))。絶縁層としては250℃でベークしたフォトレジストを用いる。絶縁層としては他に、アルミナやSiO2のスパッタ膜などを用いることができる。 次に、第1磁気ヨーク(2b)を形成する(図2(f))。第1磁気ヨーク(2b)としては膜厚20μmのNi−Fe合金であり、電気めっき法により形成する。第1磁気ヨーク(2b)としては飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第1磁気ヨーク(2b)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。
【0035】
次に、アルミナのスパッタ膜1bで全体を被覆し(図2(g))、平坦化研磨することによって、磁極となる第1磁気ヨーク(2b)を平坦な表面に露出させる(図2(h))。
【0036】
以上により、薄膜電磁石2を有する基体1が完成する。
【0037】
基体1は磁極となる第1磁気ヨーク(2b)が表面に露出していると共に、表面が平坦化されているので、この上に構造物を構築するためには誠に都合が良い。また、薄膜工程を用いて電磁石を作製することは、大面積なウエハ上に複数の電磁石を任意の配列で作製することを可能とし、かつ、従来の機械加工では不可能な小さい電磁石の作製を可能とする。さらに、電磁石の集積度を高くすることで、1枚のウエハ当りの電磁石の数量を多くすることができ、コストの低減が可能である。
【0038】
[第2の実施の形態]
図3(a)および(b)に、本発明の第2の実施の形態を示す。(a)は上面構造を、(b)はB−B´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a)が配置され、さらに、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。第2磁気ヨーク(2a)はこの場合は薄膜コイルの下全面には存在していない。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図3(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。
【0039】
[第3の実施の形態]
図4(a)および(b)に、本発明の第3の実施の形態を示す。(a)は上面構造を、(b)はC−C´での断面構造を示す。基体1a上に、第1磁気ヨーク(2b)が配置され、さらに、薄膜コイル2cおよび第2磁気ヨーク(2a)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図4(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。
【0040】
[第4の実施の形態]
図5(a)および(b)に、本発明の第4の実施の形態を示す。(a)は上面構造を、(b)はD−D´での断面構造を示す。基体1aはMnZnフェライトからなる。これにより基体1aは第2磁気ヨークを兼用している。基体1aとしては他に、NiZnフェライトなどの軟磁性フェライト、Ni−Fe合金、Fe−S−Al合金などの軟磁性体であれば使用可能である。この基体1a上に、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と基体1aとは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図5(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨークは基体1aで兼用されているために十分大きく、反磁界が低減され、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。
【0041】
[第5の実施の形態]
図6(a)および(b)に、本発明の第5の実施の形態を示す。(a)は上面構造を、(b)はE−E´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a)が配置され、さらに、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図1(b)に示すようにN(S)、S(N)の磁極を形成する。特に、第1磁気ヨーク(2b)側の磁極は、薄膜コイル2Cの巻線中心部からずらした位置に設定することができる構成となっている。また、第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。
【0042】
[第6の実施の形態]
図7(a)および(b)に、本発明の第6の実施の形態を示す。(a)は上面構造を、(b)はF−F´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a、2a´)が配置され、さらに、薄膜コイル2c、2c´および第1磁気ヨーク(2b、2b´)が配置される。薄膜コイル2c、2c´の巻線中心部で第1磁気ヨーク(2b、2b´)は薄膜コイルと交差する。第1磁気ヨーク(2b、2b´)と第2磁気ヨーク(2a、2a´)とは磁気的に接続している。薄膜コイル2c、2c´に電流を流すことで磁気ヨークは磁化し、図1(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a、2a´)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a、2a´)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2、2´は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b、2b´)が平坦面に露出した基体1となる。
【0043】
基体1上に、電気接点4、4´、及び、電気接点5、5´を配備した可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部の端部には電気接点5、5´が配置されており、基体1には、可動部の電気接点5、5´に対向した電気接点4、4´が配置されている。電気接点4、4´は絶縁層6、6´を介して配置しているが、絶縁層6、6´は必要に応じて配置したり配置しなかったりすることができる。
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2、2´の磁極である第1磁気ヨーク(2b、2b´)上面との間に電磁力が働く。
【0044】
可動部3aの磁性体としては、軟磁性体を使用することができる。軟磁性体としては、Ni−Fe合金、Co−Ni−Fe合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などが適当である。薄膜電磁石2、2´のコイル2c、2c´に交互に電流を流すことによって、第1磁気ヨーク(2b、2b´)に互に磁束が発生し、磁束の発生している第1磁気ヨーク側に可動部3aが引き寄せられる。これによって電気接点が接触しスイッチングが行われる。
【0045】
また、可動部3aの磁性体としては、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体としては、Co−Cr−Pt系合金、Co−Cr−Ta系合金、Sm−Co系合金、Nd−Fe−B系合金、Fe−Al−Ni−Co系合金、Fe−Cr−Co系合金、Co−Fe−V系合金、Cu−Ni−Fe系合金などが適当である。残留磁化を形成しやすい磁性体により構成された可動部3aを、図7の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0046】
薄膜電磁石の動作としては、左右の第1磁気ヨーク(2b、2b´)表面を同時にN極、或いはS極となるよう動作させる。これにより、例えば、N極とした場合は、右側の電磁石2´と可動部の間には引力、左側の電磁石2と可動部の間には反発力が働き、可動部は右側に倒れ、右側の電気接点がオン、左側の電気接点がオフとなる。この状態でコイル電流を切っても、可動部の残留磁化によって、右側の電磁石2´の磁極と可動部の間には引力が働いているので、可動部は右側に倒れたままとなり、右側の電気接点がオンの状態が保たれる。次に、左右の第1磁気ヨーク(2b、2b´)表面を同時にS極とすると、今度は右側の電磁石2´と可動部の間には反発力、左側の電磁石2と可動部の間には引力が働き、可動部は左側に倒れ、左側の電気接点がオン、右側の電気接点がオフとなる。
【0047】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0048】
次に、図8に図7に本発明の第6の実施の形態の製造工程を示す。基体1aはアルミナを主成分とするセラミックである(図8(a))。基体1aとしては、その他のセラミックやシリコンなどを使用することができる。
【0049】
まず、基体1a上に第2磁気ヨーク(2a、2a´)を形成する(図8(b))。第2磁気ヨーク(2a、2a´)としては膜厚5μmのNi−Fe合金であり、電気めっき法により形成する。第2磁気ヨーク(2a、2a´)としては飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第2磁気ヨーク(2a、2a´)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。
【0050】
次に、第2磁気ヨーク(2a、2a´)と薄膜コイルとを絶縁するための絶縁層2e、2e´を形成する(図8(c))。絶縁層としては250℃でベークしたフォトレジストを用いる。絶縁層としては他に、アルミナやSiO2のスパッタ膜などを用いることができる。この絶縁層2e、2a´上に薄膜コイルを形成する。薄膜コイルとしては、予めコイルの形状を抜いたフォトレジストマスクを形成し、電気めっき法によりCuをマスクされていない部分に成長させ、所望のコイル形状を得る。さらにこの薄膜コイルを絶縁しかつ保護するための絶縁層2f、2fを形成する。絶縁層としては250℃でベークしたフォトレジストを用いる。絶縁層としては他に、アルミナやSiO2のスパッタ膜などを用いることができる。
【0051】
次に、第1磁気ヨーク(2b、2b´)を形成する(図8(d))。第1磁気ヨーク(2b、2b´)としては膜厚20μmのNi−Fe合金であり、電気めっき法により形成する。第1磁気ヨーク(2b、2b´)としては飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第1磁気ヨーク(2b、2b´)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。次に、アルミナのスパッタ膜1bで全体を被覆し(図8(e))、平坦化研磨することによって、磁極となる第1磁気ヨーク(2b、2b´)を平坦な表面に露出させる(図8(f))。以上により、薄膜電磁石2を有する基体1が完成する。基体1は磁極となる第1磁気ヨーク(2b、2b´)が表面に露出していると共に、表面が平坦化されているので、この上に構造物を構築するためには誠に都合が良い。また、薄膜工程を用いて電磁石を作製することは、ウエハ上に複数の電磁石を任意の配列で作製することを可能とし、かつ、従来の機械加工では不可能な小さい電磁石の作製を可能とする。
【0052】
次に、以上の工程で作製した基体1上に電気接点および可動構造体を作製する工程を説明する。まず、薄膜電磁石2、2´を埋め込んだ基体1上に磁極面を絶縁するための絶縁層6、6´を形成する(図8(g))。絶縁層6、6´はアルミナスパッタ膜であり、フォトレジストのマスクを用い、イオンビームエッチングで所望の形状を作製する。絶縁層6、6´はまた、必要に応じて、作製しない場合もある。
【0053】
次に、この上に電気接点4、4´を作製する(図8(h))。電気接点としては白金スパッタ膜であり、フォトレジストのマスクを用い、イオンビームエッチングで所望の形状を作製する。電気接点の材料としては、また、白金、ロジウム、パラジウム、金、ルテニウムの少なくとも1つを含有する金属を使用することができる。
【0054】
次に、可動構造体を作製するにあたり、犠牲層10を形成する(図8(i))。犠牲層は後術する支柱部を作製する位置などを除いた部分に、厚さ50μmのCu膜を電気めっき法で作製する。支柱部を作製する位置などのCuめっき膜を形成しない部分に、予め、フォトレジストパタンを形成することによって、所望の犠牲層を形成する。犠牲層の厚さとしては0.05μmから500μm程度で調整可能である。また、犠牲層としてはフォトレジスト材料を使用することもできる。
【0055】
次に支柱部3bを形成する(図8(j))。支柱としては金めっき膜を埋め込む。この上にばね部3c、および、電気接点5、5´を作成する(図8(k))。ばね部はばね材料をスパッタ成膜した後に、フォトレジストマスクを用いてパタニングを行う。また、予めフォトレジストマスクを形成した後に、スパッタ成膜を行い、リフトオフによりばね部の形状を作製することも可能である。
【0056】
ばね材料としてはCoTaZrCr非晶質合金を用いる。また、ばね材料としては、TaやWを主成分とした非晶質金属や、Ni―Ti合金などの形状記憶金属を使用することができる。また、各種組成のりん青銅、ベリリウム銅、アルミニウム合金などを適用することができる。非晶質金属を用いることの利点は、結晶粒界が存在しないために、粒界からの金属疲労が原理的に発生しないため、信頼性の高い長寿命なばね部を実現できる点である。また、形状記憶金属を用いることの利点は、繰り返し変形に対して初期の形状を保持できる点である。それぞれ、目的に応じた使い分けが可能である。
【0057】
次に、電気接点5、5´は予めフォトレジストマスクを形成した後に、スパッタ成膜を行い、リフトオフにより電気接点の形状を作製する(図8(k))。電気接点としては白金スパッタ膜を用いる。また、白金、ロジウム、パラジウム、金、ルテニウムの少なくとも1つを含有する金属を使用することができる。
【0058】
次に、前記ばね部3cおよび電気接点5、5´の段差を平坦化する(図8(l))。平坦化層11の作製としては、予め前記ばね部3cおよび電気接点5、5´上にフォトレジストマスクを形成しておき、イオンビームスパッタ法による指向性の高いスパッタ法によりCu膜をリフトオフする。また、その他の方法として、フォトレジスト膜を塗布した後に、ばね部3cおよび電気接点5、5´の部分のフォトレジスト膜を除去する方法が可能である。いずれにしても、平坦化層11は、犠牲層10とともに最終的には除去される。
【0059】
次に、可動部3aを作製する(図8(m))。可動部3aは、可動部材料をスパッタ成膜した後に、フォトレジストマスクを用いてパタニングを行う。また、予めフォトレジストマスクを形成した後に、スパッタ成膜を行い、リフトオフによりばね部の形状を作製することも可能である。可動部3aの厚さとしては1μmとする。可動部3aの厚さとしては0.1μmから100μm、より好ましくは0.5μmから10μmである。可動部3aの材料は、上述した通りである。残留磁化を形成しやすい磁性体により構成された可動部3aについては、図8(m)の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0060】
最終段階で犠牲層10および平坦化層11の除去を行う。犠牲層10および平坦化層11がCuの場合、ケミカルエッチングにより除去する。また、犠牲層10および平坦化層11がフォトレジストの場合、酸素アッシングで除去することができる。以上の工程により、本発明の第6の実施の形態のスイッチング素子を完成する。
【0061】
[第7の実施の形態]
図9(a)および(b)に、本発明の第7の実施の形態を示す。(a)は上面構造を、(b)はG−G´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a)が配置され、さらに、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図1(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b)が平坦面に露出した基体1となる。
【0062】
基体1上に、電気接点4、4´、及び、電気接点5、5´を配備した可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部の端部には電気接点5、5´が配置されており、基体1には、可動部の電気接点5、5´に対向した電気接点4、4´が配置されている。電気接点4、4´は絶縁層6、6´を介して配置しているが、絶縁層6、6´は必要に応じて配置したり配置しなかったりすることができる。
【0063】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2の磁極である第1磁気ヨーク(2b)上面との間に電磁力が働く。
【0064】
可動部3aの磁性体は、第6の実施形態と同様に、軟磁性体を使用することができる。薄膜電磁石2のコイル2cに電流を流すことによって、第1磁気ヨーク(2b)に磁束が発生し、第1磁気ヨーク側に可動部3aが引き寄せられる。これによって電気接点が接触しスイッチオンとなる。コイル電流を切ることによって、第1磁気ヨーク(2b)の磁束が消滅し、第1磁気ヨーク側に引き寄せられていた可動部3aが、ばね部3c、3c´の元に戻ろうとする力によって引き離され、スイッチオフとなる。
【0065】
また、可動部3aの磁性体としては、第6の実施形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図9の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0066】
薄膜電磁石の動作としては、第1磁気ヨーク(2b)表面をN極、或いはS極となるよう動作させる。これにより、例えば、S極とした場合は、電磁石2と可動部3a左端との間には引力が働き、可動部は左側に倒れ、左側の電気接点がオン、右側の電気接点がオフとなる。この状態でコイル電流を切っても、可動部の残留磁化によって、左側の電磁石2の磁極と可動部3a左端との間には引力が働いているので、可動部は左側に倒れたままとなり、左側の電気接点がオンの状態が保たれる。次に、第1磁気ヨーク(2b)表面を同時にN極とすると、今度は左側の電磁石2と可動部3a左端との間には反発力が働き、可動部は右側に倒れ、右側の電気接点がオン、左側の電気接点がオフとなる。
【0067】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0068】
[第8の実施の形態]
図10(a)および(b)に、本発明の第8の実施の形態を示す。(a)は上面構造を、(b)はH−H´での断面構造を示す。基体1aはMnZnフェライトからなる。これにより基体1aは第2磁気ヨークを兼用している。基体1aとしては他に、NiZnフェライトなどの軟磁性フェライト、Ni−Fe合金、Fe−S−Al合金などの軟磁性体であれば使用可能である。
【0069】
この基体1a上に、薄膜コイル2c、2c´および第1磁気ヨーク(2b、2b´)が配置される。薄膜コイル2c、2c´の巻線中心部で第1磁気ヨーク(2b、2b´)は薄膜コイルと交差する。第1磁気ヨーク(2b、2b´)と基体1aとは磁気的に接続している。薄膜コイル2c、2c´に電流を流すことで磁気ヨークは磁化し、図5(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨークは基体1aで兼用されているために十分大きく、反磁界が低減され、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。
【0070】
以上の基体1a上の薄膜電磁石2、2´は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b、2b´)が平坦面に露出した基体1となる。
【0071】
基体1上に、電気接点4、4´、及び、電気接点5、5´を配備した可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部の端部には電気接点5、5´が配置されており、基体1には、可動部の電気接点5、5´に対向した電気接点4、4´が配置されている。電気接点4、4´は絶縁層6、6´を介して配置しているが、絶縁層6、6´は必要に応じて配置したり配置しなかったりすることができる。
【0072】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2、2´の磁極である第2磁気ヨークb、2b´上面との間に電磁力が働く。
【0073】
可動部3aの磁性体は、第6の実施形態と同様に、軟磁性体を使用することができる。薄膜電磁石2、2´のコイル2c、2c´に交互に電流を流すことによって、第1磁気ヨーク(2b、2b´)の磁束の強度が交互に変化し、強い磁束の発生している第1磁気ヨーク側に可動部3aが引き寄せられる。これによって電気接点が接触しスイッチングが行われる。
【0074】
また、可動部3aの磁性体としては、第6の実施形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図10の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0075】
薄膜電磁石の動作は、第6の実施の形態と同様である。
【0076】
[第9の実施の形態]
図11(a)および(b)に、本発明の第9の実施の形態を示す。(a)は上面構造を、(b)はI−I´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a)が配置され、さらに、薄膜コイル2cおよび第1磁気ヨーク(2b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(2b)は薄膜コイルと交差する。第1磁気ヨーク(2b)と第2磁気ヨーク(2a)とは磁気的に接続している。薄膜コイル2cに電流を流すことで磁気ヨークは磁化し、図6(b)に示したようにN(S)、S(N)の磁極を形成する。特に、第1磁気ヨーク(2b)側の磁極は、薄膜コイル2Cの巻線中心部からずらした位置に設定することができる構成となっている。図6と図11の薄膜電磁石の第1磁気ヨークの違いは、図11では第1磁気ヨークの終端が二股に分かれている点である。
【0077】
第2磁気ヨーク(2a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b)が平坦面に露出した基体1となる。
【0078】
基体1上に、電気接点4、4´、及び、電気接点5、5´を配備した可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部の端部には電気接点5、5´が配置されており、基体1には、可動部の電気接点5、5´に対向した電気接点4、4´が配置されている。電気接点4、4´は絶縁層6、6´を介して配置しているが、絶縁層6、6´は必要に応じて配置したり配置しなかったりすることができる。
【0079】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2の磁極である第1磁気ヨーク(2b)上面との間に電磁力が働く。
【0080】
可動部3aの磁性体としては、第6の実施形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図11の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0081】
薄膜電磁石の動作としては、左右の第1磁気ヨーク(2b)表面をN極、或いはS極となるよう動作させる。これにより、例えば、N極とした場合は、右側の磁極と可動部の間には引力、左側の磁極と可動部の間には反発力が働き、可動部は右側に倒れ、右側の電気接点がオン、左側の電気接点がオフとなる。この状態でコイル電流を切っても、可動部の残留磁化によって、右側の磁極と可動部の間には引力が働いているので、可動部は右側に倒れたままとなり、右側の電気接点がオンの状態が保たれる。次に、第1磁気ヨーク(2b)表面をS極とすると、今度は右側の磁極と可動部の間には反発力、左側の磁極と可動部の間には引力が働き、可動部は左側に倒れ、左側の電気接点がオン、右側の電気接点がオフとなる。
【0082】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0083】
[第10の実施の形態]
図12(a)および(b)に、本発明の第10の実施の形態を示す。(a)は上面構造を、(b)はJ−J´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a、2a´)が配置され、さらに、薄膜コイル2c、2c´および第1磁気ヨーク(2b、2b´)が配置される。薄膜コイル2c、2c´の巻線中心部で第1磁気ヨーク(2b、2b´)は薄膜コイルと交差する。第1磁気ヨーク(2b、2b´)と第2磁気ヨーク(2a、2a´)とは磁気的に接続している。薄膜コイル2c、2c´に電流を流すことで磁気ヨークは磁化し、図1(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a、2a´)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a、2a´)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2、2´は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b、2b´)が平坦面に露出した基体1となる。
【0084】
基体1上に、電気接点4、4´、及び、電気接点5、5´を配備した可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部の端部には、接続部I(7、7´)および接続部II(8、8´)が設けられ、接続部II(8、8´)に電気接点5、5´が配置されている。接続部I(7、7´)には、Taなどの金属材料、あるいは、アルミナなどの絶縁材料を用いることができる。接続部II(8、8´)には、Taなどの金属材料、あるいは、アルミナなどの絶縁材料を用いることができる。
【0085】
基体1には、可動部の電気接点5、5´に対向した電気接点4、4´が配置されている。電気接点4、4´は絶縁層6、6´を介して配置している。絶縁層6、6´は必要に応じて配置したり配置しなかったりすることができる。
【0086】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2、2´の磁極である第1磁気ヨーク(2b、2b´)上面との間に電磁力が働く。
【0087】
可動部3aの磁性体は、第6の実施の形態と同様に、軟磁性体を使用することができる。薄膜電磁石2、2´のコイル2c、2c´に交互に電流を流すことによって、第1磁気ヨーク(2b、2b´)に互に磁束が発生し、磁束の発生している第1磁気ヨーク側に可動部3aが引き寄せられる。これによって電気接点が接触しスイッチングが行われる。
【0088】
また、可動部3aの磁性体としては、第6の実施の形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図12の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0089】
薄膜電磁石の動作は、第6の実施形態と同様である。
【0090】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0091】
[第11の実施の形態]
図13(a)および(b)に、本発明の第11の実施の形態を示す。(a)は上面構造を、(b)はK−K´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a、2a´)が配置され、さらに、薄膜コイル2c、2c´および第1磁気ヨーク(2b、2b´)が配置される。薄膜コイル2c、2c´の巻線中心部で第1磁気ヨーク(2b、2b´)は薄膜コイルと交差する。第1磁気ヨーク(2b、2b´)と第2磁気ヨーク(2a、2a´)とは磁気的に接続している。薄膜コイル2c、2c´に電流を流すことで磁気ヨークは磁化し、図1(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a、2a´)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a、2a´)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2、2´は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b、2b´)が平坦面に露出した基体1となる。
【0092】
基体1上に、可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部3aの表面には光を反射するために適した材料が被覆されている。具体的には可動部3aの表面全体、あるいは少なくとも光が当る領域に、金、あるいは銀の薄膜が被覆されている。金、あるいは銀の薄膜はスパッタ法、あるいは蒸着法で形成する。
【0093】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2、2´の磁極である第1磁気ヨーク(2b、2b´)上面との間に電磁力が働く。
【0094】
可動部3aの磁性体としては、第6の実施形態と同様に、軟磁性体を使用することができる。薄膜電磁石2、2´のコイル2c、2c´に交互に電流を流すことによって、第1磁気ヨーク(2b、2b´)に互に磁束が発生し、磁束の発生している第1磁気ヨーク側に可動部3aが引き寄せられる。このとき、コイルの電流量を調節することによって、可動部3aの傾斜角度を制御することができる。すなわち、アナログ制御の可能な光スイッチが実現する。
【0095】
また、可動部3aの磁性体としては、第6の実施の形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図13の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0096】
薄膜電磁石の動作としては、左右の第1磁気ヨーク(2b、2b´)表面を同時にN極、或いはS極となるよう動作させる。これにより、例えば、N極とした場合は、右側の電磁石2´と可動部の間には引力、左側の電磁石2と可動部の間には反発力が働き、可動部は右側に倒れる。このとき、コイルの電流量を調節することによって、可動部3aの傾斜角度を制御することができる。すなわち、アナログ制御の可能な光スイッチが実現する。
【0097】
又、可動部を右側に倒し、第1磁気ヨーク(2b’)に接触させた状態で、コイル電流を切っても、可動部の残留磁化によって右側の電磁石2’の磁極と可動部の間には引力が働いているので、可動部は右側に倒れたままになる。次に、左右の第1磁気ヨーク(2b、2b´)表面を同時にS極とすると、今度は右側の電磁石2´と可動部の間には反発力、左側の電磁石2と可動部の間には引力が働き、可動部は左側に倒れる。
【0098】
図13の左右方向に着磁し、左側をN極、右側をS極とした状態で、左右の電磁石2、2´を交互に動作させ、可動体3aとの間の力を常に反発力とすることで、安定で大きな振れ角度が得られるアナログ制御が実現する。すなわち、磁極間の引力を使った場合、ある程度磁極間隔が狭くなると、両磁極間の引力が急激に増大し、可動部の角度制御ができなくなる。これに対して、磁極間の反発力を使うとこの問題を解決することができる。
【0099】
今、コイル電流を切った状態とする。この状態では、可動部3aはばね部3c、3c´に支えられ水平を保っている。ここで、薄膜電磁石2(左側)の第1磁気ヨーク(2b)上面がN極となるようにコイル電流を流す。第1磁気ヨーク(2b)と可動部3aの左端には反発力が生じ、可動部は右側に傾斜し、最大、右端が右側の第1磁気ヨーク(2b´)上面に接するまで傾斜する。このとき、可動部3aの右端はS極となっており、可動部3a右端と右側磁気ヨーク上面が接近すると、両者の引力が増大する。そこで、両者の引力を打ち消すべく、薄膜電磁石2´(右側)の第1磁気ヨーク(2b´)上面に磁極が発生しないようにコイル2c´の電流を調整する。これにより、可動部右端が右側の第1磁気ヨーク(2b´)上面に接するまでのアナログ制御が可能である。
【0100】
逆に、薄膜電磁石2´(右側)の第1磁気ヨーク(2b´)上面がN極となるようにコイル電流を流す。第1磁気ヨーク(2b´)と可動部3aの右端には反発力が生じ、可動部は左側に傾斜し、最大、左端が左側の第1磁気ヨーク(2b)上面に接するまで傾斜する。このとき、可動部3aの左端はN極となっており、可動部3a左端と左側磁気ヨーク上面が接近すると、両者の引力が増大する。そこで、両者の引力を打ち消すべく、薄膜電磁石2(左側)の第1磁気ヨーク(2b)上面に磁極が発生しないようにコイル2cの電流を調整する。これにより、可動部左端が左側の第1磁気ヨーク(2b)上面に接するまでのアナログ制御が可能である。
【0101】
以上の動作により、安定で大きな振れ角度が得られるアナログ制御の光スイッチが実現する。可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0102】
[第12の実施の形態]
図14(a)および(b)に、本発明の第12の実施の形態を示す。(a)は上面構造を、(b)はK−K´での断面構造を示す。基体1a上に、第2磁気ヨーク(2a、2a´)が配置され、さらに、薄膜コイル2c、2c´および第1磁気ヨーク(2b、2b´)が配置される。薄膜コイル2c、2c´の巻線中心部で第1磁気ヨーク(2b、2b´)は薄膜コイルと交差する。第1磁気ヨーク(2b、2b´)と第2磁気ヨーク(2a、2a´)とは磁気的に接続している。薄膜コイル2c、2c´に電流を流すことで磁気ヨークは磁化し、図1(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(2a、2a´)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(2a、2a´)は最大では基体1a端まで拡大できる。以上の基体1a上の薄膜電磁石2、2´は保護層1bによって平坦化され、磁極となる第1磁気ヨーク(2b、2b´)が平坦面に露出した基体1となる。
【0103】
基体1上に、可動部3aをばね部3c、3c´を介して支柱部3b、3b´に固定した可動構造体3が配備されている。可動部3aはその両側からばね部3c、3c´を介して支柱部3b、3b´に支えられており、ばね部3c、3c´との接点位置を支点とし、支点の両側に延在している。可動部3aの上面には光を反射するためのミラー構造体9が形成されている。ミラー構造体9は、予め形成された犠牲層上にスパッタ法などでミラー構造体となる金属膜、あるいは絶縁膜を成膜しパタニングすることで作製される。
【0104】
可動部3aを磁性体とすることで、可動部端部と、薄膜電磁石2、2´の磁極である第1磁気ヨーク(2b、2b´)上面との間に電磁力が働く。
【0105】
可動部3aの磁性体としては、第6の実施の形態と同様に、軟磁性体を使用することができる。薄膜電磁石2、2´のコイル2c、2c´に交互に電流を流すことによって、第1磁気ヨーク(2b、2b´)に互に磁束が発生し、磁束の発生している第1磁気ヨーク側に可動部3aが引き寄せられる。このとき、コイルの電流量を調節することによって、可動部3aの傾斜角度を制御することができる。すなわち、アナログ制御の可能な光スイッチが実現する。
【0106】
また、可動部3aの磁性体としては、第6の実施の形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部3aを、図14の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0107】
薄膜電磁石の動作は、第11の実施の形態と同様である。
【0108】
図14の左右方向に着磁し、左側をN極、右側をS極とした状態で、左右の電磁石2、2´を交互に動作させ、可動体3aとの間の力を常に反発力とすることで、安定で大きな振れ角度が得られるアナログ制御が実現する。すなわち、磁極間の引力を使った場合、ある程度磁極間隔が狭くなると、両磁極間の引力が急激に増大し、可動部の角度制御ができなくなる。これに対して、磁極間の反発力を使うとこの問題を解決することができる。
【0109】
今、コイル電流を切った状態とする。この状態では、可動部3aはばね部3c、3c´に支えられ水平を保っている。ここで、薄膜電磁石2(左側)の第1磁気ヨーク(2b)上面がN極となるようにコイル電流を流す。第1磁気ヨーク(2b)と可動部3aの左端には反発力が生じ、可動部は右側に傾斜し、最大、右端が右側の第1磁気ヨーク(2b´)上面に接するまで傾斜する。このとき、可動部3aの右端はS極となっており、可動部3a右端と右側磁気ヨーク上面が接近すると、両者の引力が増大する。そこで、両者の引力を打ち消すべく、薄膜電磁石2´(右側)の第1磁気ヨーク(2b´)上面に磁極が発生しないようにコイル2c´の電流を調整する。これにより、可動部右端が右側の第1磁気ヨーク(2b´)上面に接するまでのアナログ制御が可能である。
【0110】
逆に、薄膜電磁石2´(右側)の第1磁気ヨーク(2b´)上面がN極となるようにコイル電流を流す。第1磁気ヨーク(2b´)と可動部3aの右端には反発力が生じ、可動部は左側に傾斜し、最大、左端が左側の第1磁気ヨーク(2b)上面に接するまで傾斜する。このとき、可動部3aの左端はN極となっており、可動部3a左端と左側磁気ヨーク上面が接近すると、両者の引力が増大する。そこで、両者の引力を打ち消すべく、薄膜電磁石2(左側)の第1磁気ヨーク(2b)上面に磁極が発生しないようにコイル2cの電流を調整する。これにより、可動部左端が左側の第1磁気ヨーク(2b)上面に接するまでのアナログ制御が可能である。
【0111】
以上の動作により、安定で大きな振れ角度が得られるアナログ制御の光スイッチが実現する。可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0112】
[第13の実施の形態]
図15(a)および(b)に、本発明の第13の実施の形態を示す。(a)は上面構造を、(b)はM―M´での断面構造を示す。基体11a上に、第2磁気ヨーク(12a)が配置され、さらに、薄膜コイル12cおよび第1磁気ヨーク(12b)が配置される。薄膜コイル12cの巻線中心部で第1磁気ヨーク(12b)は薄膜コイルと交差する。第1磁気ヨーク(12b)と第2磁気ヨーク(12a)とは磁気的に接続している。薄膜コイル12cに電流を流すことで磁気ヨークは磁化し、図3(b)に示したようにN(S)、S(N)の磁極を形成する。第2磁気ヨーク(12a)は面内で十分大きく形成することができるので、反磁界を低減でき、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。第2磁気ヨーク(12a)は最大では基体1a端まで拡大できる。また、接続部12dは無くても良いが、第1磁気ヨークと同様の磁性体で形成することもできる。
【0113】
第1磁気ヨーク(2b)としては膜厚20μmのNi−Fe合金であり、電気めっき法により形成する。第1磁気ヨーク(2b)としては飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第1磁気ヨーク(2b)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。
【0114】
第2磁気ヨーク(12a)は軟磁性材料を用いることができる。具体的には、飽和磁化が大きく透磁率の高い材料であれば良く、Co−Ni−Fe系合金、Fe−Ta−NなどのFe系微結晶合金、Co−Ta−ZrなどのCo系非晶質合金、軟鉄などを使用することができる。膜形成方法としては、電気めっき法の他にも、スパッタ法、蒸着法などを使用することができる。第2磁気ヨーク(2a)の膜厚としては、0.1μmから200μm、より好ましくは1μmから50μmである。
【0115】
以上の基体11a上の薄膜電磁石12は保護層11bによって平坦化され、磁極となる第1磁気ヨーク(12b)が平坦面に露出した基体11となる。
【0116】
基体11上に、電気接点14、及び、電気接点15を配備した片持ち梁の可動部13aを支柱部13bに固定した可動構造体13が配備されている。支柱部13bは接続部同様、第1磁気ヨークと同様の磁性体で形成することができる。
【0117】
可動部13aを磁性体とすることで、可動部端部と、薄膜電磁石12の磁極である第1磁気ヨーク(12b)上面との間に電磁力が働く。
【0118】
可動部13aの磁性体としては、第6の実施の形態と同様に、軟磁性体を使用することができる。薄膜電磁石12のコイル12cに電流を流すことによって、第1磁気ヨーク(12b)に磁束が発生し、第1磁気ヨーク側に可動部13aが引き寄せられる。これによって電気接点が接触しスイッチングが行われる。
【0119】
また、可動部13aの磁性体としては、第6の実施形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部13aを、図15の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0120】
薄膜電磁石の動作としては、第1磁気ヨーク(2b)表面をN極、或いはS極となるよう動作させる。これにより、例えば、N極とした場合は、電磁石12と可動部右端との間には引力が働き、可動部右端は電磁石側に倒れ、電気接点がオンと成る。この状態でコイル電流を切っても、可動部の残留磁化によって、電磁石12の磁極と可動部右端との間には引力が働いているので、可動部は倒れたままとなり、電気接点がオンの状態が保たれる。次に、第1磁気ヨーク(2b)表面をS極とすると、今度は電磁石12と可動部の間には反発力が働き、可動部は元に戻って、電気接点がオフとなる。
【0121】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0122】
[第14の実施の形態]
図16(a)および(b)に、本発明の第14の実施の形態を示す。(a)は上面構造を、(b)はN―N´での断面構造を示す。基体11aはMnZnフェライトからなる。これにより基体11aは第2磁気ヨークを兼用している。基体11aとしては他に、NiZnフェライトなどの軟磁性フェライト、Ni−Fe合金、Fe−S−Al合金などの軟磁性体であれば使用可能である。この基体11a上に、薄膜コイル12cおよび第1磁気ヨーク(12b)が配置される。薄膜コイル2cの巻線中心部で第1磁気ヨーク(12b)は薄膜コイルと交差する。第1磁気ヨーク(12b)と基体1aとは磁気的に接続している。薄膜コイル12cに電流を流すことで磁気ヨークは磁化し、図5(b)に示すようにN(S)、S(N)の磁極を形成する。第2磁気ヨークは基体11aで兼用されているために十分大きく、反磁界が低減され、少ないコイル電流でも磁気ヨークは磁化しやすい構造となっている。
【0123】
また、接続部12dは無くても良いが、第1磁気ヨークと同様の磁性体で形成することもできる。
【0124】
第1磁気ヨーク(2b)の材料及び製法は第13の実施の形態と同様である。
【0125】
以上の基体11a上の薄膜電磁石12は保護層11bによって平坦化され、磁極となる第1磁気ヨーク(12b)が平坦面に露出した基体11となる。
【0126】
基体11上に、電気接点14、及び、電気接点15を配備した片持ち梁の可動部13aを支柱部13bに固定した可動構造体13が配備されている。支柱部13bは接続部同様、第1磁気ヨークと同様の磁性体で形成することができる。
【0127】
可動部13aを磁性体とすることで、可動部端部と、薄膜電磁石12の磁極である第1磁気ヨーク(12b)上面との間に電磁力が働く。
【0128】
可動部13aの磁性体としては、第6の実施形態と同様に、軟磁性体を使用することができる。薄膜電磁石12のコイル12cに電流を流すことによって、第1磁気ヨーク(12b)に磁束が発生し、第1磁気ヨーク側に可動部13aが引き寄せられる。これによって電気接点が接触しスイッチングが行われる。
【0129】
また、可動部13aの磁性体としては、第6の実施形態と同様に、残留磁化を形成しやすい磁性体を使用することができる。残留磁化を形成しやすい磁性体により構成された可動部13aを、図15の左右方向に着磁し、例えば、左側をN極、右側をS極とする。
【0130】
薄膜電磁石の動作は、第13の実施の形態と同様である。
【0131】
可動部3aとしては、上記の磁性体を可動部3aの部分的に適用することも可能である。
【0132】
【発明の効果】
以上説明した本発明によれば、磁気ヨークの磁化が容易な薄膜電磁石が実現することから、磁極間の引力と反発力によって、大きな力での大きな空間動作の可能な、光スイッチ、リレースイッチ、波長可変な半導体レーザや光学フィルタなどに好適で製造し易いMEMSスイッチ素子が実現する。また、電磁力を用いたMEMSデバイスの低消費電力化が実現する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の薄膜電磁石である。
【図2】本発明の第1の実施の形態の薄膜電磁石の製造工程である。
【図3】本発明の第2の実施の形態の薄膜電磁石である。
【図4】本発明の第3の実施の形態の薄膜電磁石である。
【図5】本発明の第4の実施の形態の薄膜電磁石である。
【図6】本発明の第5の実施の形態の薄膜電磁石である。
【図7】本発明の第6の実施の形態のMEMSスイッチング素子である。
【図8】本発明の第6の実施の形態のMEMSスイッチング素子の製造工程である。
【図9】本発明の第7の実施の形態のMEMSスイッチング素子である。
【図10】本発明の第8の実施の形態のMEMSスイッチング素子である。
【図11】本発明の第9の実施の形態のMEMSスイッチング素子である。
【図12】本発明の第10の実施の形態のMEMSスイッチング素子である。
【図13】本発明の第11の実施の形態のMEMSスイッチング素子である。
【図14】本発明の第12の実施の形態のMEMSスイッチング素子である。
【図15】本発明の第13の実施の形態のMEMSスイッチング素子である。
【図16】本発明の第14の実施の形態のMEMSスイッチング素子である。
【図17】従来の形態のMEMSスイッチング素子である。
【図18】従来の形態のMEMSスイッチング素子である。
【図19】従来の形態のMEMSスイッチング素子である。
【図20】電磁力と静電力の比較図である。
【符号の説明】
1a 基体
1b 保護層
2a 第2磁気ヨーク
2b 第1磁気ヨーク
2c 薄膜コイル
3a 可動部
3b 支柱部
3c ばね部
4、5 電気接点
6 絶縁層
Claims (24)
- 磁気ヨークと薄膜コイルを有する薄膜電磁石であって、
前記磁気ヨークが第1磁気ヨーク部および第2磁気ヨーク部を有し、
前記第1磁気ヨーク部が前記薄膜コイルの巻線中心部で薄膜コイルに交差し、
前記第2磁気ヨークが前記薄膜コイルの下層又は上層の一部又は全体に配置されており、
前記第1磁気ヨークと前記第2磁気ヨークとが接続していることを特徴とする薄膜電磁石。 - 前記薄膜電磁石の磁極が、前記第1磁気ヨーク部の端面であって、前記第1磁気ヨークと前記第2磁気ヨークとが接続している側と反対側の面、および、前記第2磁気ヨークの外周に形成されることを特徴とする請求項1記載の薄膜電磁石。
- 薄膜電磁石と可動構造体とからなるスイッチング素子であって、
前記薄膜電磁石は、磁気ヨークと薄膜コイルを有し、
前記磁気ヨークが第1磁気ヨーク部および第2磁気ヨーク部を有し、
前記第1磁気ヨーク部が前記薄膜コイルの巻線中心部で薄膜コイルに交差し、
前記第2磁気ヨークが前記薄膜コイルの下層又は上層の一部又は全体に配置されており、
前記第1磁気ヨークと前記第2磁気ヨークとが接続しており、
前記可動構造体は、支柱部及び可動部を有する可動構造体であり、
前記薄膜電磁石と前記可動構造体の可動部との間に作用する電磁力によってスイッチングを行うことを特徴とするスイッチング素子。 - 前記薄膜電磁石の磁極が、前記第1磁気ヨーク部の端面であって、前記第1磁気ヨークと前記第2磁気ヨークとが接続している側と反対側の面、および、前記第2磁気ヨークの外周に形成されることを特徴とする請求項3記載のスイッチング素子。
- 前記第1磁気ヨーク部が、前記可動構造体の可動部と対向していることを特徴とする請求項3記載のスイッチング素子。
- 前記可動部がばね部によって支柱部に接続されていることを特徴とする請求項3記載のスイッチング素子。
- 前記ばね部がアモルファス金属材料からなることを特徴とする請求項6記載のスイッチング素子。
- 前記ばね部が形状記憶金属材料からなることを特徴とする請求項6記載のスイッチング素子。
- 前記可動部が磁性体を有することを特徴とする請求項3記載のスイッチング素子。
- 前記可動部の磁性体が残留磁化を有することを特徴とする請求項9記載のスイッチング素子。
- 前記薄膜電磁石を埋め込んだ基体上に第1電気接点を配備するとともに、第2電気接点を配備した可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、
前記可動部の端部の少なくとも一方に前記第2電気接点が配置されており、
前記基体には、前記可動部の電気接点に対向した第1電気接点と、前記可動部の端部の少なくとも一方に対向して前記薄膜電磁石が配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に第1電気接点を配備し、第2電気接点を配備した可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、
前記可動部の端部の少なくとも一方に第2電気接点が配置されており、
前記基体には、前記可動部の第2電気接点に対向した第1電気接点と、前記可動部の端部の少なくとも一方に対向して前記薄膜電磁石が配置され、前記基体の一部が前記第2磁気ヨークを兼用していることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に第1電気接点を配備し、第2電気接点を配備した可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、
前記可動部の端部の少なくとも一方に第2電気接点が配置されており、
前記基体には、前記第2電気接点に対向した第1電気接点と、前記可動部の端部の少なくとも一方に対向して前記第1磁気ヨークが配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部は光を反射するために配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向して前記薄膜電磁石が配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記可動部の表面の一部又は全体は金又は銀で覆われていることを特徴とする請求項14記載のスイッチング素子。
- 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部は光を反射するために配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向した前記薄膜電磁石が配置され前記基体の一部が前記第2磁気ヨークを兼用していることを特徴とする請求項3記載のスイッチング素子。 - 前記可動部の表面の一部又は全体は金又は銀で覆われていることを特徴とする請求項16記載のスイッチング素子。
- 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部は光を反射するために配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向した前記第1磁気ヨークが配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記可動部の表面の一部もしくは全体は金、あるいは、銀で覆われていることを特徴とする、請求項18記載のスイッチング素子。
- 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部上にはミラー構造体が配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向して前記薄膜電磁石が配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部上にはミラー構造体が配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向して前記薄膜電磁石が配置され前記基体の一部が前記第2磁気ヨークを兼用していることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に、可動部をばね部を介して支柱部に固定した可動構造体が配備されたスイッチング素子であって、
前記可動部はその両側からばね部を介して支柱部により支えられている可動構造体であって、前記可動部はばね部との接点位置を支点とし、かつ、前記可動部は前記支点の両側に延在しており、かつ、前記可動部上にはミラー構造体が配備され、
前記基体には、前記可動部の端部の少なくとも一方に対向して前記第1磁気ヨークが配置されたことを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に第1電気接点を配備し、第2電気接点を配備した片持ち梁の可動部と支柱部とからなる可動構造体が配備されたスイッチング素子であって、
前記可動部の端部に第1電気接点が配置されており、
前記基体には、前記可動部の第2電気接点に対向して第1電気接点を配置し、前記可動部の端部に対向して前記薄膜電磁石の磁極が配置されることを特徴とする請求項3記載のスイッチング素子。 - 前記薄膜電磁石を埋め込んだ基体上に第1電気接点を配備し、第2電気接点を配備した片持ち梁の可動部と支柱部とからなる可動構造体が配備されたスイッチング素子であって、
前記可動部の端部に第2電気接点が配置されており、
前記基体には、前記可動部の第2電気接点に対向して第1電気接点を配置し、前記可動部の端部に対向して薄膜電磁石の磁気ヨークを構成する前記第1磁気ヨークが配置され、前記基体の一部が前記第2磁気ヨークを兼用していることを特徴とする請求項3記載のスイッチング素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001247239A JP3750574B2 (ja) | 2001-08-16 | 2001-08-16 | 薄膜電磁石およびこれを用いたスイッチング素子 |
PCT/JP2002/008292 WO2003017294A1 (en) | 2001-08-16 | 2002-08-15 | Thin film electromagnet and switching device comprising it |
US10/486,687 US7042319B2 (en) | 2001-08-16 | 2002-08-15 | Thin film electromagnet and switching device comprising it |
TW091118385A TW575736B (en) | 2001-08-16 | 2002-08-15 | Thin film electro magneto and switching element using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001247239A JP3750574B2 (ja) | 2001-08-16 | 2001-08-16 | 薄膜電磁石およびこれを用いたスイッチング素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003057572A JP2003057572A (ja) | 2003-02-26 |
JP3750574B2 true JP3750574B2 (ja) | 2006-03-01 |
Family
ID=19076622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001247239A Expired - Fee Related JP3750574B2 (ja) | 2001-08-16 | 2001-08-16 | 薄膜電磁石およびこれを用いたスイッチング素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7042319B2 (ja) |
JP (1) | JP3750574B2 (ja) |
TW (1) | TW575736B (ja) |
WO (1) | WO2003017294A1 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7184193B2 (en) * | 2004-10-05 | 2007-02-27 | Hewlett-Packard Development Company, L.P. | Systems and methods for amorphous flexures in micro-electro mechanical systems |
US7235750B1 (en) * | 2005-01-31 | 2007-06-26 | United States Of America As Represented By The Secretary Of The Air Force | Radio frequency MEMS switch contact metal selection |
KR20060092424A (ko) * | 2005-02-17 | 2006-08-23 | 삼성전자주식회사 | 스위치패드 및 그것을 구비한 마이크로 스위치 |
JP2006286805A (ja) * | 2005-03-31 | 2006-10-19 | Fujitsu Ltd | 可変インダクタ |
JP4552768B2 (ja) * | 2005-06-14 | 2010-09-29 | ソニー株式会社 | 可動素子、ならびにその可動素子を内蔵する半導体デバイス、モジュールおよび電子機器 |
US7847669B2 (en) * | 2006-12-06 | 2010-12-07 | Georgia Tech Research Corporation | Micro-electromechanical switched tunable inductor |
US8451077B2 (en) | 2008-04-22 | 2013-05-28 | International Business Machines Corporation | MEMS switches with reduced switching voltage and methods of manufacture |
US7902946B2 (en) * | 2008-07-11 | 2011-03-08 | National Semiconductor Corporation | MEMS relay with a flux path that is decoupled from an electrical path through the switch and a suspension structure that is independent of the core structure and a method of forming the same |
US8836454B2 (en) * | 2009-08-11 | 2014-09-16 | Telepath Networks, Inc. | Miniature magnetic switch structures |
US8576029B2 (en) * | 2010-06-17 | 2013-11-05 | General Electric Company | MEMS switching array having a substrate arranged to conduct switching current |
US8432240B2 (en) * | 2010-07-16 | 2013-04-30 | Telepath Networks, Inc. | Miniature magnetic switch structures |
US8957747B2 (en) | 2010-10-27 | 2015-02-17 | Telepath Networks, Inc. | Multi integrated switching device structures |
US8378766B2 (en) * | 2011-02-03 | 2013-02-19 | National Semiconductor Corporation | MEMS relay and method of forming the MEMS relay |
JP5935099B2 (ja) * | 2011-03-30 | 2016-06-15 | 国立大学法人東北大学 | マイクロアクチュエータ |
US8635765B2 (en) * | 2011-06-15 | 2014-01-28 | International Business Machines Corporation | Method of forming micro-electrical-mechanical structure (MEMS) |
EP2761640B1 (en) | 2011-09-30 | 2016-08-10 | Telepath Networks, Inc. | Multi integrated switching device structures |
US20130207754A1 (en) * | 2012-02-14 | 2013-08-15 | U.S. Government As Represented By The Secretary Of The Army | Magnetic flux switch |
US8552824B1 (en) * | 2012-04-03 | 2013-10-08 | Hamilton Sundstrand Corporation | Integrated planar electromechanical contactors |
US20140292462A1 (en) * | 2013-03-28 | 2014-10-02 | Inpaq Technology Co., Ltd. | Power inductor and method for fabricating the same |
WO2015092907A1 (ja) * | 2013-12-19 | 2015-06-25 | パイオニア株式会社 | 駆動装置 |
JP6640221B2 (ja) * | 2015-07-23 | 2020-02-05 | オリンパス株式会社 | 光走査型内視鏡および光ファイバ走査装置 |
WO2017134518A1 (en) | 2016-02-04 | 2017-08-10 | Analog Devices Global | Active opening mems switch device |
US20180061569A1 (en) * | 2016-08-26 | 2018-03-01 | Analog Devices Global | Methods of manufacture of an inductive component and an inductive component |
DE102018113765B4 (de) | 2017-06-09 | 2023-11-02 | Analog Devices International Unlimited Company | Transformator mit einer durchkontaktierung für einen magnetkern |
US10825628B2 (en) * | 2017-07-17 | 2020-11-03 | Analog Devices Global Unlimited Company | Electromagnetically actuated microelectromechanical switch |
JP6950613B2 (ja) * | 2018-04-11 | 2021-10-13 | Tdk株式会社 | 磁気作動型memsスイッチ |
JP2018128700A (ja) * | 2018-05-09 | 2018-08-16 | パイオニア株式会社 | 駆動装置 |
JP2022033852A (ja) * | 2020-01-17 | 2022-03-02 | パイオニア株式会社 | 駆動装置 |
JP2020092594A (ja) * | 2020-01-17 | 2020-06-11 | パイオニア株式会社 | 駆動装置 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5216537A (en) * | 1990-06-29 | 1993-06-01 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
US5018256A (en) * | 1990-06-29 | 1991-05-28 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
US5083857A (en) * | 1990-06-29 | 1992-01-28 | Texas Instruments Incorporated | Multi-level deformable mirror device |
US5099353A (en) * | 1990-06-29 | 1992-03-24 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
US5331454A (en) * | 1990-11-13 | 1994-07-19 | Texas Instruments Incorporated | Low reset voltage process for DMD |
JP3465940B2 (ja) * | 1993-12-20 | 2003-11-10 | 日本信号株式会社 | プレーナー型電磁リレー及びその製造方法 |
US5717513A (en) * | 1995-01-10 | 1998-02-10 | Texas Instruments Incorporated | Unsticking mirror elements of digital micromirror device |
US5617242A (en) * | 1995-01-10 | 1997-04-01 | Texas Instruments Incorporated | Repair of digital micromirror device having white defects |
US5535047A (en) * | 1995-04-18 | 1996-07-09 | Texas Instruments Incorporated | Active yoke hidden hinge digital micromirror device |
US5578976A (en) * | 1995-06-22 | 1996-11-26 | Rockwell International Corporation | Micro electromechanical RF switch |
JP3926871B2 (ja) * | 1995-09-11 | 2007-06-06 | テキサス インスツルメンツ インコーポレイテツド | デジタルマイクロミラーリセット方法 |
US5638946A (en) * | 1996-01-11 | 1997-06-17 | Northeastern University | Micromechanical switch with insulated switch contact |
US5939785A (en) * | 1996-04-12 | 1999-08-17 | Texas Instruments Incorporated | Micromechanical device including time-release passivant |
US5771116A (en) * | 1996-10-21 | 1998-06-23 | Texas Instruments Incorporated | Multiple bias level reset waveform for enhanced DMD control |
US6201629B1 (en) * | 1997-08-27 | 2001-03-13 | Microoptical Corporation | Torsional micro-mechanical mirror system |
US6075239A (en) | 1997-09-10 | 2000-06-13 | Lucent Technologies, Inc. | Article comprising a light-actuated micromechanical photonic switch |
US5964242A (en) * | 1998-01-23 | 1999-10-12 | Aesop, Inc. | Method of and apparatus for substance processing with small opening gates actuated and controlled by large displacement members having fine surface finishing |
US6046659A (en) * | 1998-05-15 | 2000-04-04 | Hughes Electronics Corporation | Design and fabrication of broadband surface-micromachined micro-electro-mechanical switches for microwave and millimeter-wave applications |
US5995688A (en) | 1998-06-01 | 1999-11-30 | Lucent Technologies, Inc. | Micro-opto-electromechanical devices and method therefor |
US6100477A (en) * | 1998-07-17 | 2000-08-08 | Texas Instruments Incorporated | Recessed etch RF micro-electro-mechanical switch |
US6123985A (en) * | 1998-10-28 | 2000-09-26 | Solus Micro Technologies, Inc. | Method of fabricating a membrane-actuated charge controlled mirror (CCM) |
JP2000260639A (ja) * | 1999-03-11 | 2000-09-22 | Murata Mfg Co Ltd | コイル装置およびこれを用いたスイッチング電源装置 |
US6069540A (en) * | 1999-04-23 | 2000-05-30 | Trw Inc. | Micro-electro system (MEMS) switch |
US6057520A (en) * | 1999-06-30 | 2000-05-02 | Mcnc | Arc resistant high voltage micromachined electrostatic switch |
US6124650A (en) * | 1999-10-15 | 2000-09-26 | Lucent Technologies Inc. | Non-volatile MEMS micro-relays using magnetic actuators |
EP1168386B1 (en) * | 2000-06-20 | 2009-02-11 | Murata Manufacturing Co., Ltd. | Coil apparatus and manufacturing method for the same |
-
2001
- 2001-08-16 JP JP2001247239A patent/JP3750574B2/ja not_active Expired - Fee Related
-
2002
- 2002-08-15 TW TW091118385A patent/TW575736B/zh not_active IP Right Cessation
- 2002-08-15 WO PCT/JP2002/008292 patent/WO2003017294A1/ja active Application Filing
- 2002-08-15 US US10/486,687 patent/US7042319B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20050047010A1 (en) | 2005-03-03 |
WO2003017294A1 (en) | 2003-02-27 |
US7042319B2 (en) | 2006-05-09 |
JP2003057572A (ja) | 2003-02-26 |
TW575736B (en) | 2004-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3750574B2 (ja) | 薄膜電磁石およびこれを用いたスイッチング素子 | |
US6469603B1 (en) | Electronically switching latching micro-magnetic relay and method of operating same | |
US6924966B2 (en) | Spring loaded bi-stable MEMS switch | |
EP1639613B1 (fr) | Micro-commutateur bistable a faible consommation | |
CA2328701A1 (en) | Mems magnetically actuated switches and associated switching arrays | |
US8354902B2 (en) | Structure of spring and actuator using the spring | |
EP1918758A2 (en) | Electromagnetic micro-actuator | |
JP2007504608A (ja) | 微小電気機械システムのスイッチ | |
US20100182111A1 (en) | Micro relay | |
KR100992026B1 (ko) | 마이크로 캐비티 mems 장치 및 그 제조방법 | |
CN101138060B (zh) | 具有电磁控制的微系统 | |
EP1425764B1 (fr) | Actionneur magnetique bistable | |
US7843023B2 (en) | Electromechanical switch | |
US20140113449A1 (en) | Nanoelectromechanical Logic Devices | |
TW569354B (en) | Thin film structure member, manufacturing method thereof, and switching element using the thin film structure member | |
US20050104694A1 (en) | Low-voltage and low-power toggle type-SPDT RF MEMS switch actuated by combination of electromagnetic and electrostatic forces | |
JP2011060766A (ja) | 相互嵌合電極を備えた電気機械アクチュエータ | |
US7300815B2 (en) | Method for fabricating a gold contact on a microswitch | |
US20020196112A1 (en) | Electronically switching latching micro-magnetic relay and method of operating same | |
JP3981120B2 (ja) | 電気接点装置 | |
JP2007026804A (ja) | 高周波マイクロマシンスイッチの構造およびその製造方法 | |
JP4059200B2 (ja) | マイクロリレー | |
KR100644893B1 (ko) | 전자기력과 정전기력으로 구동하는 마이크로 미러 | |
JP2007250434A (ja) | マイクロマシンスイッチ及びその製造方法 | |
US20050127588A1 (en) | Microtechnically produced swiveling platform with magnetic drive and stop positions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040421 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050422 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050516 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051128 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131216 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |