JP3749704B2 - High strength steel pipe with excellent buckling resistance and method for producing the same - Google Patents
High strength steel pipe with excellent buckling resistance and method for producing the same Download PDFInfo
- Publication number
- JP3749704B2 JP3749704B2 JP2002308183A JP2002308183A JP3749704B2 JP 3749704 B2 JP3749704 B2 JP 3749704B2 JP 2002308183 A JP2002308183 A JP 2002308183A JP 2002308183 A JP2002308183 A JP 2002308183A JP 3749704 B2 JP3749704 B2 JP 3749704B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- temperature
- strength steel
- buckling resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明に属する技術分野】
本発明は、局所座屈特性等の変形特性に優れ、かつ低温靭性に優れた高強度鋼管に関し、ラインパイプ等の配管、あるいは、鋼管柱、鋼管杭等の構造用鋼管に好適な、特に圧縮および曲げにおける耐座屈特性に優れた鋼管に関するものである。
【0002】
【従来の技術】
原油・天然ガスを輸送するラインパイプ、あるいは、柱や杭に使用される構造用鋼管は、これまで主として高強度・高靱化が求められてきたが、最近になって、耐震特性等の観点から強度・靭性に加えて変形特性に優れた高強度鋼管の開発ニーズが高まっている。
【0003】
ラインパイプ、鋼管柱および鋼管杭は、地震等が発生した際には、主として圧縮あるいは曲げ変形による局部的な座屈によって破壊する。これまでに耐局部座屈特性の向上には、低降伏化が有効であることが報告されている。また、例えば、特許文献1には、ミクロ組織をフェライトとマルテンサイトあるいはベイナイトを含む硬質第二相の複合組織とし、加工硬化指数(以下、n値)を高くした鋼管およびその製造方法が開示されている。しかしながら、この方法は低温の二相域で圧延するものであり、フェライトと硬質第二相が層状に形成されるため、セパレーションが発生して靭性が大きく劣化するという問題があった。
【0004】
【特許文献1】
特開平11−279700号公報
【0005】
【発明が解決しようとする課題】
本発明は、ラインパイプ等の配管、あるいは、鋼管柱、鋼管杭等の構造用鋼管に好適な、圧縮および曲げによる耐座屈特性に優れかつ低温靭性にも優れた高強度鋼管およびその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は、低温靭性を確保しつつn値を向上できる組織制御方法について詳細な調査を行った。その結果、鋼板製造条件で厳密な冷却制御を行い、ミクロ組織を、微細なフェライトと、残留オーステナイトを含むベイナイトおよびマルテンサイトとの複合組織とすることで、低温靭性を損なうことなくn値を向上させることを見いだし、耐座屈特性に優れた高強度鋼管およびその製造方法を発明するに至った。本発明の要旨は、以下の通りである。
(1) 質量%で、C:0.02%〜0.15%、Si:0.1%〜2.0%、Mn:0.5%〜2.5%、Al:0.01%〜0.1%、N:0.01%以下、P:0.02%以下、S:0.005%以下を含有し、さらに、Nb:0.1%以下、V:0.1%以下、Ti:0.1%以下の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、平均結晶粒径が10μm以下、面積率が70〜90%のフェライトと残部が残留オーステナイト、ベイナイトおよびマルテンサイトからなるミクロ組織を有し、X線解析による残留オーステナイト量が体積分率で5〜15%であり、肉厚が10mm以上、外径が100mm以上であることを特徴とする耐座屈特性に優れた高強度鋼管。
(2) 質量%で、さらに、Mo:1.0%以下、Cu:2.0%以下、Ni:2.0%以下、Cr:1.0%以下の1種または2種以上を含有することを特徴とする(1)に記載の耐座屈特性に優れた高強度鋼管。
(3) 質量%で、さらに、B:0.005%以下を含有することを特徴とすることを特徴とする(1)または(2)に記載の耐座屈特性に優れた高強度鋼管。
(4) 質量%で、さらに、Ca:0.01%以下、Mg:0.1%以下、REM:0.02%以下の1種または2種以上を含有することを特徴とする(1)〜(3)の何れか1項に記載の耐座屈特性に優れた高強度鋼管。
(5) 管軸方向のn値が0.2以上、かつ−20℃においてシャルピー吸収エネルギーが150J以上であることを特徴とする(1)〜(4)の何れか1項に記載の耐座屈特性に優れた高強度鋼管。
(6) (1)〜(4)の何れか1項に記載の成分からなるスラブを1050℃以上に加熱後、再結晶温度以上で粗圧延を行い、その後引き続き、Ar3以上900℃以下で累積圧下量が65%以上の仕上げ圧延を行い、Ar3以上の温度から5℃/s以上で冷却し、Ts−50[℃]〜Ts+100[℃]の範囲で30〜300秒保持した後、20℃/s以上で350〜450℃の温度まで冷却し、放冷した鋼板を、冷間成形で中空形状とした後、シーム溶接を施すことを特徴とする耐座屈特性に優れた高強度鋼管の製造方法。ただし、各元素の単位を質量%として、
Ts[℃]=780−270×C−90×Mn−37×Ni−70×Cr−83×Mo ・・・ (1)
【0007】
【発明の実施の形態】
本発明者は、座屈が歪み集中部分の局部変形であることから、歪み集中により塑性変形を生じた部分を著しく硬化させて、局部変形の発生を抑制する方法を指向した。これには、歪み集中部分が塑性変形によって著しく硬化することが必要であり、鋼材中に残留させたオーステナイトの加工誘起マルテンサイト変態の利用が有効であると考えた。
【0008】
そこで、耐座屈特性に及ぼす残留オーステナイト量の影響を明らかにするため、以下の実験を行った。表1に示すような残留オーステナイト量が異なる外径690mm、肉厚19mmの鋼管を用い、4点曲げ試験を行った。
【0009】
【表1】
【0010】
アーム間の距離を1000mmとし、試験体中央の曲げ外側部に歪みゲージを貼り、アームに荷重を負荷しながら歪みを測定した。最大荷重を示す歪みεmを耐座屈特性として表し、残留オーステナイト量との関係を示したものが図1である。このように、残留オーステナイト量を増やすと耐座屈特性が高くなることを新たな知見として得た。
【0011】
なお、残留オーステナイト量の測定は、鋼管の肉厚中央部より小片を採取し、MoのKα線を用いたX線解析によって行い、体積分率として算出した。具体的には、X線回折法によりフェライトの(200)面、(211)面およびオーステナイトの(200)面、(220)面、(311)面の積分反射強度を測定し、Journal of The iron and steel institute,206(1968)P60に示された方法によって求めた。
【0012】
また、本発明者は、残留オーステナイト量の制御には、オーステナイトのベイナイト変態およびマルテンサイト変態に及ぼす影響の大きい、圧延後の冷却が有効であると考えた。そこで、表2に示すスラブを1100℃に再加熱し、再結晶温度域で粗圧延を行い、引き続き累積圧下率80%の未再結晶圧延を行って16mm厚に仕上げ、種々のパターンで冷却する小型圧延実験を行った。
【0013】
【表2】
【0014】
その結果、図2に示す二段冷却パターンが有効であることを見いだし、残留オーステナイトを含むベイナイトおよびマルテンサイトとフェライトとの複合組織を得る製造方法を明らかにした。
【0015】
すなわち、圧延後、フェライト変態を抑制するためにAr3[℃]以上の温度から第一段冷却を開始し、十分なフェライトが生成する温度で冷却を終了して保持した後、残留オーステナイトのフェライトおよび炭化物への分解を抑制してベイナイト変態させるために第二段冷却し、その後放冷する。これにより、フェライトの平均粒径を微細化し、安定な残留オーステナイトを生成させることができる。
【0016】
なお、第一段冷却を終了して十分なフェライトを生成させるためには、下記(1)式によって鋼中の化学成分から計算されるTs[℃]よりも100℃高い温度から50℃低い温度で保持することが必要であることを見いだした。
Ts[℃]=780−270×C−90×Mn−37×Ni−70×Cr−83×Mo ・・・ (1)
以下、成分含有量の規定した理由について述べる。
【0017】
C量は、0.02〜0.15%以下に限定する。Cは高強度化には最も有効な元素であり、十分な強度を得るためには0.02%以上は必要である。しかしながら、過度に多くなると、溶接性が悪くなることから上限を0.15%以下とした。
【0018】
Siは脱酸あるいは強度向上に有効であるとともに、安定な残留オーステナイトの生成に有効な元素である。その効果を得るためには0.1%以上必要であるが、2.0%以上含有すると溶接熱影響部の靭性が著しく劣化する。したがって、Siの添加量を0.1〜2.0%の範囲とした。
【0019】
Mnは強度上昇に有効な元素であり、十分な強度向上を得るためには0.5%以上の添加が必要である。しかしながら、2.5%よりも多く含有すると伸びが確保できなくなり、上限を2.5%以下とした。
【0020】
PおよびSは不純物であり、Pは粒界に偏析し、また、SはMnSとして析出する。PおよびSはそれぞれ、0.02%超および0.005%超を含有すると靭性を劣化させるので、PおよびSの上限は、それぞれ0.02%以下、0.005%以下とする。
【0021】
Alは強力な脱酸元素であり、組織微細化にも寄与する。脱酸するためには、0.01%以上必要である。ただし、0.1%超となると溶接熱影響部の靭性を劣化させるので、上限を0.1%とした。
【0022】
Nは強化元素として有効であるが、0.01%超を含有すると固溶N量が多くなり、伸びを著しく劣化させるので、上限を0.01%以下とした。
【0023】
Nb、V、Tiは強化のため1種または2種以上含有する。これらは炭窒化物を形成し、析出強化として寄与する。しかしながら、それぞれ0.1%よりも多く含有すると粗大な析出物として存在し靭性を劣化させることから、それぞれの上限を0.1%以下とした。下限は、特に限定しないが、析出強化を発揮するためそれぞれ0.01%以上が好ましい。
【0024】
さらに、必要に応じて、Mo、Cu、Ni、Cr、B、Ca、Mg、REMの1種または2種以上を含有しても良い。
【0025】
Mo、Cu、Ni、Crは焼き入れ性を高め、高強度化に寄与する。しかし、添加元素が多すぎると、経済性だけでなく、溶接熱影響部の靭性あるいは現地溶接性を劣化させるので、Mo、Cu、Ni、Crの上限を、それぞれ、1.0%、2.0%、2.0%、1.0%とすることが好ましい。強化の効果は得るためには、Mo、Cu、Ni、Crがそれぞれ0.05%以上含有することが好ましい。
【0026】
Bは少量で焼き入れ性を大幅に高め強化に寄与する。しかしながら、多量に添加すると、伸びの劣化、溶接熱影響部の硬化を招くので、上限を0.005%以下とすることが好ましい。強化の効果を得るためには、0.0001%以上含有することが好ましい。
【0027】
Ca、REMは硫化物の形態を制御し、靭性の向上に寄与する。しかしながら過度に添加すると、大型の介在物として存在しかえって靭性を劣化させるので、それぞれの上限を0.01%、0.02%以下とすることが好ましい。硫化物の形態制御のためには、それぞれ0.0001%以上含有することが好ましい。
【0028】
Mgは巨力な脱酸元素であり、微細な酸化物として分散した場合、溶接熱影響部の靭性向上に大きく寄与する。しかしながら、0.1%超を添加すると粗大な酸化物として存在しかえって靭性を劣化させるので、上限を0.1%とすることが好ましい。靭性向上の効果を得るためには、0.0001%以上含有することが好ましい。
【0029】
次にミクロ組織について説明する。
【0030】
フェライトの平均結晶粒径の微細化によって靭性が向上するが、−20℃におけるシャルピー吸収エネルギーを150J以上とするには、フェライトの平均結晶粒径を10μm以下とする必要がある。フェライトの平均結晶粒径は微細であるほど好ましいが、現状の技術では1μm程度が限界である。また、フェライトの面積率は、70%未満では硬質のベイナイトおよびマルテンサイト量が多くなるため耐座屈特性およびn値が低下し、90%超では強度が低下する。したがって、フェライトの面積率を70〜90%の範囲とした。ミクロ組織において、面積率70〜90%のフェライトの残部は、残留オーステナイトを含むベイナイトおよびマルテンサイトである。
【0031】
なお、フェライトの平均結晶粒径および面積率は以下の方法で求めることができる。鋼管の肉厚中心部より小片を切り出し、管軸方向に平行な断面を鏡面研磨後、エッチングし、現出した組織を観察し、フェライトとベイナイトおよびマルテンサイトを区別して、任意の10視野におけるフェライトの平均結晶粒径をJIS G 0552に準じて切断法によって求め、平均値をフェライトの平均結晶粒径とする。フェライトの面積率は、画像解析装置を用いてフェライト粒の面積の和を求め、視野の面積で除した百分率として算出した。
【0032】
耐座屈特性が顕著に向上するには、残留オーステナイトの体積分率は5%以上が必要である。しかしながら、15%超になると靭性を損ねるため、残留オーステナイトの体積分率は、5〜15%に限定した。なお、残留オーステナイトの体積分率は、ミクロ組織による測定が難しいため、X線解析により求めることとする。
【0033】
本発明の鋼管は、その使用環境で求められる強度を満足するために、鋼管のサイズを肉厚10mm以上、外径100mm以上に限定する。なお現状の技術では、肉厚および外形をそれぞれ50mm超および1200mm超とすることは困難である。
【0034】
n値の向上とともに耐座屈特性が向上するが、この効果を得るにはn値を0.2以上とすることが好ましい。n値の上限は規定しないが、現状の技術では0.26超とすることは困難である。なお、n値の測定は、鋼管の管軸方向を長手としてJIS Z 2201に準じて12B号または12C号の弧状引張試験片を採取し、JIS Z 2241に準じて引張試験を行い、歪みが1%から8%の範囲の加工硬化率として求めることができる。
【0035】
次に製造方法について述べる。
【0036】
スラブの加熱温度は、熱間圧延でNbの炭窒化物を微細に析出させるために、Nbが固溶する1050℃以上に限定する。上限は特に規定しないが、オーステナイト粒径の粗大化を抑制して靭性を向上させるためには、スラブの加熱温度の上限は1250℃が好ましい。
【0037】
仕上げ圧延は、フェライトの平均結晶粒径を微細化するために再結晶温度未満の900℃以下で行うことが必要である。また、圧延終了温度が、Ar3[℃]を下回ると圧延による加工歪みを導入されたフェライトが残存し、靭性を大きく劣化させる。したがって、圧延終了温度はAr3以上に限定する。さらに、仕上げ圧延の累積圧下量は、フェライトの平均結晶粒径を10μm以下とするために65%以上に限定する。上限は規定しないが、技術的な制限から90%以下にすることが好ましい。
【0038】
なお、Ar3は、鋼中の化学成分から、各元素の単位を質量%として、次式によって求められる。
Ar3[℃]=921−325×C+33×Si+287×P+40×Al−92×(Mn+Mo+Cu)−46×(Cr+Ni)
本発明において、圧延後の冷却はフェライトの平均結晶粒径の微細化および残留オーステナイト量の制御に最も重要なプロセスである。仕上げ圧延後、フェライト変態を抑制するために第一段冷却し、十分なフェライトを生成させるための中間保持を行い、残留オーステナイトのフェライトと炭化物への分解を抑制するために第二段冷却を行い、その後放冷する。
【0039】
第一段冷却は、熱延後のフェライト変態を抑制するために、開始温度をAr3以上とし、冷却速度を5℃/s以上とする。これは、開始温度がAr3未満、冷却速度が5℃/s未満であると粗大なフェライト粒が生成し、靭性が低下するためである。第一段冷却は、Ar3よりも高い温度であれば良いため、上限を規定しない。したがって、仕上げ圧延の終了直後に開始しても良い。冷却速度の上限は規定しないが、現状の技術では300℃/sを超えることは困難である。
【0040】
さらに、十分なフェライト生成をさせるためには、鋼中の化学成分から各元素の単位を質量%として、下記(1)式によって求められるTs[℃]よりも100℃高い温度からTSよりも50℃低い温度の範囲で保持する必要がある。その理由は、TS+100℃超の温度で保持するとフェライトの平均結晶粒径が粗大化して靭性が低下し、TS−50℃よりも低い温度で保持するとベイナイト変態が起こり、フェライト面積率が減少して耐座屈特性が低下するためである。
【0041】
Ts[℃]=780−270×C−90×Mn−37×Ni−70×Cr−83×Mo ・・・ (1)
保持時間は、フェライトを十分に生成させ、面積率を70%以上とするために、30秒以上必要である。ただし、300秒超になると生成したフェライトの平均結晶粒径が粗大化して靭性が低下するため、上限を300秒に限定する。なお、この保持時間内に急激な温度低下が生じることは好ましくない。通常は、放冷すれば良いが、保熱炉、保熱カバーによって温度低下を抑制しても構わない。
【0042】
この中間保持の後、第二段冷却を行うが、これは残留オーステナイト量を5〜10%に制御して耐座屈特性を向上させるために20℃/s以上で行う必要がある。その理由は、冷却を20℃/s未満で行うとベイナイト中の残留オーステナイトがフェライトと炭化物に分解が多量に生成し、残留オーステナイト量が低下するためである。上限は特に規定しないが、現状の加速冷却装置の制限で、100℃/sを超えることは困難である。
【0043】
また、耐座屈特性の向上のため残留オーステナイトを生成させるには、第二段冷却の終了温度を350〜450℃の範囲内とすることが必要である。第二段冷却の終了温度が450℃超では、第二段冷却によって残留オーステナイトが炭化物とフェライトに分解して残留オーステナイト量が減少する。一方、第二段冷却を350℃未満まで行うとマルテンサイト変態が生じて残留オーステナイト量が減少する。したがって、第二段冷却の終了温度は、350℃〜450℃に限定する。
【0044】
造管は冷間加工により成形し、端部をシーム溶接によって接合する製造プロセスで行う。冷間加工はプレス加工、ロール成形の何れでも良く、その組み合わせても構わないが、C成形、U成形およびO成形を行い、端部をシーム溶接して拡管するUOE方式による鋼管製造プロセスが好ましい。シーム溶接は、MAGアーク溶接、サブマージアーク溶接の何れでも良く、その組み合わせでも良い。
【0045】
【実施例】
表3に示す成分の鋼を溶製し、表4に示す条件で熱間圧延して第一段冷却、中間保持および第ニ段冷却を行い、板厚16mmの鋼板を製造した。粗圧延は再結晶温度以上で、仕上げ圧延はAr3以上900℃以下の範囲で行った。その鋼板を冷間成形し、内外面溶接を行った後、拡管を行い、外径690mm、肉厚16mmのUOE鋼管に造管した。
【0046】
鋼管の肉厚中心部より小片を切り出し、管軸方向に平行な断面を鏡面研磨後、ナイタールによりエッチングして現出した組織を観察した。ミクロ組織は、フェライトと、残部が残留オーステナイトを含むベイナイトおよびマルテンサイトであった。フェライトと残留オーステナイトを含むベイナイトおよびマルテンサイトを区別して、任意の10視野におけるフェライトの平均結晶粒径をJIS G0552に準じて切断法によって求め、平均値をフェライトの平均結晶粒径とした。フェライトの面積率は、画像解析装置を用いてフェライト粒の面積の和を求め、視野の面積で除した百分率として算出した。残留オーステナイトの体積分率は、X線解析により求めた。鋼管の溶接部から周方向に90°、180°、270°の位置からJIS Z2201に準じて12C号円弧状引張試験片を採取し、JIS Z 2241に準じて引張特性を測定し、引張強度の平均値を求めた。管軸方向のn値の測定は、歪みが1〜8%における加工硬化率として行い、平均値を求めた。
【0047】
各鋼材の耐座屈特性は、4点曲げ試験によって評価した。試験対のサイズは、肉厚16mm、外径690mm、長さ3000mmとし、押しつけアーム部間の距離を1000mmとした。試験体中央の曲げ外側部に歪みゲージを貼って管軸方向の歪みを測定しながら、アーム部に荷重を負荷し、最大荷重までの歪みεmを座屈歪みとして求め、耐座屈特性の指標とした。
【0048】
靭性の測定は、鋼管の肉厚中央部から周方向を長手としてJIS Z 2202に準じて2mmVノッチのシャルピー試験片を採取し、JIS Z 2242に準じて0℃でのシャルピー試験を行い、吸収エネルギーを測定した。
【0049】
表5に得られた結果を示す。本発明に従って製造した鋼管は、体積分率で5%以上の残留オーステナイト量を有し、n値が0.2以上である結果、従来鋼管と比較して座屈歪みが高いとともに、靭性も良好である。
【0050】
一方、試験No.14は仕上げ圧延の累積圧下量が少なく、試験No.15および16は、第一段冷却開始温度が低く、試験No.22は中間保持の時間が長いため、何れもフェライトの平均結晶粒径が大きくなり靭性が低下している。試験No.17および18は、第一段冷却の冷却速度が遅いため、フェライトの平均結晶粒径が大きくなって靭性が低下し、フェライト面積率が多くなり引張強度がやや低めになっている。
【0051】
試験No.19および20は中間保持の開始温度及び終了温度がともに本発明の範囲よりも低いため、残留オーステナイト量が減少し、耐座屈特性が低下している。試験No.21は中間保持時間が短いため、フェライト面積率が少なく、座屈歪みが低下している。No.23および24は中間保持の終了温度が低いため、試験No.25は第二段冷却速度が遅く、試験No.26は第二段冷却の終了温度が低いため、何れも残留オーステナイト量が少なく、座屈歪みが低い。
【0052】
【表3】
【0053】
【表4】
【0054】
【表5】
【図面の簡単な説明】
【図1】座屈歪みに及ぼす残留オーステナイト体積分率の影響を示す図。
【図2】本発明による二段冷却パターンを示す図。[0001]
[Technical field belonging to the invention]
The present invention relates to a high-strength steel pipe excellent in deformation characteristics such as local buckling characteristics and excellent in low-temperature toughness, particularly suitable for pipes such as line pipes or structural steel pipes such as steel pipe columns and steel pipe piles. Further, the present invention relates to a steel pipe having excellent buckling resistance in bending.
[0002]
[Prior art]
Up until now, structural steel pipes used for crude oil and natural gas transportation pipes or pillars and piles have mainly been required to have high strength and toughness. Therefore, there is a growing need for development of high-strength steel pipes with excellent deformation characteristics in addition to strength and toughness.
[0003]
Line pipes, steel pipe columns and steel pipe piles are destroyed by local buckling mainly due to compression or bending deformation when an earthquake or the like occurs. So far, it has been reported that lowering yield is effective for improving local buckling resistance. For example,
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-279700
[Problems to be solved by the invention]
The present invention is suitable for pipes such as line pipes, or structural steel pipes such as steel pipe columns and steel pipe piles, and is a high strength steel pipe excellent in buckling resistance by compression and bending and excellent in low temperature toughness, and a method for producing the same Is to provide.
[0006]
[Means for Solving the Problems]
The inventor conducted a detailed investigation on a structure control method capable of improving the n value while ensuring low temperature toughness. As a result, strict cooling control is performed under the steel sheet manufacturing conditions, and the microstructure is a composite structure of fine ferrite and bainite and martensite containing retained austenite, thereby improving the n value without impairing low-temperature toughness. As a result, the inventors have invented a high-strength steel pipe excellent in buckling resistance and a manufacturing method thereof. The gist of the present invention is as follows.
(1) By mass%, C: 0.02% to 0.15%, Si: 0.1% to 2.0%, Mn: 0.5% to 2.5%, Al: 0.01% to 0.1%, N: 0.01% or less, P: 0.02% or less, S: 0.005% or less, Nb: 0.1% or less, V: 0.1% or less, Ti: containing one or more of 0.1% or less, the balance being iron and inevitable impurities, the average crystal grain size of 10 μm or less, the area ratio of 70 to 90% ferrite and the balance residual austenite , Having a microstructure composed of bainite and martensite, the amount of retained austenite by X-ray analysis is 5 to 15% in volume fraction, the wall thickness is 10 mm or more, and the outer diameter is 100 mm or more. High strength steel pipe with excellent buckling resistance.
(2) By mass%, Mo: 1.0% or less, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 1.0% or less A high-strength steel pipe excellent in buckling resistance as described in (1).
(3) The high-strength steel pipe excellent in buckling resistance according to (1) or (2), characterized by containing B: 0.005% or less by mass%.
(4) It is characterized by containing, by mass%, one or more of Ca: 0.01% or less, Mg: 0.1% or less, REM: 0.02% or less (1) A high-strength steel pipe excellent in buckling resistance according to any one of to (3).
(5) The seat resistance according to any one of (1) to (4), wherein the n value in the tube axis direction is 0.2 or more, and the Charpy absorbed energy at −20 ° C. is 150 J or more. High strength steel pipe with excellent bending characteristics.
(6) After heating the slab composed of the component according to any one of (1) to (4) to 1050 ° C. or higher, rough rolling is performed at a recrystallization temperature or higher, and subsequently, Ar 3 or higher and 900 ° C. or lower. After performing finish rolling with a cumulative reduction amount of 65% or more, cooling at a temperature of Ar 3 or more at 5 ° C./s or more, and holding for 30 to 300 seconds in the range of Ts-50 [° C.] to Ts + 100 [° C.] High strength with excellent buckling resistance, characterized by cooling the steel sheet to 350-450 ° C at a temperature of 20 ° C / s or more and allowing it to cool and then forming a hollow shape by cold forming and then performing seam welding. Steel pipe manufacturing method. However, the unit of each element is mass%,
Ts [° C.] = 780-270 × C-90 × Mn-37 × Ni-70 × Cr-83 × Mo (1)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Since the buckling is a local deformation at a strain concentrated portion, the present inventor has directed a method of suppressing the occurrence of the local deformation by significantly hardening the portion where the plastic deformation is caused by the strain concentration. For this purpose, it is necessary that the strain-concentrated portion is significantly hardened by plastic deformation, and it is considered effective to use the work-induced martensitic transformation of austenite left in the steel material.
[0008]
In order to clarify the influence of the retained austenite amount on the buckling resistance, the following experiment was conducted. A four-point bending test was performed using steel pipes having an outer diameter of 690 mm and a wall thickness of 19 mm as shown in Table 1 and different amounts of retained austenite.
[0009]
[Table 1]
[0010]
The distance between the arms was set to 1000 mm, a strain gauge was attached to the bending outer portion at the center of the specimen, and the strain was measured while applying a load to the arms. FIG. 1 shows the strain εm indicating the maximum load as a buckling resistance and shows the relationship with the amount of retained austenite. Thus, it has been obtained as a new finding that increasing the amount of retained austenite increases the buckling resistance.
[0011]
The amount of retained austenite was measured by taking a small piece from the thickness center of the steel pipe and performing X-ray analysis using Mo Kα rays to calculate the volume fraction. Specifically, the integral reflection intensity of ferrite (200) plane, (211) plane and austenite (200) plane, (220) plane, (311) plane is measured by X-ray diffraction, and Journal of The Iron. and steel Institute, 206 (1968) P60.
[0012]
Further, the present inventor considered that cooling after rolling, which has a great influence on the bainite transformation and martensite transformation of austenite, is effective in controlling the amount of retained austenite. Therefore, the slab shown in Table 2 is reheated to 1100 ° C., roughly rolled in the recrystallization temperature range, subsequently subjected to non-recrystallization rolling with a cumulative reduction of 80%, finished to a thickness of 16 mm, and cooled in various patterns. A small rolling experiment was conducted.
[0013]
[Table 2]
[0014]
As a result, the two-stage cooling pattern shown in FIG. 2 was found to be effective, and a manufacturing method for obtaining a bainite containing retained austenite and a composite structure of martensite and ferrite was clarified.
[0015]
That is, after rolling, first-stage cooling is started from a temperature of Ar 3 [° C.] or higher in order to suppress ferrite transformation, and after completion of cooling and holding at a temperature at which sufficient ferrite is generated, residual austenite ferrite In order to suppress decomposition into carbides and to transform into bainite, the second stage cooling is performed, and then the mixture is allowed to cool. Thereby, the average particle diameter of ferrite can be refined and stable retained austenite can be generated.
[0016]
In addition, in order to complete | finish 1st stage cooling and to produce | generate sufficient ferrite, the temperature lower by 50 degreeC from the temperature 100 degreeC higher than Ts [degreeC] calculated from the chemical component in steel by the following (1) formula I found that it was necessary to hold on.
Ts [° C.] = 780-270 × C-90 × Mn-37 × Ni-70 × Cr-83 × Mo (1)
The reason why the content of the component is specified will be described below.
[0017]
The amount of C is limited to 0.02 to 0.15% or less. C is the most effective element for increasing the strength, and 0.02% or more is necessary to obtain sufficient strength. However, if the amount increases excessively, weldability deteriorates, so the upper limit was made 0.15% or less.
[0018]
Si is an element effective for deoxidation or strength improvement, and also effective for the formation of stable retained austenite. In order to obtain the effect, 0.1% or more is necessary. However, if the content is 2.0% or more, the toughness of the weld heat affected zone is remarkably deteriorated. Therefore, the amount of Si added is in the range of 0.1 to 2.0%.
[0019]
Mn is an element effective for increasing the strength, and 0.5% or more must be added to obtain a sufficient strength improvement. However, if the content exceeds 2.5%, the elongation cannot be secured, and the upper limit is set to 2.5% or less.
[0020]
P and S are impurities, P is segregated at the grain boundary, and S is precipitated as MnS. If P and S contain more than 0.02% and more than 0.005%, respectively, the toughness deteriorates, so the upper limits of P and S are made 0.02% or less and 0.005% or less, respectively.
[0021]
Al is a powerful deoxidizing element and contributes to the refinement of the structure. In order to deoxidize, 0.01% or more is necessary. However, if it exceeds 0.1%, the toughness of the weld heat affected zone is deteriorated, so the upper limit was made 0.1%.
[0022]
N is effective as a strengthening element, but if it exceeds 0.01%, the amount of dissolved N increases and the elongation is remarkably deteriorated, so the upper limit was made 0.01% or less.
[0023]
Nb, V, and Ti are contained in one or more kinds for strengthening. These form carbonitrides and contribute as precipitation strengthening. However, if each content exceeds 0.1%, it exists as coarse precipitates and deteriorates toughness. Therefore, the upper limit of each content is set to 0.1% or less. Although a minimum is not specifically limited, In order to exhibit precipitation strengthening, 0.01% or more is respectively preferable.
[0024]
Furthermore, you may contain 1 type, or 2 or more types, Mo, Cu, Ni, Cr, B, Ca, Mg, and REM as needed.
[0025]
Mo, Cu, Ni, and Cr increase the hardenability and contribute to high strength. However, if there are too many additional elements, not only the economic efficiency but also the toughness of the heat affected zone or the weldability of the field will be deteriorated, so the upper limit of Mo, Cu, Ni and Cr is 1.0% and 2. 0%, 2.0%, and 1.0% are preferable. In order to obtain the strengthening effect, it is preferable that each of Mo, Cu, Ni, and Cr contains 0.05% or more.
[0026]
B, in a small amount, greatly enhances hardenability and contributes to strengthening. However, when added in a large amount, deterioration of elongation and hardening of the heat affected zone are caused, so the upper limit is preferably made 0.005% or less. In order to acquire the effect of reinforcement | strengthening, it is preferable to contain 0.0001% or more.
[0027]
Ca and REM control the form of sulfide and contribute to the improvement of toughness. However, if added excessively, it exists as a large inclusion and deteriorates toughness. Therefore, it is preferable to set the upper limit to 0.01% or less and 0.02% or less, respectively. In order to control the form of the sulfide, each content is preferably 0.0001% or more.
[0028]
Mg is a powerful deoxidizing element and, when dispersed as a fine oxide, greatly contributes to improving the toughness of the weld heat affected zone. However, if over 0.1% is added, it will exist as a coarse oxide and deteriorate toughness, so the upper limit is preferably made 0.1%. In order to acquire the effect of a toughness improvement, it is preferable to contain 0.0001% or more.
[0029]
Next, the microstructure will be described.
[0030]
Although the toughness is improved by making the average crystal grain size of ferrite finer, the average crystal grain size of ferrite needs to be 10 μm or less in order to make Charpy absorbed energy at −20 ° C. 150 J or more. The average grain size of ferrite is preferably as fine as possible, but the current technology has a limit of about 1 μm. Further, if the area ratio of ferrite is less than 70%, the amount of hard bainite and martensite increases, so that the buckling resistance and n value decrease, and if it exceeds 90%, the strength decreases. Therefore, the area ratio of ferrite is set in the range of 70 to 90%. In the microstructure, the remainder of the ferrite having an area ratio of 70 to 90% is bainite and martensite containing retained austenite.
[0031]
The average crystal grain size and area ratio of ferrite can be obtained by the following method. A small piece is cut out from the thickness center of the steel pipe, the cross section parallel to the pipe axis direction is mirror-polished, etched, and the resulting structure is observed to distinguish ferrite from bainite and martensite. Is obtained by a cutting method according to JIS G 0552, and the average value is defined as the average crystal grain size of ferrite. The area ratio of the ferrite was calculated as a percentage obtained by calculating the sum of the areas of the ferrite grains using an image analyzer and dividing by the area of the visual field.
[0032]
In order to remarkably improve the buckling resistance, the volume fraction of retained austenite needs to be 5% or more. However, when it exceeds 15%, the toughness is impaired, so the volume fraction of retained austenite is limited to 5 to 15%. The volume fraction of retained austenite is determined by X-ray analysis because it is difficult to measure with a microstructure.
[0033]
The steel pipe of the present invention limits the size of the steel pipe to a thickness of 10 mm or more and an outer diameter of 100 mm or more in order to satisfy the strength required in its use environment. In the current technology, it is difficult to make the thickness and the outer shape more than 50 mm and more than 1200 mm, respectively.
[0034]
The buckling resistance is improved as the n value is improved. To obtain this effect, the n value is preferably 0.2 or more. Although the upper limit of the n value is not specified, it is difficult to make it more than 0.26 with the current technology. The n value was measured by taking a 12B or 12C arc-shaped tensile test piece according to JIS Z 2201 with the tube axis direction of the steel pipe as the longitudinal direction, performing a tensile test according to JIS Z 2241, and having a strain of 1 It can be determined as a work hardening rate in the range of 8% to 8%.
[0035]
Next, a manufacturing method will be described.
[0036]
The heating temperature of the slab is limited to 1050 ° C. or higher at which Nb is dissolved in order to finely precipitate Nb carbonitride by hot rolling. Although the upper limit is not particularly defined, the upper limit of the heating temperature of the slab is preferably 1250 ° C. in order to suppress the coarsening of the austenite grain size and improve the toughness.
[0037]
The finish rolling needs to be performed at 900 ° C. or less below the recrystallization temperature in order to refine the average crystal grain size of ferrite. On the other hand, when the rolling end temperature is lower than Ar 3 [° C.], ferrite into which processing strain due to rolling is introduced remains, and the toughness is greatly deteriorated. Therefore, the rolling end temperature is limited to Ar 3 or higher. Further, the cumulative reduction amount of the finish rolling is limited to 65% or more so that the average crystal grain size of ferrite is 10 μm or less. Although the upper limit is not specified, it is preferably 90% or less because of technical limitations.
[0038]
Ar 3 is determined from the chemical components in steel by the following formula using the unit of each element as mass%.
Ar 3 [° C.] = 921−325 × C + 33 × Si + 287 × P + 40 × Al−92 × (Mn + Mo + Cu) −46 × (Cr + Ni)
In the present invention, cooling after rolling is the most important process for refining the average grain size of ferrite and controlling the amount of retained austenite. After finish rolling, first stage cooling is performed to suppress ferrite transformation, intermediate holding is performed to generate sufficient ferrite, and second stage cooling is performed to suppress decomposition of residual austenite into ferrite and carbide. Then, let it cool.
[0039]
In the first stage cooling, in order to suppress the ferrite transformation after hot rolling, the starting temperature is set to Ar 3 or higher, and the cooling rate is set to 5 ° C./s or higher. This is because if the starting temperature is less than Ar 3 and the cooling rate is less than 5 ° C./s, coarse ferrite grains are generated and the toughness is lowered. Since the first stage cooling may be a temperature higher than Ar 3 , no upper limit is defined. Therefore, you may start immediately after completion | finish of finish rolling. Although the upper limit of the cooling rate is not specified, it is difficult to exceed 300 ° C./s with the current technology.
[0040]
Furthermore, in order to generate sufficient ferrite, the unit of each element is defined as mass% from the chemical components in the steel, and the temperature is 50 ° C. higher than TS from 100 ° C. higher than Ts [° C.] determined by the following formula (1). It is necessary to keep the temperature in the range of a low temperature. The reason is that if held at a temperature exceeding TS + 100 ° C., the average crystal grain size of ferrite becomes coarse and the toughness decreases, and if held at a temperature lower than TS-50 ° C., bainite transformation occurs and the ferrite area ratio decreases. This is because the buckling resistance is deteriorated.
[0041]
Ts [° C.] = 780-270 × C-90 × Mn-37 × Ni-70 × Cr-83 × Mo (1)
The holding time is required to be 30 seconds or more in order to sufficiently generate ferrite and to make the area ratio 70% or more. However, if it exceeds 300 seconds, the average grain size of the generated ferrite becomes coarse and the toughness decreases, so the upper limit is limited to 300 seconds. In addition, it is not preferable that a sudden temperature drop occurs within this holding time. Usually, it may be allowed to cool, but the temperature drop may be suppressed by a heat insulation furnace or a heat insulation cover.
[0042]
After this intermediate holding, second-stage cooling is performed, and this needs to be performed at 20 ° C./s or more in order to improve the buckling resistance by controlling the amount of retained austenite to 5 to 10%. The reason is that when cooling is performed at less than 20 ° C./s, the retained austenite in bainite is decomposed in a large amount into ferrite and carbides, and the amount of retained austenite decreases. The upper limit is not particularly specified, but it is difficult to exceed 100 ° C./s due to the limitation of the current accelerated cooling apparatus.
[0043]
Further, in order to generate retained austenite for improving the buckling resistance, it is necessary to set the end temperature of the second stage cooling within the range of 350 to 450 ° C. When the end temperature of the second stage cooling exceeds 450 ° C., the retained austenite is decomposed into carbide and ferrite by the second stage cooling, and the amount of retained austenite decreases. On the other hand, when the second stage cooling is performed to less than 350 ° C., martensitic transformation occurs and the amount of retained austenite decreases. Therefore, the end temperature of the second stage cooling is limited to 350 ° C. to 450 ° C.
[0044]
Pipemaking is performed by a manufacturing process in which cold forming is performed and ends are joined by seam welding. The cold working may be either press working or roll forming, and any combination thereof may be used, but a steel pipe manufacturing process based on the UOE method in which C forming, U forming and O forming are performed and the end is seam welded to expand the tube is preferable. . Seam welding may be MAG arc welding, submerged arc welding, or a combination thereof.
[0045]
【Example】
Steels having the components shown in Table 3 were melted and hot-rolled under the conditions shown in Table 4 to perform first stage cooling, intermediate holding, and second stage cooling to produce a steel plate having a plate thickness of 16 mm. Rough rolling was performed at a recrystallization temperature or higher, and finish rolling was performed in a range of Ar 3 to 900 ° C. The steel sheet was cold-formed, welded on the inside and outside, and then expanded to form a UOE steel pipe having an outer diameter of 690 mm and a wall thickness of 16 mm.
[0046]
A small piece was cut out from the thickness center of the steel pipe, and the cross-section parallel to the pipe axis direction was mirror-polished and then etched with nital to observe the revealed structure. The microstructure was ferrite and bainite and martensite with the balance containing retained austenite. Differentiating ferrite from bainite and martensite containing retained austenite, the average crystal grain size of ferrite in any of 10 fields of view was determined by a cutting method according to JIS G0552, and the average value was defined as the average crystal grain size of ferrite. The area ratio of the ferrite was calculated as a percentage obtained by calculating the sum of the areas of the ferrite grains using an image analyzer and dividing by the area of the visual field. The volume fraction of retained austenite was determined by X-ray analysis. Sample No. 12C arc-shaped tensile test specimens according to JIS Z2201 from 90 °, 180 °, and 270 ° in the circumferential direction from the welded portion of the steel pipe, and measuring the tensile properties according to JIS Z 2241 The average value was obtained. The n value in the tube axis direction was measured as a work hardening rate when the strain was 1 to 8%, and an average value was obtained.
[0047]
The buckling resistance of each steel material was evaluated by a four-point bending test. The test pair had a thickness of 16 mm, an outer diameter of 690 mm, a length of 3000 mm, and a distance between the pressing arm portions of 1000 mm. While measuring strain in the tube axis direction by attaching a strain gauge to the bending outer part at the center of the specimen, load is applied to the arm and the strain εm up to the maximum load is obtained as the buckling strain. It was.
[0048]
The toughness is measured by taking a Charpy test piece of 2 mmV notch according to JIS Z 2202 with the circumferential direction as the longitudinal direction from the thickness center of the steel pipe, performing a Charpy test at 0 ° C. according to JIS Z 2242, and absorbing energy Was measured.
[0049]
Table 5 shows the results obtained. The steel pipe manufactured according to the present invention has a retained austenite amount of 5% or more in volume fraction and an n value of 0.2 or more. As a result, the buckling strain is higher than that of the conventional steel pipe and the toughness is also good. It is.
[0050]
On the other hand, test no. No. 14 has a small amount of cumulative reduction in finish rolling, and test No. Nos. 15 and 16 have low first stage cooling start temperatures. Since No. 22 has a long intermediate holding time, the average crystal grain size of ferrite increases and the toughness decreases. Test No. In Nos. 17 and 18, since the cooling rate of the first stage cooling is slow, the average crystal grain size of ferrite is increased, the toughness is lowered, the ferrite area ratio is increased, and the tensile strength is slightly lowered.
[0051]
Test No. Since No. 19 and 20 have both the intermediate holding start temperature and end temperature lower than the range of the present invention, the amount of retained austenite is reduced and the buckling resistance is lowered. Test No. Since No. 21 has a short intermediate holding time, the ferrite area ratio is small and the buckling strain is reduced. No. Nos. 23 and 24 have low end temperatures for intermediate holding, so No. 25 has a slow second stage cooling rate. Since No. 26 has a low end temperature of the second stage cooling, the amount of retained austenite is small and the buckling strain is low.
[0052]
[Table 3]
[0053]
[Table 4]
[0054]
[Table 5]
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of retained austenite volume fraction on buckling strain.
FIG. 2 shows a two-stage cooling pattern according to the present invention.
Claims (6)
C:0.02%〜0.15%、
Si:0.1%〜2.0%、
Mn:0.5%〜2.5%、
Al:0.01%〜0.1%、
N:0.01%以下、
P:0.02%以下、
S:0.005%以下、
を含有し、さらに、
Nb:0.1%以下、
V:0.1%以下、
Ti:0.1%以下
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、平均結晶粒径が10μm以下、面積率が70〜90%のフェライトと残部が残留オーステナイト、ベイナイトおよびマルテンサイトからなるミクロ組織を有し、X線解析による残留オーステナイト量が体積分率で5〜15%であり、肉厚が10mm以上、外径が100mm以上であることを特徴とする耐座屈特性に優れた高強度鋼管。% By mass
C: 0.02% to 0.15%,
Si: 0.1% to 2.0%,
Mn: 0.5% to 2.5%
Al: 0.01% to 0.1%,
N: 0.01% or less,
P: 0.02% or less,
S: 0.005% or less,
In addition,
Nb: 0.1% or less,
V: 0.1% or less,
Ti: containing one or more of 0.1% or less, the balance being iron and inevitable impurities, the average crystal grain size of 10 μm or less, the area ratio of 70 to 90% ferrite and the balance residual austenite , Having a microstructure composed of bainite and martensite, the amount of retained austenite by X-ray analysis is 5 to 15% in volume fraction, the wall thickness is 10 mm or more, and the outer diameter is 100 mm or more. High strength steel pipe with excellent buckling resistance.
Ts[℃]=780−270×C−90×Mn−37×Ni−70×Cr−83×Mo ・・・ (1)After heating the slab containing components according to above 1050 ° C. to claim 1, carried out rough rolling recrystallization temperature or higher, then subsequently, a cumulative reduction in the Ar 3 [° C.] or higher 900 ° C. or less After performing finish rolling with an amount of 65% or more, cooling at a temperature of 5 ° C./s or higher from a temperature of Ar 3 [° C.] or higher, and holding for 30 to 300 seconds in the range of Ts−50 [° C.] to Ts + 100 [° C.]. The steel sheet is cooled to a temperature of 350 to 450 ° C. at a temperature of 20 ° C./s or more and allowed to cool, and then formed into a hollow shape by cold forming and then subjected to seam welding. A manufacturing method for high strength steel pipes. However, the unit of each element is mass%,
Ts [° C.] = 780-270 × C-90 × Mn-37 × Ni-70 × Cr-83 × Mo (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308183A JP3749704B2 (en) | 2002-10-23 | 2002-10-23 | High strength steel pipe with excellent buckling resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308183A JP3749704B2 (en) | 2002-10-23 | 2002-10-23 | High strength steel pipe with excellent buckling resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004143499A JP2004143499A (en) | 2004-05-20 |
JP3749704B2 true JP3749704B2 (en) | 2006-03-01 |
Family
ID=32454390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002308183A Expired - Fee Related JP3749704B2 (en) | 2002-10-23 | 2002-10-23 | High strength steel pipe with excellent buckling resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3749704B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170113626A (en) | 2015-03-06 | 2017-10-12 | 제이에프이 스틸 가부시키가이샤 | High strength electric resistance welded steel pipe and manufacturing method therefor |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100359034C (en) * | 2005-02-06 | 2008-01-02 | 宝山钢铁股份有限公司 | A 1000Mpa high-strength hot-rolled bulletproof steel plate and its manufacturing method |
JP4635708B2 (en) * | 2005-05-09 | 2011-02-23 | Jfeスチール株式会社 | Non-tempered high-tensile welded steel pipe for automotive structural members with excellent formability and low-temperature toughness and excellent torsional fatigue resistance after cross-section forming processing |
KR101304859B1 (en) * | 2009-12-04 | 2013-09-05 | 주식회사 포스코 | Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same |
KR101455459B1 (en) | 2012-08-30 | 2014-10-27 | 현대제철 주식회사 | Steel sheet and method of manufacturing the same |
KR101507943B1 (en) | 2012-12-27 | 2015-04-07 | 주식회사 포스코 | Line-pipe steel sheet and method for manufacturing the same |
CN103255344B (en) * | 2013-05-17 | 2015-12-09 | 宝山钢铁股份有限公司 | A kind of 245MPa level gathering-line pipe and manufacture method thereof |
KR102020415B1 (en) * | 2017-12-24 | 2019-09-10 | 주식회사 포스코 | High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same |
KR102236852B1 (en) * | 2018-11-30 | 2021-04-06 | 주식회사 포스코 | Steel plate for structure having excellent low yield ratio property and low temperature toughness and manufacturing method thereof |
-
2002
- 2002-10-23 JP JP2002308183A patent/JP3749704B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170113626A (en) | 2015-03-06 | 2017-10-12 | 제이에프이 스틸 가부시키가이샤 | High strength electric resistance welded steel pipe and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2004143499A (en) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5561120B2 (en) | Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof | |
CA2867798C (en) | High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same | |
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
CA2844718C (en) | Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof | |
JP4969915B2 (en) | Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof | |
JP4833835B2 (en) | Steel pipe with small expression of bauschinger effect and manufacturing method thereof | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
EP3276026B1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
JP2005040816A (en) | Ultra-high-strength welded joint and ultra-high-strength welded steel pipe excellent in low-temperature cracking property of weld metal, and methods for producing them | |
WO2009014238A1 (en) | Steel pipes excellent in deformation characteristics and process for manufacturing the same | |
KR20140138933A (en) | Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same | |
CA2851325A1 (en) | High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same | |
JP6773020B2 (en) | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method | |
JPWO2013089156A1 (en) | High-strength H-section steel with excellent low-temperature toughness and method for producing the same | |
EP3276025B1 (en) | Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe | |
EP3276024A1 (en) | Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe. | |
KR20150088320A (en) | HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa | |
JP6773021B2 (en) | Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method | |
CN104937125A (en) | Hot-rolled steel plate for high-strength line pipe | |
WO2020202334A1 (en) | Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile | |
KR102002241B1 (en) | Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP4949541B2 (en) | Duplex oil well steel pipe and method for producing the same | |
JP4507747B2 (en) | Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same | |
JP3749704B2 (en) | High strength steel pipe with excellent buckling resistance and method for producing the same | |
JP7216902B2 (en) | ERW steel pipe for oil well and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051202 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3749704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |