[go: up one dir, main page]

JP3748954B2 - Hydraulic control circuit for viscous fluid pump - Google Patents

Hydraulic control circuit for viscous fluid pump Download PDF

Info

Publication number
JP3748954B2
JP3748954B2 JP25782996A JP25782996A JP3748954B2 JP 3748954 B2 JP3748954 B2 JP 3748954B2 JP 25782996 A JP25782996 A JP 25782996A JP 25782996 A JP25782996 A JP 25782996A JP 3748954 B2 JP3748954 B2 JP 3748954B2
Authority
JP
Japan
Prior art keywords
valve
main
switching
switched
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25782996A
Other languages
Japanese (ja)
Other versions
JPH1082361A (en
Inventor
孝之 安間
Original Assignee
石川島建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島建機株式会社 filed Critical 石川島建機株式会社
Priority to JP25782996A priority Critical patent/JP3748954B2/en
Publication of JPH1082361A publication Critical patent/JPH1082361A/en
Application granted granted Critical
Publication of JP3748954B2 publication Critical patent/JP3748954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はコンクリートの如き粘性流体を吸入吐出させるようにする粘性流体ポンプの油圧制御回路に関するものである。
【0002】
【従来の技術】
ピストン式粘性流体ポンプにおいて、2本の流体圧送用の主油圧シリンダのいずれか一方が前進してストロークエンドに達すると、近接センサが作動して粘性流体の吸入吐出を切り換えるための吸入吐出切換用弁(揺動弁、滑り弁等)(以下、単に、吸入吐出弁という)を切り換えるようにすると共に、主油圧シリンダを逆方向に切り換えるようにすることは公知である。
【0003】
一例として吸入吐出弁を揺動弁型式としたものについて示すと、図3に示す如く、2本の主油圧シリンダ1,2のヘッド側圧力室同士を密封ライン3で接続すると共に、該2本の主油圧シリンダ1,2のロッド側圧力室と両傾転主油ポンプ4とを主圧油ライン5,6により接続してクローズド回路とし、且つチャージポンプ7の吐出側に接続したライン8を、電磁式三位置弁である主回路用電磁弁9の切り換えによって作動させられるようにしたサーボ弁10を通して傾転調整用のアクチュエータ11に接続し、チャージポンプ7からアクチュエータ11へ導かれる圧油の方向がサーボ弁10の切り換えによって切り換えられるようにしてある。
【0004】
又、主油圧シリンダ1,2が交互に前進後退することに伴い吸入吐出弁である揺動弁の切り換えを行う揺動シリンダ12,13に、弁吐出ポンプ14からの圧油を供給する圧油ライン15を接続し、且つ該圧油ライン15の途中に、弁回路用電磁弁16の作動によって切り換えられるようにした弁四方弁17を設けて、該弁四方弁17が切り換えられることにより揺動シリンダ12と13が前進後退させられて揺動弁が切り換えられるようにしてあり、更に、上記圧油ライン15の途中から圧油ライン18を取り出してアキュムレータ19を設けると共に、該圧油ライン18を、順次可変絞り弁20、減圧弁21を経た後、上記主回路用電磁弁9を通してサーボ弁10の操作部に導くようにしてある。なお、23は主油ポンプ4の吐出量が急増しないようにするためにアクチュエータ11の排油ライン22に組み付けたチェック弁を示す。
【0005】
上記構成において、2本の主油圧シリンダ1と2の各前進側ストロークエンドに設けた近接センサLS1とLS2が主油圧シリンダ1と2が交互に前進することにより交互に作動したときに、主回路用電磁弁9のソレノイドSOL.1又はSOL.2が励磁されて該主回路用電磁弁9が切り換えられることにより、主油ポンプ4が逆転させられると同時に、弁回路用電磁弁16のソレノイドSOL.3又はSOL.4が励磁されて弁四方弁17が切り換えられることにより、揺動シリンダ12,13の前進後退が切り換えられるようにしてある。
【0006】
【発明が解決しようとする課題】
ところが、上記従来の粘性流体ポンプの油圧制御回路では、近接センサLS1又はLS2が作動すると同時に、主回路用電磁弁9と弁回路用電磁弁16が切り換えられるが、その動作は互に独立していて全く制御されておらず、したがって、主油ポンプ4の傾転角が逆方向に切り換えられ、且つ吸入吐出弁が切り換えられることになり、両方の動作が完了したとしても圧油の途切れをなくすことはできず、大きな圧力変動を起すことから、クローズド回路本来の効果が発揮できずに脈動が発生する問題がある。すなわち、主回路用電磁弁9が切り換えられることにより、主油ポンプ4の傾転角が徐々に減らされ、吐出量零から傾転角が逆方向に増やされる過程において、吸入吐出弁が切り換えられる時期が不安定であるため、効果的な圧力変動低減がなされていない。更に、いずれかの動作が遅れると、通常、主油ポンプ4は瞬時に逆転運転するようにしてあるため、脈動はより大きくなる問題がある。又、主油ポンプ4の吐出量が急激に増大しないようにするために、アクチュエータ11の排油ライン22にチェック弁23が設けてあるが、このチェック弁23にしても圧油の動特性(粘度等)によって変化するので、依存動作となり、効果的に圧力変動を低減させることはできない。
【0007】
そこで、本発明は運転時の大きな圧力変動を抑えて脈動を確実に低減させることができるような粘性流体ポンプの油圧制御回路を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために、両傾転主油ポンプから吐出された圧油を2本の主油圧シリンダに交互に供給するようにしたクローズド回路を有し、且つ上記主油ポンプの傾転方向を切り換えるためのアクチュエータと、該アクチュエータの作動方向を切り換えるためのサーボ弁と、該サーボ弁を作動させる三位置弁である主回路用電磁弁とを備え、更に、上記2本の主油圧シリンダの前進後退作動に伴わせて粘性流体の吸入吐出の切り換えを行う吸入吐出切換用弁を切り換える弁回路用電磁弁を備えている粘性流体ポンプの油圧制御回路において、上記2本の主油圧シリンダの各ストロークエンド付近とストロークエンドとに近接センサをそれぞれ設け、ストロークエンド付近の近接センサの信号により上記主回路用電磁弁が中立位置に切り換えられるようにすると共に、ストロークエンドの近接センサの信号により弁回路用電磁弁の切り換えが行われるようにし、更に、上記吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えられて両傾転主油ポンプの傾転方向が切り換えられると共に主油圧シリンダへ圧油が供給されるよう切り換えられるようにした構成とする。
【0009】
主油圧シリンダがストロークエンド付近に達すると、その位置の近接センサが作動して、主回路用電磁弁の一方のソレノイドを励磁状態から消磁状態にして該主回路用電磁弁が中立位置に切り換えられることにより、主油ポンプの吐出量が減らされて零にさせられる。吐出量零付近で主油圧シリンダがストロークエンドに達すると、その位置の近接センサの信号により、吸入吐出弁が切り換えられ、切り換え完了信号に基づき、主回路用電磁弁の他方のソレノイドが励磁されて切り換えられることにより主油ポンプの吐出量が増やされる。したがって、大きな圧力変動がなく、脈動が低減される。
【0010】
又、主油圧シリンダのストロークエンドの近接センサからの信号により弁回路用電磁弁が切り換えられ、粘性流体の吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えると共に主油圧シリンダへ圧油を供給するように切り換えられるようにしたことに代えて、主油圧シリンダのストロークエンド付近の近接センサからの信号を基に作動するタイマを用いて、主回路用電磁弁の切り換えと主油圧シリンダへ圧油を供給するように切り換えを行うようにした構成としてもよい。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0012】
図1及び図2は本発明の実施の一形態を示すもので、図3に示す粘性流体ポンプの油圧制御回路と同様な構成において、主油圧シリンダ1,2の前進側ストロークエンドに近接センサLS1,LS2を設けることに代えて、前進側ストロークエンドよりもやや手前の位置に近接センサLS1,LS2を設けると共に、前進側ストロークエンドに近接センサLS3,LS4を設け、近接センサLS1又はLS2が作動したときにソレノイドSOL.1又はSOL.2が消磁された状態になって主回路用電磁弁9が中立位置に切り換えられるようにし、且つ近接センサLS3又はLS4が作動したときにソレノイドSOL.3又はSOL.4が励磁されて弁回路用電磁弁16が切り換えられることにより弁四方弁17が切り換えられるようにする。
【0013】
又、主油圧ライン5,6の途中に、電磁弁24の作動によって切り換えられるようにしたアンロード弁25を設け、更に、揺動シリンダ12,13のストロークエンドに近接センサLS5,LS6を設け、近接センサLS5又はLS6が作動したときにソレノイドSOL.2又はSOL.1が励磁されて両傾転主油ポンプ4が逆転させられるようにし、且つ近接センサLS5又はLS6が作動したときにソレノイドSOL.5が励磁されて電磁弁24が切り換えられることによりアンロード弁25が開位置に切り換えられるようにする。
【0014】
今、主油圧シリンダ1が前進し、主油圧シリンダ2が後退している場合において、主油圧シリンダ1が前進側ストロークエンドよりもやや手前の位置に達すると、近接センサLS1が作動させられ、励磁状態であったソレノイドSOL.1が消磁されることによって主回路用電磁弁9が中立位置に切り換えられる。これにより、サーボ弁10への操作用の圧油の供給が遮断され、アクチュエータ11も徐々に中立位置に戻されるため、主油ポンプ4の吐出量が次第に減少させられて遂には零にさせられる。
【0015】
続いて、上記主油ポンプ4の吐出量が零付近で主油圧シリンダ1が前進側ストロークエンドに達すると、近接センサLS3が作動させられることにより、弁回路用電磁弁16のソレノイドSOL.3が励磁されて該弁回路用電磁弁16が切り換えられ、弁四方弁17が切り換えられるため、揺動シリンダ12と13の前進後退が切り換えられる。
【0016】
更に、揺動シリンダ12と13の前進後退が切り換えられて、揺動シリンダ12がストロークエンドに達すると、近接センサLS5が作動させられるため、電磁弁24のソレノイドSOL.5が励磁されて該電磁弁24が切り換えられることによりアンロード弁25が主圧油ライン5,6の連通位置に切り換えられる。又、これと同時に、主回路用電磁弁9のソレノイドSOL.2が励磁されて該主回路用電磁弁9が連通位置に切り換えられることにより、サーボ弁10が作動させられることになってアクチュエータ11が逆方向に作動させられるため、主油ポンプ4の傾転角が逆方向に切り換えられ、圧油吐出量が徐々に増やされて定速動作に移行させられる。これにより、主油圧シリンダ1と2の前進後退が切り換えられる。
【0017】
主油圧シリンダ1と2の前進後退が切り換えられた後も図2のタイムチャートに示す如く、同様に制御される。
【0018】
このように、本発明においては、主油圧シリンダ1,2の近接センサLS1,LS2の信号を基に、主回路用電磁弁9を一旦中立にして主油ポンプ4の圧油吐出量を減少させた後、吐出量が一定時間零となるように設定し、揺動シリンダ12,13の近接センサLS5,LS6の信号(弁切り換え完了信号)を受けてから上記主回路用電磁弁9を切り換え、傾転調整用のアクチュエータ11に圧油を供給して主油ポンプ4の圧油吐出を開始させ、設定吐出量に達したところで定速動作に移行させるようにしてあるので、主油圧シリンダ1と2の前進後退の切り換え時に発生する大きな圧力変動を抑えることができ、したがって、脈動を低減することができる。因に、主油ポンプ4の傾転角の指令は減圧弁21によって行い、傾転角増加速さは可変絞り弁20にて調整することができる。
【0019】
なお、上記実施の形態では、主油ポンプの圧油吐出量を減少させて一旦零にしてから再び吐出を開始させるまでの時間を、近接センサLS1,LS3,LS5の組み合わせと近接センサLS2,LS4,LS6の組み合わせで設定した場合を示したが、近接センサLS3,LS5とLS4,LS6の機能を、近接センサLS1とLS2の信号を基準として作動するタイマによって代用させるようにしてもよいこと、又、実施の形態では、吸入吐出弁を揺動弁型式としたものについて示したが、滑り弁型式としたもの等についても同様に実施できること、その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。
【0020】
【発明の効果】
以上述べた如く、本発明の粘性流体ポンプの油圧制御回路によれば、次の如き優れた効果を発揮する。
(1)両傾転主油ポンプから吐出された圧油を2本の主油圧シリンダに交互に供給するようにしたクローズド回路を有し、且つ上記主油ポンプの傾転方向を切り換えるためのアクチュエータと、該アクチュエータの作動方向を切り換えるためのサーボ弁と、該サーボ弁を作動させる三位置弁である主回路用電磁弁とを備え、更に、上記2本の主油圧シリンダの前進後退作動に伴わせて粘性流体の吸入吐出の切り換えを行う吸入吐出切換用弁を切り換える弁回路用電磁弁を備えている粘性流体ポンプの油圧制御回路において、上記2本の主油圧シリンダの各ストロークエンド付近とストロークエンドとに近接センサをそれぞれ設け、ストロークエンド付近の近接センサの信号により上記主回路用電磁弁が中立位置に切り換えられるようにすると共に、ストロークエンドの近接センサの信号により弁回路用電磁弁の切り換えが行われるようにし、更に、上記吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えられて両傾転主油ポンプの傾転方向が切り換えられると共に主油圧シリンダへ圧油が供給されるよう切り換えられるようにした構成としてあるので、主油圧シリンダのストローク位置をストロークエンド付近の近接センサで検出した後、主油ポンプの吐出量を減少させて吐出量を一旦零にし、吐出量零付近で主油圧シリンダがストロークエンドに達するとストロークエンドの近接センサの信号により吸入吐出弁を切り換え、吸入吐出弁の切り換え完了信号を受けて主油ポンプの吐出を開始させるようにすることができることにより、大きな圧力変動を抑えることができて脈動を低減させることができ、クローズド回路本来の効果を発揮することができる。
(2)主油圧シリンダのストロークエンドの近接センサからの信号により弁回路用電磁弁が切り換えられ、粘性流体の吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えると共に主油圧シリンダへ圧油を供給するように切り換えられるようにしたことに代えて、主油圧シリンダのストロークエンド付近の近接センサからの信号を基に作動するタイマを用いて、主回路用電磁弁の切り換えと主油圧シリンダへ圧油を供給するように切り換えを行うようにした構成とすることにより、(1)項と同様な作用効果が得られ、且つ所定時間後に確実に吐出量を増すことができる。
【図面の簡単な説明】
【図1】本発明の粘性流体ポンプの油圧制御回路の実施の一形態を示す概要図である。
【図2】作動を示すタイムチャートである。
【図3】従来の粘性流体ポンプの油圧制御回路の一例を示す概要図である。
【符号の説明】
1,2 主油圧シリンダ
4 両傾転主油ポンプ
9 主回路用電磁弁
10 サーボ弁
11 アクチュエータ
16 弁回路用電磁弁
LS1,LS2,LS3,LS4 近接センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic control circuit of a viscous fluid pump that sucks and discharges a viscous fluid such as concrete.
[0002]
[Prior art]
In the piston type viscous fluid pump, when either one of the two main hydraulic cylinders for fluid pumping moves forward and reaches the stroke end, the proximity sensor is activated to switch the suction and discharge of viscous fluid. It is known to switch valves (oscillating valves , slip valves, etc.) (hereinafter simply referred to as intake and discharge valves) and to switch the main hydraulic cylinder in the reverse direction.
[0003]
As an example, when the suction and discharge valves are of the swing valve type, as shown in FIG. 3, the head side pressure chambers of the two main hydraulic cylinders 1 and 2 are connected by a sealing line 3, and the two The rod side pressure chambers of the main hydraulic cylinders 1 and 2 and the tilted main oil pump 4 are connected by main pressure oil lines 5 and 6 to form a closed circuit, and a line 8 connected to the discharge side of the charge pump 7 The pressure oil guided from the charge pump 7 to the actuator 11 is connected to the actuator 11 for tilt adjustment through the servo valve 10 which is operated by switching the main circuit solenoid valve 9 which is an electromagnetic three-position valve. The direction is switched by switching the servo valve 10.
[0004]
Pressure oil that supplies pressure oil from the valve discharge pump 14 to the oscillating cylinders 12 and 13 that perform switching of the oscillating valve that is the suction discharge valve as the main hydraulic cylinders 1 and 2 alternately advance and retreat. A valve four-way valve 17 is provided in the middle of the pressure oil line 15 so as to be switched by the operation of the solenoid valve 16 for valve circuit, and swings when the valve four-way valve 17 is switched. The cylinders 12 and 13 are moved forward and backward to switch the swing valve. Further, the pressure oil line 18 is taken out from the middle of the pressure oil line 15 and an accumulator 19 is provided. Then, after sequentially passing through the variable throttle valve 20 and the pressure reducing valve 21, it is guided to the operating portion of the servo valve 10 through the main circuit solenoid valve 9. Reference numeral 23 denotes a check valve assembled in the oil discharge line 22 of the actuator 11 so that the discharge amount of the main oil pump 4 does not increase rapidly.
[0005]
In the above configuration, when the proximity sensors LS1 and LS2 provided at the forward stroke ends of the two main hydraulic cylinders 1 and 2 are alternately operated by the main hydraulic cylinders 1 and 2 moving forward alternately, Solenoid SOL. 1 or SOL. 2 is excited and the main circuit solenoid valve 9 is switched, so that the main oil pump 4 is reversed, and at the same time, the solenoid SOL. 3 or SOL. 4 is excited and the four-way valve 17 is switched, so that the forward and backward movement of the oscillating cylinders 12 and 13 is switched.
[0006]
[Problems to be solved by the invention]
However, in the hydraulic control circuit of the conventional viscous fluid pump, the main circuit solenoid valve 9 and the valve circuit solenoid valve 16 are switched at the same time when the proximity sensor LS1 or LS2 is operated, but their operations are independent of each other. Therefore, the tilt angle of the main oil pump 4 is switched in the reverse direction, and the suction / discharge valve is switched, and even if both operations are completed, the interruption of the pressure oil is eliminated. However, since a large pressure fluctuation occurs, there is a problem that the original effect of the closed circuit cannot be exhibited and pulsation occurs. That is, when the main circuit solenoid valve 9 is switched, the tilt angle of the main oil pump 4 is gradually reduced, and the suction discharge valve is switched in the process of increasing the tilt angle in the reverse direction from zero discharge amount. Since the timing is unstable, effective pressure fluctuation reduction has not been made. Furthermore, if any of the operations is delayed, the main oil pump 4 is normally operated to reversely rotate instantaneously, so there is a problem that the pulsation becomes larger. In addition, a check valve 23 is provided in the oil discharge line 22 of the actuator 11 in order to prevent the discharge amount of the main oil pump 4 from increasing suddenly. Therefore, it becomes dependent operation and pressure fluctuation cannot be reduced effectively.
[0007]
Accordingly, the present invention is intended to provide a hydraulic control circuit for a viscous fluid pump that can suppress a large pressure fluctuation during operation and reliably reduce pulsation.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a closed circuit in which pressure oil discharged from both tilting main oil pumps is alternately supplied to two main hydraulic cylinders, and the main oil pump An actuator for switching the tilt direction of the motor, a servo valve for switching the operating direction of the actuator, and a solenoid valve for a main circuit that is a three-position valve for operating the servo valve. In the hydraulic control circuit of a viscous fluid pump having a solenoid valve for a valve circuit for switching a suction / discharge switching valve for switching the suction / discharge of viscous fluid in accordance with the forward / backward movement of the main hydraulic cylinder, provided a proximity sensor and the stroke end near the stroke end of the hydraulic cylinder respectively, solenoid valve the main circuit neutral position by a signal of the proximity sensor in the vicinity of the stroke end Together to be switched on, so switching of the valve circuit for the solenoid valve by a signal of the proximity sensor of the stroke end is performed, further, by switching completion signal from the suction and discharge switching valve, communicating with the main circuit electromagnetic valve pressure oil to the main hydraulic cylinder is configured such that the so that switched to be supplied with is switched to the position tilting directions of the tilting main oil pump is switched.
[0009]
When the main hydraulic cylinder reaches the vicinity of the stroke end, the proximity sensor at that position is activated, and one solenoid of the main circuit solenoid valve is switched from the excited state to the demagnetized state, and the main circuit solenoid valve is switched to the neutral position. As a result, the discharge amount of the main oil pump is reduced to zero. When the main hydraulic cylinder reaches the stroke end near the discharge amount of zero, the suction discharge valve is switched by the signal of the proximity sensor at that position, and the other solenoid of the main circuit solenoid valve is excited based on the switching completion signal. By switching, the discharge amount of the main oil pump is increased. Therefore, there is no large pressure fluctuation and pulsation is reduced.
[0010]
The solenoid valve for the valve circuit is switched by a signal from the proximity sensor at the stroke end of the main hydraulic cylinder, the solenoid valve for the main circuit is switched to the communication position by the switching completion signal of the suction / discharge switching valve for the viscous fluid and the main hydraulic pressure is switched. Instead of switching to supply pressure oil to the cylinder, a timer that operates based on a signal from a proximity sensor near the stroke end of the main hydraulic cylinder can be used to switch the solenoid valve for the main circuit. A configuration may be adopted in which switching is performed so as to supply pressure oil to the main hydraulic cylinder .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
1 and 2 show an embodiment of the present invention. In the same configuration as the hydraulic control circuit of the viscous fluid pump shown in FIG. 3, a proximity sensor LS1 is provided at the forward stroke end of the main hydraulic cylinders 1 and 2. FIG. , LS2 is provided, proximity sensors LS1, LS2 are provided at positions slightly before the forward stroke end, proximity sensors LS3, LS4 are provided at the forward stroke end, and the proximity sensor LS1 or LS2 is activated. Sometimes solenoid SOL. 1 or SOL. 2 is demagnetized so that the main circuit solenoid valve 9 is switched to the neutral position, and when the proximity sensor LS3 or LS4 is activated, the solenoid SOL. 3 or SOL. 4 is excited to switch the valve circuit solenoid valve 16 so that the valve four-way valve 17 is switched.
[0013]
In addition, an unload valve 25 that can be switched by the operation of the solenoid valve 24 is provided in the middle of the main hydraulic lines 5 and 6, and further proximity sensors LS5 and LS6 are provided at the stroke ends of the oscillating cylinders 12 and 13, When the proximity sensor LS5 or LS6 is activated, the solenoid SOL. 2 or SOL. 1 is energized so that both tilting main oil pumps 4 are reversed, and when the proximity sensor LS5 or LS6 is activated, the solenoid SOL. 5 is excited to switch the electromagnetic valve 24 so that the unload valve 25 is switched to the open position.
[0014]
Now, when the main hydraulic cylinder 1 moves forward and the main hydraulic cylinder 2 moves backward, when the main hydraulic cylinder 1 reaches a position slightly ahead of the forward stroke end, the proximity sensor LS1 is activated and excited. The solenoid SOL. When 1 is demagnetized, the main circuit solenoid valve 9 is switched to the neutral position. As a result, the supply of the operating pressure oil to the servo valve 10 is cut off, and the actuator 11 is gradually returned to the neutral position, so that the discharge amount of the main oil pump 4 is gradually reduced and finally made zero. .
[0015]
Subsequently, when the main hydraulic cylinder 1 reaches the forward stroke end when the discharge amount of the main oil pump 4 is close to zero, the proximity sensor LS3 is activated, whereby the solenoid SOL. 3 is excited, the valve circuit solenoid valve 16 is switched, and the valve four-way valve 17 is switched, so that the forward and backward movements of the oscillating cylinders 12 and 13 are switched.
[0016]
Further, when the forward / backward movement of the swing cylinders 12 and 13 is switched and the swing cylinder 12 reaches the stroke end, the proximity sensor LS5 is operated, so that the solenoid SOL. 5 is excited and the electromagnetic valve 24 is switched, whereby the unload valve 25 is switched to the communication position of the main pressure oil lines 5 and 6. At the same time, the solenoid SOL. 2 is excited and the main circuit solenoid valve 9 is switched to the communication position, so that the servo valve 10 is operated and the actuator 11 is operated in the reverse direction. The angle is switched to the opposite direction, and the pressure oil discharge amount is gradually increased to shift to a constant speed operation. As a result, the forward and backward movements of the main hydraulic cylinders 1 and 2 are switched.
[0017]
Even after the forward and backward movements of the main hydraulic cylinders 1 and 2 are switched, the same control is performed as shown in the time chart of FIG.
[0018]
As described above, in the present invention, based on the signals from the proximity sensors LS1 and LS2 of the main hydraulic cylinders 1 and 2, the main circuit solenoid valve 9 is once neutralized to reduce the pressure oil discharge amount of the main oil pump 4. After that, the discharge amount is set to be zero for a certain time, and the main circuit solenoid valve 9 is switched after receiving the signals (valve switching completion signals) of the proximity sensors LS5 and LS6 of the swing cylinders 12 and 13, Since the pressure oil is supplied to the tilt adjustment actuator 11 to start the discharge of the pressure oil of the main oil pump 4 and the set discharge amount is reached, the operation is shifted to the constant speed operation. It is possible to suppress a large pressure fluctuation that occurs at the time of switching between the two forward and backward movements. The tilt angle command of the main oil pump 4 is given by the pressure reducing valve 21, and the tilt angle increasing speed can be adjusted by the variable throttle valve 20.
[0019]
In the above-described embodiment, the time from when the pressure oil discharge amount of the main oil pump is decreased to zero and the discharge is started again is the combination of the proximity sensors LS1, LS3, LS5 and the proximity sensors LS2, LS4. , LS6 is set in combination, but the functions of the proximity sensors LS3, LS5 and LS4, LS6 may be replaced by a timer that operates on the basis of the signals of the proximity sensors LS1 and LS2. In the embodiment, the suction / discharge valve is shown as a swing valve type, but the same can be applied to a slide valve type as well, and various other modifications are possible without departing from the scope of the present invention. Of course, it can be added.
[0020]
【The invention's effect】
As described above, according to the hydraulic control circuit of the viscous fluid pump of the present invention, the following excellent effects are exhibited.
(1) An actuator having a closed circuit for alternately supplying pressure oil discharged from both tilting main oil pumps to the two main hydraulic cylinders, and for switching the tilting direction of the main oil pump And a servo valve for switching the operating direction of the actuator, and a solenoid valve for a main circuit which is a three-position valve for operating the servo valve, and is accompanied by a forward and backward operation of the two main hydraulic cylinders. In a hydraulic control circuit for a viscous fluid pump having a solenoid valve for a valve circuit that switches a suction / discharge switching valve for switching suction / discharge of viscous fluid, in the vicinity of stroke ends and strokes of the two main hydraulic cylinders respectively a proximity sensor in the end, when the main circuit electromagnetic valve is to be switched to the neutral position by a signal of the proximity sensor in the vicinity of the stroke end To, as the switching signal by the electromagnetic valve for a valve circuit of the proximity sensor of the stroke end is performed, further, by switching completion signal from the suction and discharge switching valve, both in the main circuit electromagnetic valve is switched to the communicating position since the pressure oil to the main hydraulic cylinder along with the tilting direction of the tilting main oil pump is switched is a configuration in which the so that switched to be supplied, detects the stroke position of the main hydraulic cylinder with proximity sensors near the stroke end After that, the discharge amount of the main oil pump is reduced to make the discharge amount zero, and when the main hydraulic cylinder reaches the stroke end near the discharge amount zero, the suction discharge valve is switched by the signal of the proximity sensor at the stroke end, and the suction discharge The main oil pump discharge can be started in response to the valve switching completion signal, so that a large pressure change It is possible to reduce the pulsation can be suppressed, it is possible to exert a closed circuit original effect.
(2) a main hydraulic cylinder signal by a valve circuit electromagnetic valve from the proximity sensor of the stroke-end of switched, solenoid valve for the main circuit by switching completion signal suction and discharge switching valve of the viscous fluid with switched to the communicating position Instead of being switched to supply pressure oil to the main hydraulic cylinder, a timer that operates based on a signal from a proximity sensor near the stroke end of the main hydraulic cylinder is used. By adopting a configuration in which switching is performed so that pressure oil is supplied to the main hydraulic cylinder, the same effect as the item (1) can be obtained, and the discharge amount can be reliably increased after a predetermined time. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a hydraulic control circuit of a viscous fluid pump according to the present invention.
FIG. 2 is a time chart showing operation.
FIG. 3 is a schematic diagram showing an example of a hydraulic control circuit of a conventional viscous fluid pump.
[Explanation of symbols]
1, 2 Main hydraulic cylinder 4 Double tilting main oil pump 9 Main circuit solenoid valve 10 Servo valve 11 Actuator 16 Valve circuit solenoid valves LS1, LS2, LS3, LS4 Proximity sensor

Claims (2)

両傾転主油ポンプから吐出された圧油を2本の主油圧シリンダに交互に供給するようにしたクローズド回路を有し、且つ上記主油ポンプの傾転方向を切り換えるためのアクチュエータと、該アクチュエータの作動方向を切り換えるためのサーボ弁と、該サーボ弁を作動させる三位置弁である主回路用電磁弁とを備え、更に、上記2本の主油圧シリンダの前進後退作動に伴わせて粘性流体の吸入吐出の切り換えを行う吸入吐出切換用弁を切り換える弁回路用電磁弁を備えている粘性流体ポンプの油圧制御回路において、上記2本の主油圧シリンダの各ストロークエンド付近とストロークエンドとに近接センサをそれぞれ設け、ストロークエンド付近の近接センサの信号により上記主回路用電磁弁が中立位置に切り換えられるようにすると共に、ストロークエンドの近接センサの信号により弁回路用電磁弁の切り換えが行われるようにし、更に、上記吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えられて両傾転主油ポンプの傾転方向が切り換えられると共に主油圧シリンダへ圧油が供給されるよう切り換えられるようにした構成を有することを特徴とする粘性流体ポンプの油圧制御回路。An actuator for alternately supplying pressure oil discharged from both tilting main oil pumps to the two main hydraulic cylinders, and for switching the tilting direction of the main oil pump; A servo valve for switching the operating direction of the actuator, and a solenoid valve for a main circuit, which is a three-position valve for operating the servo valve, and further includes a viscosity according to the forward and backward operation of the two main hydraulic cylinders. In a hydraulic control circuit for a viscous fluid pump having a solenoid valve for a valve circuit for switching a suction / discharge switching valve for switching between suction and discharge of fluid, in the vicinity of each stroke end and the stroke end of the two main hydraulic cylinders provided a proximity sensor, respectively, as well as to for the main circuit electromagnetic valve is switched to the neutral position by a signal of the proximity sensor in the vicinity of the stroke end, As switching of the solenoid valve for the valve circuit by a signal of the proximity sensor of the stroke end is performed, further, by switching completion signal from the suction and discharge switching valve, both in the main circuit electromagnetic valve is switched to the communicating position tilting hydraulic control circuit of the viscous fluid pump, characterized in that it comprises a main pressure oil to the main hydraulic cylinder along with the tilting direction of the oil pump is switched was so that switched to be supplied configuration. 主油圧シリンダのストロークエンドの近接センサからの信号により弁回路用電磁弁が切り換えられ、粘性流体の吸入吐出切換用弁の切り換え完了信号により主回路用電磁弁が連通位置に切り換えると共に主油圧シリンダへ圧油を供給するように切り換えられるようにしたことに代えて、主油圧シリンダのストロークエンド付近の近接センサからの信号を基に作動するタイマを用いて、主回路用電磁弁の切り換えと主油圧シリンダへ圧油を供給するように切り換えを行うようにした請求項1記載の粘性流体ポンプの油圧制御回路。The solenoid valve for the valve circuit is switched by the signal from the proximity sensor at the stroke end of the main hydraulic cylinder, the solenoid valve for the main circuit is switched to the communication position and the main hydraulic cylinder is switched by the switching completion signal of the suction / discharge switching valve for the viscous fluid . Instead of switching to supply pressure oil, a timer that operates based on a signal from a proximity sensor near the stroke end of the main hydraulic cylinder is used to switch the main circuit solenoid valve and the main hydraulic pressure. 2. The hydraulic control circuit for a viscous fluid pump according to claim 1 , wherein switching is performed so as to supply pressure oil to the cylinder .
JP25782996A 1996-09-06 1996-09-06 Hydraulic control circuit for viscous fluid pump Expired - Fee Related JP3748954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25782996A JP3748954B2 (en) 1996-09-06 1996-09-06 Hydraulic control circuit for viscous fluid pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25782996A JP3748954B2 (en) 1996-09-06 1996-09-06 Hydraulic control circuit for viscous fluid pump

Publications (2)

Publication Number Publication Date
JPH1082361A JPH1082361A (en) 1998-03-31
JP3748954B2 true JP3748954B2 (en) 2006-02-22

Family

ID=17311717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25782996A Expired - Fee Related JP3748954B2 (en) 1996-09-06 1996-09-06 Hydraulic control circuit for viscous fluid pump

Country Status (1)

Country Link
JP (1) JP3748954B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890238B2 (en) * 2006-12-27 2012-03-07 極東開発工業株式会社 Control device for piston-type concrete pump
CN102312873B (en) * 2011-08-19 2013-03-20 中联重科股份有限公司 Concrete pump truck and hydraulic control system thereof
CN103423235B (en) * 2012-05-23 2015-11-25 中联重科股份有限公司 Hydraulic cylinder buffer control method, buffer type hydraulic cylinder control system and hydraulic equipment
CN102777364B (en) * 2012-08-02 2013-10-23 中联重科股份有限公司 Pumping mechanism, control method thereof and concrete pumping equipment
CN103032388B (en) * 2012-12-26 2016-03-23 三一汽车制造有限公司 A kind of pendulum valve hydraulic system of concrete pump and concrete pump
CN104196692B (en) * 2014-07-15 2017-01-18 三一汽车制造有限公司 Pumping equipment, pumping system and reversing control device and method of pumping system

Also Published As

Publication number Publication date
JPH1082361A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US6171075B1 (en) Process and device for controlling a two-cylinder thick medium pump
JP3748954B2 (en) Hydraulic control circuit for viscous fluid pump
JP4129761B2 (en) Operation controller for reciprocating viscous fluid pump
JPH10220405A (en) Relief mechanism and fluid circuit with relief mechanism
JP3143772B2 (en) Control device for concrete pump
JP2004263645A (en) Hydraulic device
JP2005030559A (en) hydraulic unit
JP3622822B2 (en) Counter balance valve
JP3713636B2 (en) Method and apparatus for controlling operation of viscous fluid pump
JP2009029555A (en) Lifter device
JP2943085B2 (en) Rocker cam tilting device for variable pump / motor
JP2001059573A (en) Swash plate angle controlling mechanism for hydraulic continuously variable transmission
JP3084549B2 (en) Hydraulic circuit of tilt-type two-way dozer
JP2001082408A (en) Automatic reversing cylinder
JP3569669B2 (en) Electric pneumatic cylinder
JP3962170B2 (en) Injection rise time reduction method in injection speed control
JP2943084B2 (en) Rocker cam tilting device for variable pump / motor
JPH094608A (en) Hydraulic cylinder
JPS6214386Y2 (en)
JPH08319938A (en) Forced feed device for fluid
JP3089100B2 (en) Drive control device for reciprocating actuator
JPS59226288A (en) Hydraulic pressure operating device of piston pump for sending fluid body by pressure
JP3764582B2 (en) Automatic switching valve device
JP2001259852A (en) Varying device of pressuring force for spot welding gun
JP3769158B2 (en) Cargo box lifting control device for dump truck

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees