[go: up one dir, main page]

JP3748724B2 - Method for producing highly durable water repellent glass - Google Patents

Method for producing highly durable water repellent glass Download PDF

Info

Publication number
JP3748724B2
JP3748724B2 JP00738699A JP738699A JP3748724B2 JP 3748724 B2 JP3748724 B2 JP 3748724B2 JP 00738699 A JP00738699 A JP 00738699A JP 738699 A JP738699 A JP 738699A JP 3748724 B2 JP3748724 B2 JP 3748724B2
Authority
JP
Japan
Prior art keywords
water
glass
underlayer
film
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00738699A
Other languages
Japanese (ja)
Other versions
JP2000203884A (en
Inventor
佳則 赤松
滋生 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP00738699A priority Critical patent/JP3748724B2/en
Publication of JP2000203884A publication Critical patent/JP2000203884A/en
Application granted granted Critical
Publication of JP3748724B2 publication Critical patent/JP3748724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建築用、自動車用、船舶用或いは航空機用等の各種窓材、浴室用或いは自動車用等のミラー、さらにはその他産業用など種々の分野の各種透明物品等に利用できる高耐久性撥水ガラスおよびその製造方法を提供するものである。
【0002】
【従来技術とその問題点】
フルオロアルキル基含有シラン化合物をガラス基材表面に処理した、耐摩耗性などの良好な高耐久性撥水ガラスについては、非常に多くの検討例が報告されている。その中でも、特開平6−16455号公報に示すように、ガラス表面に凹凸形状を有するシリカなどの下地膜を設けたもの、また下地膜を設けないものとしては、特許第2500178号公報に記載のガラス表面に撥水撥油性の単分子膜を形成する方法、特開平10−59745号公報記載の、撥水処理するガラス表面をセリア研摩してさらに酸処理して基材の活性を高める方法や撥水処理液として重合度を増大または制御したフルオロアルキル基含有シラン化合物を用いる方法が開示されている。さらに、特開平8−325037号公報では、ガラス基材表面近傍にアルカリ金属を含まないか、またはアルカリ金属含有量が少ないアルカリバリアー層を形成後、フルオロアルキル基含有シラン化合物を処理することにより、耐久性の高い撥水処理ガラスを得る方法が開示されている。さらにまた、特開平9−48639号公報では、ガラス基材表面を脱アルカリして脱アルカリ層とすることによってナトリウム等のアルカリ成分量を減じた表面を形成させた後にフルオロアルキル基含有シラン化合物を処理することにより、耐熱性、耐水性および耐候性を高めることが開示されている。
【0003】
また、シラノール基を多く含むシリカ膜系酸化物からなる下地層を形成する方法として、例えば特開平2−311332号公報、特開平3−232747号公報等が知られている。
【0004】
【発明が解決しようとする問題点】
しかし、高耐久性撥水ガラスを得るためには、特開平6−16455号公報に示すような、ガラス表面に凹凸形状を有するシリカなどの下地膜を設けることは複雑な管理条件と工程を要しコスト高になっている。また、上記の下地膜を設けないものは、一般的に撥水剤成分とガラス表面との反応性が不十分であったり、特開平10−59745号公報のように、フルオロアルキル基含有シラン化合物の重合度を制御した撥水処理液を用いて高い耐久性をもたせた場合でも、撥水処理面をフロートガラスのトップ面に限定して自動車用安全ガラスを製造する必要があり、すべての製造工程で処理面を区別する煩雑さが生じ、またオンライン熱線反射ガラスへの撥水処理については、必然的にボトム面(車外面)が撥水処理面となるために所望の性能を得ることができない場合があった。
【0005】
また、特開平2−311332号公報、特開平3−232747号公報等で示される方法は、形成された下地層は500℃を越える高い熱処理の後には、シラノール基同士の重縮合反応により活性の高いシラノール基が大幅に減少し、必ずしも十分な活性を有する下地層とはなっておらず、高耐久性撥水ガラスとして十分満足できるものではない。
【0006】
【問題点を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、撥水処理の際にトップ面、ボトム面を区別せずに双方に対して同等の撥水性能が得られ、且つ得られた撥水性被膜は、高硬度かつ高密着性であって耐久性や耐摩耗性とを併せ持ち、より長期的に優れた撥水性能を維持することができるとともに、安価な方法で高耐久性撥水ガラスを得ることが出来る。
【0007】
すなわち、本発明は、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)で示される組成を有するケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜の表面から酸処理によりアルカリイオンを抽出してシラノール基濃度を増大させて活性を高めた下地層表面に、フルオロアルキル基含有シランからなる撥水性被膜が固定化されてなることを特徴とする高耐久性撥水ガラスに関する。
【0008】
また、本発明は、ガラス基材表面にケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜を形成後、酸性水溶液にて酸処理し該薄膜表面からアルカリイオンを抽出して下地層を形成したのち、フルオロアルキル基含有シラン化合物の加水分解物、または重合体からなる撥水処理液を該下地層表面に塗布し、乾燥・焼成してフルオロアルキル基含有シランからなる撥水性被膜を固定化してなることを特徴とする高耐久性撥水ガラスの製造方法に関する。
【0009】
また、本発明のアルカリ金属酸化物成分の出発原料は、アルコキシド、酢酸塩、塩化物、硝酸塩およびアセチルアセトナート塩のうちの少なくとも1種を用いることが好ましい。
【0010】
【発明の実施の形態】
本発明は、その表面からアルカリイオンを抽出した活性の高い下地層を設け、その上に長鎖フルオロアルキル基含有シランからなる撥水性被膜を被覆することにより、高耐久性を有する撥水ガラスを得ることが出来る。
【0011】
本発明の下地層は、ケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜からなり、特にこれら金属酸化物からなる下地層をガラス基板表面に形成後、酸性水溶液にて酸処理し、該薄膜中からアルカリイオンを抽出することにより活性の高い下地層が形成される。
【0012】
アルカリイオンが抽出される下地層の薄膜の組成は、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)とすることが好ましく、アルカリ金属酸化物の含有量が10モル%以下では、アルカリ金属の添加効果が殆ど認められず、得られる撥水ガラスの品質はアルカリ金属を添加しないシリカのみの場合とほぼ同等であり、一方アルカリ金属酸化物の含有量が50モル%以上となると下地膜の形成が困難となるか、あるいは得られた下地膜の膜硬度が大幅に低下して実用に供しえなくなり好ましくない。なお、アルカリ金属としては、リチウム、ナトリウム、カリウムの少なくとも1種を用いることが出来るが、2種以上を混合することは、混合アルカリ効果によってイオン拡散係数が低下し、酸処理によるプロトンとのイオン交換反応の速度が大きく低下するので望ましくない。
【0013】
なお、アルカリ金属はイオン半径の小さいもの、すなわち、カリウムよりナトリウム、ナトリウムよりリチウムの方がイオンの拡散係数が大きいために酸処理によるイオン交換反応が早く、処理時間が短縮できるので望ましい。
下地層の組成は、ケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜からなり、それ以外のチタニア、アルミナおよびジルコニア等の金属酸化物を0〜20モル%程度含有していても構わない。
【0014】
本発明のアルカリ金属酸化物成分の出発原料としては、アルコキシド、酢酸塩、塩化物、硝酸塩およびアセチルアセトナート塩のうちの少なくとも1種を用いることが出来、アルコキシドとしては例えば、LiOCH3、NaOCH3、KOCH3、LiOC25等、酢酸塩としてはCH3COOLi、CH3COONa、CH3COOK、塩化物としてはLiCl、NaCl、KCl、硝酸塩としてはLiNO3、NaNO3、KNO3等、アセチルアセトナート塩としては、LiCH3COCHCOCH3、NaCH3COCHCOCH3等を用いることが出来る。
下地層はガラス基板のどちらの面にも被覆することが可能であり、例えばフロート法で製造されたフロートガラスの場合には、トップ面及びボトム面の何れの面でも被覆可能である。
【0015】
下地層を形成するには、先ずガラス基板の表面を、充分に水洗・乾燥したものを準備する。なお、該ガラス基板はその表面を研磨することが好ましいが、特に限定されるものではない。
【0016】
下地層の塗布液は、以下のようにして調製する。例えば、アルカリ金属酸化物源としてのリチウム、ナトリウム、カリウムのうちの少なくとも1種のアルコキシド、酢酸塩、塩化物、硝酸塩およびアセチルアセトナート塩などのアルカリ金属化合物の所定量をエタノール、n−ブタノール或いはイソプロピルアルコール等の溶媒に溶解後、酢酸、硝酸、塩酸などの酸触媒および水を添加して加水分解した後に、シリカ源としてのシリカゾル中に添加したのち、十分に攪拌して、最終的な固形分濃度が1.5wt%となるよう、例えば,イソプロピルアルコールで希釈して下地層の塗布液を得ることが出来る。なお、アルカリ金属化合物およびシリカゾルの添加量は、ケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜の組成が、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)となるように調整する。また、シリカゾルの出発原料としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン等のシリカ化合物が使用出来る。
【0017】
塗布方法は、ディッピング法やリバースロールコート法をはじめ、種々のロールコート法、フローコート法、スピンコート法等、特に限定されるものではない。
【0018】
前記下地層用塗布液が成膜されたガラス基板を、例えば250℃で30分間仮焼成を行い、さらにガラス温度で630℃〜660℃の本焼成を行って、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)の組成を有する薄膜を得た。
【0019】
次いで、上記で得られたアルカリ−シリカ系薄膜を、硫酸、硝酸、または塩酸等の酸性水溶液中に浸漬等の方法により酸処理を行い、薄膜表面よりからアルカリイオンを抽出した。その後、水洗・乾燥して表面活性の高いシリカ系下地層を得た。なお、酸性水溶液の濃度は、0.01N以上、好ましくは0.1N〜36N程度の濃度の硝酸、塩酸、硫酸などの無機酸或いは酢酸、クエン酸などの有機酸を使用することができる。
【0020】
また、下地層表面を凹凸にすると耐久性がより向上するので特に好ましく、その方法としては、例えば金属アルコキシド系化合物或いは金属アセチルアセトネート系化合物の中から少なくとも2種以上選択し、しかも該選択した2つ以上の化合物における平均分子量が異なるものであって、該2つ以上の化合物を溶剤とともに混合してコーティング溶液とし、該溶液を被覆後、加熱してマイクロピット状の表層をつくる方法等が採用できるがこれに限定されるものではない。
【0021】
本発明の高耐久性撥水被膜を形成する撥水膜用塗布液は、フルオロアルキル基含有シラン化合物からなる撥水剤と、希釈用の溶媒と触媒としての酸性水溶液を所定量混合したのち、所定時間攪拌して加水分解反応を終結させることにより調製され、次いで該溶液に脱水剤を添加し、所定時間脱水処理を行って縮重合させることにより得られ、続いて該塗布液を活性の高い下地層に調温調湿するなかで塗布し、80℃以上350℃以下で1分間乃至60分間の乾燥とキュアリングを行い、撥水性被膜をガラス基板表面に固定化する。
【0022】
前記フルオロアルキル基含有シラン化合物としては、次式で示されるフルオロアルキルアルコキシシラン系化合物を用いることが出来る。
【0023】
CF3(CF2m(CH22Si(OR)3 [1]
(式中、m=5〜11の整数、R=CH3、C25、C35およびC47を表す)
上記の出発原料としては、撥水剤としてフルオロアルキルアルコキシシラン系化合物であり、その化合物としては、CF3(CF25CH2CH2Si(OR)3、 CF3(CF26CH2CH2Si(OR)3、CF3(CF27CH2CH2Si(OR)3、CF3(CF28CH2CH2Si(OR)3、CF3(CF29CH2CH2Si(OR)3、CF3(CF210CH2CH2Si(OR)3、CF3(CF211CH2CH2Si(OR)3、CF3(CF25CH2CH2SiR(OR)2、CF3(CF27CH2CH2SiR(OR)2、CF3(CF29CH2CH2SiR(OR)2、CF3(CF211CH2CH2SiR(OR)2、CF3(CF27CH2CH2SiR2(OR)、CF3(CF28CH2CH2SiR2(OR)、CF3(CF211CH2CH2SiR2(OR)等を用いることが出来る。
なお、上記化学式におけるRはCH3、C25、C35、C47を示す。また、前記フルオロアルキル基含有シラン化合物は、反応末端基がアルコキシ基に限定されるものではなく、その他にハロゲンやイソシアネート基であってもよく、この場合にはシラン化合物の加水分解に対する反応性が非常に高いので、予め加水分解を行わずに用いることができる。
【0024】
また、希釈溶媒としては、イソプロピルアルコ−ル(以下、「i−PA」と略す)の他に、メタノ−ル、エタノ−ルなど炭素数が5以下の低級アルコ−ル溶媒であってもよく、アルコ−ル以外にエ−テル類やケトン類を用いることができ、ことにi−PAを主成分としてなるアルコールがコ−ティング溶液の調製における希釈溶媒として好ましい。
【0025】
また、触媒としての酸性水溶液は、0.01N以上、好ましくは0.1N〜36N程度の濃度の硝酸、塩酸、硫酸などの無機酸或いは酢酸、クエン酸などの有機酸を使用することができる。
【0026】
なお、撥水剤:希釈溶剤:水および酸触媒は、重量割合で1:5〜40:0.09〜1.0の範囲が好ましいが、これらの範囲に限定されるものではない。
また、本発明は、加水分解終結後に重縮合させる場合あるいは加水分解の途中で重縮合が開始する場合等、特に限定するものではない。
【0027】
ガラス基板への撥水膜の膜付け法としては、手塗り、ノズルフロ−コ−ト法、ディッピング法、スプレー法、リバ−スコ−ト法、フレキソ法、印刷法、フローコート法あるいはスピンコート法、ならびにそれらの併用等既知の塗布手段、さらに本出願人が出願提案した各種塗布法等が適宜採用し得るものである。
なお、撥水層の成膜の条件としては、例えば80℃以上350℃以下で1分間乃至60分間の乾燥とキュアリングを行い成膜するのが好ましい。
【0028】
前述したとおり、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)なる組成のアルカリ−シリカ薄膜を形成し、酸処理によってアルカリイオンを抽出した活性の高い下地層を設け、その上に長鎖フルオロアルキル基含有シランからなる撥水性被膜を被覆することにより、得られる撥水ガラスは格段に優れた耐久性を有する。この撥水性被膜は、より長期的に優れた撥水性能、例えば、各種耐久性試験後の接触角が約70°以上、好ましくは約80°以上、より好ましくは約90°以上を維持することができ、高硬度かつ高密着性であって耐久性を併せ持ち、制御性よく極めて安定して発現する。しかも高安全で厄介な工程もなく、簡便に効率よく成膜することができ、かつ量産下で長期においてもそのバラツキ幅をよりコントロ−ルよく低減することができ、より確実でかつ安定した品質のものとすることができる等、建築用はもちろん、ことに自動車用等の窓材、さらには船舶や航空機の窓材、電子機器などの種々の分野の各種ガラス物品において有用である。
【0029】
ガラス基板としては、建築用窓ガラスや自動車用窓ガラス等に通常使用されているフロ−トガラスあるいはロ−ルアウト法で製造されたガラス等無機質の透明性がある板ガラスが好ましく、無色または着色、ならびにその種類あるいは色調、他の機能性膜との組み合わせ、ガラスの形状等に特に限定されるものではなく、さらに曲げ板ガラスとしてはもちろん各種強化ガラスや強度アップガラスであり、平板や単板で使用できるとともに、複層ガラスあるいは合わせガラスとしても使用できる。また、被膜はガラス基板の両面に成膜しても構わない。
【0030】
【作用】
フルオロアルキル基含有シラン化合物を有効成分とする撥水処理液を、フロートガラスのガラス面、あるいは下地層表面に塗布してRf基をガラス表面に固定化する撥水ガラスでは、処理される基板の表面のシラノール基の濃度が製品の品質を左右する極めて重要な因子である。
【0031】
すなわち、活性の高い下地層は、ケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜を形成後、酸性水溶液にて酸処理して薄膜中からアルカリイオンを抽出する際に、アルカリイオンとプロトンのイオン交換反応によって多くのシラノール基を膜表面に生成させることが可能で、さらに、該アルカリ−シリカ系酸化物薄膜の組成を、xR2O−(100−x)SiO2(10<x<50mol%、R=アルカリ金属)とすることにより、アルカリ金属の添加による下地膜の膜硬度の低下を最小限に抑えることが可能である。
【0032】
例えば、自動車用の撥水ガラスとして実用に供する場合、極めて高い耐光性と耐摩耗性を両立させることが必要であり、本件では、非常に高い活性(シラノール基濃度)を有し、かつ高い耐摩耗性を有する下地層膜の形成を提供するものである。
【0033】
【実施例】
以下に、本発明の実施例について説明する。
以下の実施例および比較例に共通な項目である、撥水液の調合方法、撥水性ガラスの作製方法および得られた撥水性ガラスの評価方法については、以下の方法により行った。
【0034】
(1)撥水液の調製
撥水液は、撥水剤としてC8タイプのフルオロアルキルアルコキシシランである、ヘプタデカフルオロデシルトリメトキシシラン(CF3(CF27CH2CH2Si(OCH33:信越化学製KBM−7803、以下FASと記す)を用い、希釈溶媒であるイソプロピルアルコール(i−PA)と酸触媒である0.1N硝酸(HNO3)を所定量混合し、室温で2h攪拌して加水分解反応を終結させた後、モレキュラーシーブ4A(脱水剤)を16h浸漬し、ろ紙でろ過して調製した。各成分の混合割合(重量比)を下記表1に示す。
【0035】
【表1】

Figure 0003748724
【0036】
(2)シリカ系下地層の形成
200mm×300mm×3.5mmサイズのフロートガラス基板の表面を、研摩剤からなる縣濁液(ミレーク(A+B)(三井金属工業製):水=1:100(wt%))を用いブラシポリッシャーを用いて研磨したのち、充分に水洗・乾燥したものを塗布用基板とした。
【0037】
塗布液は、以下のようにして調製した。シリカゾルには、コルコート社製コルコート6P(溶質濃度6wt%、平均分子量Mw;約20000、主溶媒はi−PA、n−ブタノール、酢酸エチルなど)を用いた。アルカリ金属酸化物源としては、リチウムやナトリウムのアルコキシド、酢酸塩、塩化物および硝酸塩(いずれもキシダ化学製特級試薬)などの化合物を用いた。これらの所定量をエタノール、n−ブタノールおよびi−PAの混合溶媒に溶解後、酢酸、硝酸、塩酸などの酸触媒および水を添加して加水分解した後に、先のシリカゾルに添加した。添加量は、ケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜の組成が、xR2O−(100−x)SiO2(10<x<50mol%,R=アルカリ金属)となるようにした。これを十分に攪拌して、最終的な固形分濃度が1.5wt%となるようi−PAで希釈してコーティング液を得た。
【0038】
塗布方法はスピンコート法で行った。先ず、スピンコーター上に被膜用ガラス基板をセットし、先ず塗布被膜域(高速スピン回転)において、スピン回転を開始し、回転速度が150rpmで3秒後、上記コーティング液の塗布量としては10ml程度滴下し、15秒回転速度を維持し被膜化した。続いてレベリング域(スピン回転停止)において、被膜化した塗布液が渇きはじめて流動性を失うようになる前に、スピン回転を30rpm以下の低速で30秒間回転させて塗布液をレペリングせしめ、乾燥促進域(低速スピン回転)において、再度スピン回転を始め、50rpmの低速回転で60秒間維持し、塗膜の乾燥促進を行い、良好な成膜性のゲル膜を得た。ここで、塗布時の条件は、雰囲気温度、湿度:25℃、50%RH、塗布液の温度:25℃(雰囲気温度と同じ)とした。なお、成膜法は、ディッピング法やリバースロールコート法をはじめ、種々のロールコート法、フローコート法など、スピンコート法に限定されるものではない。
【0039】
次に、該ゲル膜付きガラス基板を250℃で30分間仮焼成を行い、さらにガラス温度で630℃〜660℃の本焼成を行って、xR2O−(100−x)SiO2(10<x<50mol%,R=アルカリ金属)薄膜を得た。アルカリ−シリカ系膜の膜厚は、Sloantech.製Dektak-3030を用いて測定した。
【0040】
次いで、得られたアルカリ−シリカ系薄膜を、硫酸、硝酸、または塩酸からなる濃度0.2Nの酸性水溶液中に浸漬(酸処理、60℃で30分間)して薄膜中からアルカリイオンを抽出した。その後、水洗・乾燥して高い活性を有するシリカ系下地膜を得た。
【0041】
(3)撥水ガラスの作製
200×300×3.5tサイズのフロートガラス、または、高い活性を有するシリカ系膜の表面に、温度と湿度を23℃、45%RHに保った環境下で、約2ml/pcの前記撥水液を滴下し、綿布(商品名ベンコット)でガラス全面に十分引き伸ばした後、5分程度風乾した。その後,マッフル炉でガラス温度が5分で140℃に達するような熱処理(以下、キュアリングと呼ぶ)を行い、白濁して残った余剰な撥水剤をi−PAで拭き上げて透明な撥水ガラスを得た。
【0043】
(4)実用耐久性の評価方法
1)下地膜の膜硬度
酸処理後、洗浄および乾燥した下地膜の膜硬度をテーバー試験機を用い、摩耗輪(CS−10F)を20回転させた後のヘーズ値の増加値(△H;%)で評価した。
・試験機器:テーバー試験機(JIS-R3212−3.7)
・評価機器:ヘーズメーター(日本電色工業製、NDH−20D)
2)初期接触角
水滴を試料に乗せたときの水滴と基盤表面とのなす角を接触角計で測定した。
・測定機器:協和界面科学製CA−X型
・測定環境:大気中(約25℃)
・水:純水(2μl)
3)耐光性試験
以下の試験機を用いて、UV照射200h毎の接触角を測定し、特に600
h照射後の接触角を耐光性の値とした。
・試験機:岩崎電気製アイスーパUVテスターSUV−W131
・UV照射強度:76mW/cm2
・試料環境:48℃、20%RH
【0044】
【実施例1】
アルカリ源としてリチウムメトキシドを用い、仕込みの下地層組成を20Li2O−80SiO2(mol%)となるように、コーティング薬液を調製した。これを先述の方法によって成膜、焼成および酸処理を行った。
得られた下地層(膜厚160nm)の膜品質を評価した結果、表2に示すように、透明性の高い良好な状態であり、膜硬度も△H=0.1〜0.2とアルカリを添加しないシリカ膜と同程度で膜硬度の低下は認められず、実用レベルの高い膜硬度であった。
【0045】
さらに、この下地層の表面に撥水処理を行い、撥水ガラスを得た。得られた撥水ガラスの実用耐久性の評価で、耐光性は79°(目標75°以上)でシリカのみに比べてアルカリ成分の添加による耐光性の向上効果が認められた。
【0046】
【表2】
Figure 0003748724
【0047】
【実施例2】
アルカリ源としてリチウムメトキシドを用い、仕込みの下地層組成を30Li2O−70SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0048】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚170nm)の膜品質は僅かに褐色を呈し、膜硬度も△H=0.4〜0.5とアルカリを添加しないシリカ膜に比べてやや膜硬度の低下が見られたが、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は83°で、アルカリ成分の添加により耐光性は格段に向上した。
【0049】
【実施例3】
アルカリ源としてリチウムメトキシドを用い、仕込みの下地層組成を40Li2O−60SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0050】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚140nm)の膜品質は僅かに白濁を生じ、膜硬度も△H=0.5〜0.8とアルカリを添加しないシリカ膜に比べて膜硬度の低下が見られたが、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は92°で、アルカリ成分の添加により著しい耐光性の向上効果が認められた。
【0051】
【実施例4】
アルカリ源として酢酸リチウムを用い、仕込みの下地層組成を20Li2O−80SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0052】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚140nm)の膜品質は僅かに褐色を呈したが、膜硬度は△H=0.2〜0.3とアルカリを添加しないシリカ膜と同等で、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は80°で高い耐久性であった。
【0053】
【実施例5】
アルカリ源として酢酸リチウムを用い、仕込みの下地層組成を30Li2O−70SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0054】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚200nm)の膜品質は僅かに白濁を生じ、膜硬度も△H=0.4〜0.5とアルカリを添加しないシリカ膜に比べて膜硬度の低下が見られたが、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は93°で、アルカリ成分の添加により著しい耐光性の向上効果が認められた。
【0055】
【実施例6】
アルカリ源としてナトリウムメトキシドを用い、仕込みの下地層組成を20Na2O−80SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0056】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚120nm)の膜品質は透明性の高い良好な状態であり、膜硬度は△H=0.2〜0.4とアルカリ成分を添加しないシリカ膜と同等で、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は79°で高い耐久性であった。
【0057】
【実施例7】
アルカリ源としてナトリウムメトキシドを用い、仕込みの下地層組成を30Na2O−70SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0058】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚100nm)の膜品質は透明性の高い良好な状態であったが、膜硬度は△H=0.5〜0.7とアルカリ成分を添加しないシリカ膜に比べて膜硬度の低下が見られたが、実用上問題がないレベルの透明性と膜硬度であった。また、撥水ガラスの耐光性は83°で、アルカリ成分の添加により耐光性は格段に向上した。
【0059】
【比較例1】
膜組成をアルカリ成分を添加せずにシリカ成分のみとして下地層を形成し、同様の方法で撥水ガラスを作製した。
結果、表2に示すように、下地層(膜厚140nm)の膜品質は透明性の高い良好な状態であり、膜硬度も△H=0.1〜0.2と実用レベルの高い膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は72°で目標を満足するものではなかった。
【0060】
【表3】
Figure 0003748724
【0061】
【比較例2】
アルカリ源としてリチウムメトキシドを用い、仕込みの下地層組成を10Li2O−90SiO2(mol%)となるように、コーティング薬液を調製した。これを先述の方法によって成膜、焼成および酸処理を行った。得られた下地層(膜厚150nm)の膜品質は透明性の高い良好な状態であり、膜硬度も△H=0.1〜0.2とアルカリを添加しないシリカ膜と同程度で膜硬度の低下は認められず、実用レベルの高い膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は72°で目標を満足するものではなく、比較例1のアルカリ成分を添加しない場合と同等であり、アルカリ成分の添加効果は認められなかった。
【0062】
【比較例3】
アルカリ源として硝酸リチウムを用い、仕込みの下地層組成を10Li2O−90SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0063】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚150nm)の膜品質は透明性の高い良好な状態であり、膜硬度も△H=0.1〜0.2とアルカリを添加しないシリカ膜と同程度で膜硬度の低下は認められず、実用レベルの高い膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は73°で目標を満足するものではなく、比較例1のアルカリ成分を添加しない場合とほぼ同等であり、アルカリ成分の添加効果は殆ど認められなかった。
【0064】
【比較例4】
アルカリ源として酢酸リチウムを用い、仕込みの下地層組成を10Li2O−90SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0065】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚110nm)の膜品質は僅かに褐色を呈したが、膜硬度は△H=0.2〜0.3とアルカリを添加しないシリカ膜に比べて低下は認められず、実用上問題がないレベルの透明性と膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は72°で目標を満足するものではなく、比較例1のアルカリ成分を添加しない場合と同等であり、アルカリ成分の添加効果は認められなかった。
【0066】
【比較例5】
アルカリ源として塩化リチウムを用い、仕込みの下地層組成を10Li2O−90SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0067】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚130nm)の膜品質は透明性の高い良好な状態であり、膜硬度も△H=0.1〜0.2とアルカリを添加しないシリカ膜と同程度で膜硬度の低下は認められず、実用レベルの高い膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は73°で目標を満足するものではなく、比較例1のアルカリ成分を添加しない場合とほぼ同等であり、アルカリ成分の添加効果は殆ど認められなかった。
【0068】
【比較例6】
アルカリ源としてナトリウムメトキシドを用い、仕込みの下地層組成を10Na2O−90SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0069】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚110nm)の膜品質は透明性の高い良好な状態であり、膜硬度も△H=0.2〜0.3とアルカリを添加しないシリカ膜と同等で、実用上問題がないレベルの透明性と膜硬度であった。しかし、撥水ガラスの実用耐久性を示す耐光性は73゜で目標を満足するものではなく、比較例1のアルカリ成分を添加しない場合とほぼ同等であり、アルカリ成分の添加効果は殆ど認められなかった。
【0070】
【比較例7】
アルカリ源としてリチウムメトキシドを用い、仕込みの下地層組成を50Li2O−50SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製して下地層を形成し、さらに撥水ガラスを作製した。
【0071】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚140nm)の膜品質は白濁しており、膜硬度は△H=1.0〜2.0とアルカリを添加しないシリカ膜に比較して大きく低下し、実用に供することのできるレベルでなかった。なお、耐光性は92°と非常に高いレベルであった。
【0072】
【比較例8】
アルカリ源として硝酸リチウムを用い、仕込みの下地層組成を50Li2O−50SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製して下地層を形成した。しかし、得られた下地層は完全に白濁し、透明性が悪く、撥水ガラスの下地層に供するレベルのものではなかった。したがって、実用耐久性の評価は行わなかった。
【0073】
【比較例9】
仕込みの下地層組成を60Li2O−40SiO2(mol%)とした以外は比較例8と同様にしてコーティング薬液を調製して下地層を形成した。しかし、得られた下地層は完全に白濁し、透明性が悪く、撥水ガラスの下地層に供するレベルのものではなかった。したがって、実用耐久性の評価は行わなかった。
【0074】
【比較例10】
アルカリ源として酢酸リチウムを用い、仕込みの下地層組成を50Li2O−50SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。しかし、得られた下地層(膜厚170nm)は完全に白濁し、透明性が悪く、撥水ガラスの下地層に供するレベルのものではなかった。なお、得られた撥水ガラスの耐光性は93°と非常に高いレベルであった。
【0075】
【比較例11】
仕込みの下地層組成を60Li2O−40SiO2(mol%)とした以外は比較例10と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。しかし、得られた下地層は完全に白濁し、透明性が悪く、撥水ガラスの下地層に供するレベルのものではなかった。したがって、実用耐久性の評価は行わなかった。
【0076】
【比較例12】
アルカリ源として塩化リチウムを用い、仕込みの下地層組成を50Li2O−50SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製して下地層を形成した。しかし、得られた下地層は完全に白濁し、透明性が悪く、撥水ガラスの下地層に供するレベルのものではなかった。したがって、実用耐久性の評価は行わなかった。
【0077】
【比較例13】
アルカリ源としてナトリウムメトキシドを用い、仕込みの下地層組成を50Na2O−50SiO2(mol%)とした以外は実施例1と同様にしてコーティング薬液を調製し、さらに撥水ガラスを作製した。
【0078】
得られた下地層および撥水ガラスの実用耐久性を評価した結果、下地層(膜厚100nm)の膜品質はかなり褐色が呈していたが、透明性は確保され成膜性は良好であった。しかし、膜硬度は△H=1.0〜2.0とアルカリを添加しないシリカ膜に比較して大きく低下し、実用に供することのできるレベルでなかった。なお、撥水ガラスの耐光性は75°であった。
【0079】
【発明の効果】
本発明は、撥水処理の際にトップ面、ボトム面を区別せずに双方に対して同等の撥水性能が得られ、且つ得られた撥水性被膜は、高硬度かつ高密着性であって耐久性や耐摩耗性とを併せ持ち、より長期的に優れた撥水性能を維持することができるとともに、安価な方法で活性の高い撥水ガラスおよびその製造方法を得ることが出来る等の効果を有する。[0001]
[Industrial application fields]
The present invention is a highly durable material that can be used for various window materials such as architectural, automotive, marine or aircraft, mirrors for bathrooms or automobiles, and other transparent articles in various fields such as industrial use. A water-repellent glass and a method for producing the same are provided.
[0002]
[Prior art and its problems]
A great many studies have been reported on a highly durable water-repellent glass having good abrasion resistance and the like obtained by treating a glass substrate surface with a fluoroalkyl group-containing silane compound. Among them, as shown in Japanese Patent Application Laid-Open No. 6-16455, as described in Japanese Patent No. 2500188, the glass surface is provided with a base film such as silica having an uneven shape, or the base film is not provided. A method of forming a water- and oil-repellent monomolecular film on the glass surface, a method described in JP-A-10-59745, wherein the glass surface to be water-repellent treated is ceria polished and further acid-treated to increase the activity of the substrate, A method using a fluoroalkyl group-containing silane compound having an increased or controlled degree of polymerization as a water repellent treatment liquid is disclosed. Furthermore, in JP-A-8-325037, after forming an alkali barrier layer containing no alkali metal in the vicinity of the glass substrate surface or having a low alkali metal content, by treating the fluoroalkyl group-containing silane compound, A method for obtaining a highly durable water-repellent treated glass is disclosed. Furthermore, in JP-A-9-48639, a fluoroalkyl group-containing silane compound is formed after forming a surface in which the amount of alkali components such as sodium is reduced by dealkalizing the glass substrate surface to form a dealkalized layer. It has been disclosed to improve heat resistance, water resistance and weather resistance by processing.
[0003]
Further, as a method for forming a base layer made of a silica film-based oxide containing a large amount of silanol groups, for example, Japanese Patent Application Laid-Open Nos. 2-311332 and 3-232747 are known.
[0004]
[Problems to be solved by the invention]
However, in order to obtain a highly durable water-repellent glass, it is necessary to have complicated control conditions and processes to provide a base film such as silica having an uneven shape on the glass surface as disclosed in JP-A-6-16455. And the cost is high. In addition, those not provided with the base film generally have insufficient reactivity between the water repellent component and the glass surface, or a fluoroalkyl group-containing silane compound as disclosed in JP-A-10-59745. Even when using a water-repellent treatment liquid with a controlled degree of polymerization, it is necessary to produce automotive safety glass by limiting the water-repellent treatment surface to the top surface of the float glass. The process is complicated to distinguish the processing surface, and the water repellent treatment of the online heat ray reflective glass inevitably obtains the desired performance because the bottom surface (vehicle outer surface) is the water repellent treatment surface. There were cases where it was not possible.
[0005]
In addition, in the methods shown in JP-A-2-311322, JP-A-3-232747, etc., the formed underlayer is activated by polycondensation reaction between silanol groups after high heat treatment exceeding 500 ° C. High silanol groups are greatly reduced, and it is not necessarily an underlayer having sufficient activity, and it is not satisfactory as a highly durable water-repellent glass.
[0006]
[Means for solving problems]
The present invention has been made in view of such conventional problems, and the same water-repellent performance can be obtained and obtained for both the water-repellent treatment without distinguishing the top surface and the bottom surface. The water-repellent coating has high hardness and high adhesion, and has both durability and wear resistance, and can maintain excellent water repellency over a long period of time. Water glass can be obtained.
[0007]
That is, the present invention provides xR2O- (100-x) SiO2Silanol group concentration obtained by extracting alkali ions by acid treatment from the surface of an oxide thin film mainly composed of silicon oxide and alkali metal oxide having a composition represented by (10 <x <50 mol%, R = alkali metal) The present invention relates to a highly durable water-repellent glass characterized in that a water-repellent coating composed of a fluoroalkyl group-containing silane is fixed on the surface of a base layer whose activity is increased by increasing
[0008]
In addition, the present invention provides an underlayer by forming an oxide thin film mainly composed of silicon oxide and alkali metal oxide on the surface of a glass substrate and then acid-treating with an acidic aqueous solution to extract alkali ions from the surface of the thin film. Then, a water repellent treatment liquid made of a hydrolyzate or polymer of a fluoroalkyl group-containing silane compound is applied to the surface of the base layer, dried and fired to form a water repellent film made of a fluoroalkyl group-containing silane. The present invention relates to a method for producing a highly durable water-repellent glass characterized by being fixed.
[0009]
Moreover, it is preferable to use at least one of alkoxide, acetate, chloride, nitrate, and acetylacetonate as a starting material for the alkali metal oxide component of the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a water-repellent glass having high durability by providing a base layer having high activity obtained by extracting alkali ions from the surface and coating a water-repellent coating composed of a long-chain fluoroalkyl group-containing silane on the base layer. Can be obtained.
[0011]
The underlayer of the present invention is composed of an oxide thin film mainly composed of silicon oxide and alkali metal oxide. In particular, an undercoat layer composed of these metal oxides is formed on the surface of a glass substrate and then acid-treated with an acidic aqueous solution. A base layer having high activity is formed by extracting alkali ions from the thin film.
[0012]
The composition of the underlayer thin film from which alkali ions are extracted is xR2O- (100-x) SiO2(10 <x <50 mol%, R = alkali metal) It is preferable that when the content of the alkali metal oxide is 10 mol% or less, the effect of adding an alkali metal is hardly recognized, and the resulting water-repellent glass is The quality is almost the same as in the case of silica alone with no alkali metal added. On the other hand, when the content of alkali metal oxide is 50 mol% or more, it becomes difficult to form the base film, or the film of the base film obtained is It is not preferable because the hardness is greatly lowered and cannot be put to practical use. In addition, as an alkali metal, at least one of lithium, sodium, and potassium can be used. However, mixing two or more of them decreases the ion diffusion coefficient due to the mixed alkali effect, and causes ions with protons by acid treatment. This is undesirable because the rate of the exchange reaction is greatly reduced.
[0013]
Alkali metals having a smaller ionic radius, that is, sodium than potassium and lithium rather than sodium have a higher ion diffusion coefficient, so that the ion exchange reaction by acid treatment is faster and the treatment time can be shortened.
The composition of the underlayer is composed of an oxide thin film mainly composed of silicon oxide and alkali metal oxide, and may contain other metal oxides such as titania, alumina and zirconia in an amount of about 0 to 20 mol%. I do not care.
[0014]
As a starting material for the alkali metal oxide component of the present invention, at least one of alkoxide, acetate, chloride, nitrate and acetylacetonate salt can be used. As the alkoxide, for example, LiOCHThree, NaOCHThree, KOCHThree, LiOC2HFiveEtc., acetate as CHThreeCOOLi, CHThreeCOONa, CHThreeCOOK, LiCl as the chloride, NaCl, KCl, LiNO as the nitrateThree, NaNOThree, KNOThreeAs an acetylacetonate salt, LiCHThreeCOCHCOCHThree, NaCHThreeCOCHCOCHThreeEtc. can be used.
The underlayer can be coated on either surface of the glass substrate. For example, in the case of float glass manufactured by a float process, it can be coated on either the top surface or the bottom surface.
[0015]
In order to form an underlayer, first, a glass substrate whose surface is sufficiently washed and dried is prepared. The surface of the glass substrate is preferably polished, but is not particularly limited.
[0016]
The coating solution for the underlayer is prepared as follows. For example, a predetermined amount of an alkali metal compound such as at least one alkoxide of lithium, sodium and potassium as an alkali metal oxide source, acetate, chloride, nitrate and acetylacetonate salt is added to ethanol, n-butanol or After being dissolved in a solvent such as isopropyl alcohol, acid catalyst such as acetic acid, nitric acid, hydrochloric acid and water are added and hydrolyzed, and then added to silica sol as a silica source, and then stirred sufficiently to obtain a final solid For example, the coating solution for the underlayer can be obtained by diluting with isopropyl alcohol so that the partial concentration becomes 1.5 wt%. The addition amount of the alkali metal compound and silica sol is such that the composition of the oxide thin film containing silicon oxide and alkali metal oxide as a main component is xR.2O- (100-x) SiO2(10 <x <50 mol%, R = alkali metal). As a starting material for silica sol, silica compounds such as tetramethoxysilane, tetraethoxysilane, and methyltrimethoxysilane can be used.
[0017]
The coating method is not particularly limited, such as a dipping method and a reverse roll coating method, various roll coating methods, a flow coating method, a spin coating method, and the like.
[0018]
For example, the glass substrate on which the coating solution for the underlayer has been formed is temporarily baked at 250 ° C. for 30 minutes, and further baked at a glass temperature of 630 ° C. to 660 ° C. to obtain xR2O- (100-x) SiO2A thin film having a composition (10 <x <50 mol%, R = alkali metal) was obtained.
[0019]
Next, the alkali-silica thin film obtained above was subjected to an acid treatment by a method such as immersion in an acidic aqueous solution such as sulfuric acid, nitric acid, or hydrochloric acid, and alkali ions were extracted from the surface of the thin film. Thereafter, it was washed with water and dried to obtain a silica-based underlayer having high surface activity. In addition, the density | concentration of acidic aqueous solution can use 0.01N or more, Preferably inorganic acids, such as nitric acid, hydrochloric acid, and a sulfuric acid of about 0.1N-36N, or organic acids, such as an acetic acid and a citric acid, can be used.
[0020]
Further, it is particularly preferable to make the surface of the underlayer uneven, since durability is further improved. As the method, for example, at least two or more kinds selected from a metal alkoxide compound or a metal acetylacetonate compound are selected. A method in which the average molecular weights of two or more compounds are different, the two or more compounds are mixed with a solvent to form a coating solution, the solution is coated, and then heated to form a micropit-like surface layer. Although it can be employed, it is not limited to this.
[0021]
The coating solution for water repellent film that forms the highly durable water repellent coating of the present invention, after mixing a predetermined amount of a water repellent comprising a fluoroalkyl group-containing silane compound, a solvent for dilution and an acidic aqueous solution as a catalyst, It is prepared by stirring for a predetermined time to terminate the hydrolysis reaction, and then obtained by adding a dehydrating agent to the solution and subjecting it to a dehydration treatment for a predetermined time, followed by condensation of the coating solution with high activity. It is applied to the underlayer while adjusting the temperature and humidity, and is dried and cured at 80 ° C. to 350 ° C. for 1 to 60 minutes to immobilize the water-repellent coating on the glass substrate surface.
[0022]
As the fluoroalkyl group-containing silane compound, a fluoroalkylalkoxysilane compound represented by the following formula can be used.
[0023]
CFThree(CF2)m(CH2)2Si (OR)Three          [1]
(Where m = integer of 5-11, R = CHThree, C2HFive, CThreeHFiveAnd CFourH7Represents
The starting material is a fluoroalkylalkoxysilane compound as a water repellent, and the compound is CFThree(CF2)FiveCH2CH2Si (OR)Three, CFThree(CF2)6CH2CH2Si (OR)Three, CFThree(CF2)7CH2CH2Si (OR)Three, CFThree(CF2)8CH2CH2Si (OR)Three, CFThree(CF2)9CH2CH2Si (OR)Three, CFThree(CF2)TenCH2CH2Si (OR)Three, CFThree(CF2)11CH2CH2Si (OR)Three, CFThree(CF2)FiveCH2CH2SiR (OR)2, CFThree(CF2)7CH2CH2SiR (OR)2, CFThree(CF2)9CH2CH2SiR (OR)2, CFThree(CF2)11CH2CH2SiR (OR)2, CFThree(CF2)7CH2CH2SiR2(OR), CFThree(CF2)8CH2CH2SiR2(OR), CFThree(CF2)11CH2CH2SiR2(OR) or the like can be used.
Note that R in the above chemical formula is CH.Three, C2HFive, CThreeHFive, CFourH7Indicates. The fluoroalkyl group-containing silane compound is not limited to an alkoxy group at the reaction end group, but may be a halogen or an isocyanate group. In this case, the reactivity of the silane compound with respect to hydrolysis is not limited. Since it is very high, it can be used without prior hydrolysis.
[0024]
In addition to isopropyl alcohol (hereinafter abbreviated as “i-PA”), the diluent solvent may be a lower alcohol solvent having 5 or less carbon atoms, such as methanol or ethanol. In addition to alcohols, ethers and ketones can be used, and alcohols containing i-PA as a main component are particularly preferred as dilution solvents in the preparation of the coating solution.
[0025]
The acidic aqueous solution as the catalyst may be an inorganic acid such as nitric acid, hydrochloric acid or sulfuric acid or an organic acid such as acetic acid or citric acid having a concentration of about 0.01 N or more, preferably about 0.1 N to 36 N.
[0026]
The ratio of water repellent: dilution solvent: water and acid catalyst is preferably in the range of 1: 5 to 40: 0.09 to 1.0 by weight, but is not limited to these ranges.
In addition, the present invention is not particularly limited when polycondensation is performed after completion of hydrolysis, or when polycondensation starts in the middle of hydrolysis.
[0027]
The water-repellent film can be applied to the glass substrate by hand coating, nozzle flow coating method, dipping method, spraying method, river coating method, flexo method, printing method, flow coating method or spin coating method. In addition, known coating means such as a combination thereof, and various coating methods proposed by the present applicant can be appropriately employed.
As the conditions for forming the water-repellent layer, it is preferable to form the film by drying and curing at 80 ° C. to 350 ° C. for 1 minute to 60 minutes, for example.
[0028]
As mentioned above, xR2O- (100-x) SiO2A long-chain fluoroalkyl group-containing silane is formed by forming an alkali-silica thin film having a composition (10 <x <50 mol%, R = alkali metal), and providing a highly active underlayer from which alkali ions are extracted by acid treatment. The water-repellent glass obtained by coating a water-repellent film made of is extremely excellent in durability. This water-repellent coating should maintain excellent water repellency over a long period of time, for example, a contact angle after various durability tests of about 70 ° or more, preferably about 80 ° or more, more preferably about 90 ° or more. It has high hardness, high adhesion, durability, and very stable expression with good controllability. In addition, there is no high-safety and troublesome process, it is possible to easily and efficiently form a film, and the variation width can be reduced with good control even in the long term under mass production, and more reliable and stable quality. It is useful for various glass articles in various fields such as window materials for automobiles, as well as window materials for ships and aircraft, electronic devices, etc.
[0029]
As the glass substrate, a glass plate having an inorganic transparency such as a float glass or a glass produced by a roll-out method, which is usually used for architectural window glass or automobile window glass, is preferable, colorless or colored, and It is not particularly limited to its type or color tone, combination with other functional films, glass shape, etc. Further, as bent plate glass, it is of course various tempered glass and strength-up glass, and can be used as a flat plate or a single plate. At the same time, it can be used as a double-layer glass or a laminated glass. The coating may be formed on both sides of the glass substrate.
[0030]
[Action]
In a water-repellent glass in which a water-repellent treatment liquid containing a fluoroalkyl group-containing silane compound as an active ingredient is applied to the glass surface of a float glass or the surface of an underlayer to fix Rf groups to the glass surface, The concentration of silanol groups on the surface is a very important factor that affects the quality of the product.
[0031]
That is, the highly active underlayer is formed by forming an oxide thin film mainly composed of silicon oxide and alkali metal oxide, and then performing alkali treatment with an acidic aqueous solution to extract alkali ions from the thin film. It is possible to generate many silanol groups on the membrane surface by ion exchange reaction between the proton and the proton, and the composition of the alkali-silica oxide thin film can be changed to xR2O- (100-x) SiO2By setting (10 <x <50 mol%, R = alkali metal), it is possible to minimize a decrease in film hardness of the base film due to the addition of the alkali metal.
[0032]
For example, when it is put to practical use as a water-repellent glass for automobiles, it is necessary to achieve both extremely high light resistance and wear resistance. In this case, it has very high activity (silanol group concentration) and high resistance to light. The present invention provides the formation of an undercoat film having wear properties.
[0033]
【Example】
Examples of the present invention will be described below.
The following methods were used for the water repellent liquid preparation method, the water repellent glass preparation method, and the obtained water repellent glass evaluation method, which are items common to the following Examples and Comparative Examples.
[0034]
(1) Preparation of water repellent liquid
The water repellent liquid is a heptadecafluorodecyltrimethoxysilane (CF) which is a C8 type fluoroalkylalkoxysilane as a water repellent.Three(CF2)7CH2CH2Si (OCHThree)Three: Shin-Etsu Chemical KBM-7803, hereinafter referred to as FAS), dilute solvent isopropyl alcohol (i-PA) and acid catalyst 0.1N nitric acid (HNO)Three) Were mixed for a predetermined amount and stirred at room temperature for 2 hours to terminate the hydrolysis reaction, and then the molecular sieve 4A (dehydrating agent) was immersed for 16 hours and filtered through a filter paper. The mixing ratio (weight ratio) of each component is shown in Table 1 below.
[0035]
[Table 1]
Figure 0003748724
[0036]
(2) Formation of silica-based underlayer
A surface of a float glass substrate having a size of 200 mm × 300 mm × 3.5 mm is coated with a brush polisher using a suspension liquid made of an abrasive (Mireke (A + B) (Mitsui Metal Industries, Ltd.): Water = 1: 100 (wt%)). After using and polishing, what was sufficiently washed and dried was used as a substrate for coating.
[0037]
The coating solution was prepared as follows. As the silica sol, Colcoat 6P (solute concentration 6 wt%, average molecular weight Mw; about 20000, main solvent is i-PA, n-butanol, ethyl acetate, etc.) was used. As the alkali metal oxide source, compounds such as lithium and sodium alkoxides, acetates, chlorides and nitrates (all of which are special grade reagents manufactured by Kishida Chemical) were used. These predetermined amounts were dissolved in a mixed solvent of ethanol, n-butanol and i-PA, hydrolyzed by adding an acid catalyst such as acetic acid, nitric acid and hydrochloric acid and water, and then added to the silica sol. The amount of addition is such that the composition of the oxide thin film mainly composed of silicon oxide and alkali metal oxide is xR2O- (100-x) SiO2(10 <x <50 mol%, R = alkali metal). This was sufficiently stirred and diluted with i-PA so that the final solid content concentration was 1.5 wt% to obtain a coating solution.
[0038]
The coating method was a spin coating method. First, a glass substrate for coating is set on a spin coater. First, spin rotation is started in the coating film region (high-speed spin rotation), and after 3 seconds at a rotation speed of 150 rpm, the coating liquid is applied in an amount of about 10 ml. The solution was dropped to form a film while maintaining the rotation speed for 15 seconds. Subsequently, in the leveling area (spin rotation stop), before the coated coating solution begins to run out and loses its fluidity, spin rotation is rotated at a low speed of 30 rpm or less for 30 seconds to allow the coating solution to be leveled and promote drying. In the region (low-speed spin rotation), spin rotation was started again and maintained at a low-speed rotation of 50 rpm for 60 seconds to promote drying of the coating film, thereby obtaining a gel film with good film formability. Here, the conditions at the time of application were atmospheric temperature, humidity: 25 ° C., 50% RH, and coating solution temperature: 25 ° C. (same as the atmospheric temperature). The film forming method is not limited to spin coating methods such as dipping method and reverse roll coating method, various roll coating methods and flow coating methods.
[0039]
Next, the glass substrate with the gel film is pre-baked at 250 ° C. for 30 minutes, and further subjected to main baking at a glass temperature of 630 ° C. to 660 ° C.2O- (100-x) SiO2A thin film was obtained (10 <x <50 mol%, R = alkali metal). The film thickness of the alkali-silica film was measured using Dektak-3030 manufactured by Sloantech.
[0040]
Next, the obtained alkali-silica-based thin film was immersed (acid treatment, 30 minutes at 60 ° C.) in an acidic aqueous solution having a concentration of 0.2N composed of sulfuric acid, nitric acid, or hydrochloric acid to extract alkali ions from the thin film. . Thereafter, it was washed with water and dried to obtain a silica-based base film having high activity.
[0041]
(3) Production of water repellent glass
The water repellent of about 2 ml / pc in an environment where the temperature and humidity are maintained at 23 ° C. and 45% RH on the surface of a float glass of 200 × 300 × 3.5 t size or a silica-based film having high activity. The solution was added dropwise and sufficiently stretched over the entire surface of the glass with a cotton cloth (trade name Bencott), and then air-dried for about 5 minutes. After that, heat treatment (hereinafter referred to as “curing”) is performed in a muffle furnace so that the glass temperature reaches 140 ° C. in 5 minutes, and the remaining water repellent remaining cloudy is wiped off with i-PA to obtain a transparent repellent. Water glass was obtained.
[0043]
(4) Practical durability evaluation method
1) Film hardness of the underlying film
After the acid treatment, the film hardness of the washed and dried undercoat film was evaluated by an increase in haze value (ΔH;%) after rotating the wear wheel (CS-10F) 20 times using a Taber tester.
・ Test equipment: Taber testing machine (JIS-R3212-3.7)
Evaluation equipment: Haze meter (Nippon Denshoku Industries NDH-20D)
2) Initial contact angle
The angle formed by the water droplet and the substrate surface when the water droplet was placed on the sample was measured with a contact angle meter.
・ Measuring equipment: Kyowa Interface Science CA-X type
・ Measurement environment: In the atmosphere (about 25 ℃)
・ Water: Pure water (2μl)
3) Light resistance test
Using the following tester, the contact angle is measured every 200 h of UV irradiation, especially 600
The contact angle after h irradiation was taken as the value of light resistance.
・ Testing machine: Iwasaki Electric ice super UV tester SUV-W131
・ UV irradiation intensity: 76 mW / cm2
-Sample environment: 48 ° C, 20% RH
[0044]
[Example 1]
Lithium methoxide is used as an alkali source, and the charged underlayer composition is 20 Li2O-80SiO2A coating chemical solution was prepared so as to be (mol%). This was subjected to film formation, firing and acid treatment by the above-mentioned methods.
As a result of evaluating the film quality of the obtained underlayer (film thickness 160 nm), as shown in Table 2, it was in a good state with high transparency, and the film hardness was also ΔH = 0.1 to 0.2. The film hardness was almost the same as that of the silica film without addition of, and no decrease in film hardness was observed.
[0045]
Further, the surface of the underlayer was subjected to water repellent treatment to obtain a water repellent glass. In the evaluation of practical durability of the obtained water-repellent glass, light resistance was 79 ° (target 75 ° or more), and an effect of improving light resistance by adding an alkali component was recognized as compared with silica alone.
[0046]
[Table 2]
Figure 0003748724
[0047]
[Example 2]
Lithium methoxide is used as an alkali source, and the charged underlayer composition is 30 Li2O-70SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0048]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (thickness 170 nm) was slightly brown, and the film hardness was also ΔH = 0.4 to 0.5, an alkali. Although the film hardness was slightly lowered as compared with the silica film not added, the transparency and film hardness were at a level with no practical problem. Moreover, the light resistance of the water repellent glass was 83 °, and the light resistance was remarkably improved by adding an alkali component.
[0049]
[Example 3]
Lithium methoxide is used as the alkali source, and the charged underlayer composition is 40 Li2O-60SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0050]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (thickness 140 nm) was slightly clouded, and the film hardness was also an alkali with ΔH = 0.5 to 0.8. Although the film hardness was reduced as compared with the silica film not added, the transparency and the film hardness were at a level with no practical problem. Moreover, the light resistance of the water repellent glass was 92 °, and a remarkable effect of improving the light resistance was recognized by adding an alkali component.
[0051]
[Example 4]
Lithium acetate is used as an alkali source, and the charged underlayer composition is 20 Li2O-80SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0052]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (film thickness 140 nm) was slightly brown, but the film hardness was ΔH = 0.2 to 0.3. It was equivalent to a silica film to which no alkali was added and had a level of transparency and film hardness with no practical problems. Further, the light resistance of the water repellent glass was 80 ° and was highly durable.
[0053]
[Example 5]
Lithium acetate is used as an alkali source, and the charged underlayer composition is 30 Li2O-70SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0054]
As a result of evaluating the practical durability of the obtained undercoat layer and water-repellent glass, the film quality of the undercoat layer (film thickness 200 nm) was slightly clouded, and the film hardness was also alkaline with ΔH = 0.4 to 0.5. Although the film hardness was reduced as compared with the silica film not added, the transparency and the film hardness were at a level with no practical problem. Moreover, the light resistance of the water repellent glass was 93 °, and a remarkable effect of improving the light resistance was recognized by adding an alkali component.
[0055]
[Example 6]
Sodium methoxide is used as the alkali source, and the charged underlayer composition is 20Na.2O-80SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0056]
As a result of evaluating the practical durability of the obtained undercoat layer and water-repellent glass, the film quality of the undercoat layer (film thickness 120 nm) is in a good state with high transparency, and the film hardness is ΔH = 0.2-0. .4, which is equivalent to a silica film to which no alkali component is added, and has a level of transparency and film hardness with no practical problems. The light resistance of the water-repellent glass was 79 ° and was highly durable.
[0057]
[Example 7]
Sodium methoxide is used as the alkali source, and the charged underlayer composition is 30Na.2O-70SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0058]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (film thickness 100 nm) was in a good state with high transparency, but the film hardness was ΔH = 0.5. Although a decrease in film hardness was observed as compared with a silica film having no alkali component added to ~ 0.7, it was a level of transparency and film hardness with no practical problems. Moreover, the light resistance of the water repellent glass was 83 °, and the light resistance was remarkably improved by adding an alkali component.
[0059]
[Comparative Example 1]
A base layer was formed using only the silica component without adding an alkali component to the film composition, and a water-repellent glass was produced in the same manner.
As a result, as shown in Table 2, the film quality of the underlayer (film thickness: 140 nm) is in a favorable state with high transparency, and the film hardness is also a high level of film hardness of ΔH = 0.1 to 0.2. Met. However, the light resistance indicating the practical durability of the water-repellent glass was 72 ° and did not satisfy the target.
[0060]
[Table 3]
Figure 0003748724
[0061]
[Comparative Example 2]
Lithium methoxide is used as the alkali source, and the charged underlayer composition is 10 Li2O-90SiO2A coating chemical solution was prepared so as to be (mol%). This was subjected to film formation, firing and acid treatment by the above-mentioned methods. The film quality of the obtained underlayer (thickness 150 nm) is in a good state with high transparency, and the film hardness is ΔH = 0.1 to 0.2, which is about the same as a silica film without addition of alkali. The film hardness was a practically high level. However, the light resistance indicating the practical durability of the water repellent glass does not satisfy the target at 72 °, which is equivalent to the case where the alkali component of Comparative Example 1 is not added, and the effect of adding the alkali component was not recognized. .
[0062]
[Comparative Example 3]
Lithium nitrate is used as an alkali source, and the charged underlayer composition is 10 Li2O-90SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0063]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (thickness 150 nm) is in a good state with high transparency, and the film hardness is also ΔH = 0.1-0. .2 and the silica film without the addition of alkali, no decrease in film hardness was observed, and the film hardness was high at a practical level. However, the light resistance, which indicates the practical durability of the water-repellent glass, does not satisfy the target at 73 °, is almost the same as the case of not adding the alkali component of Comparative Example 1, and almost no effect of adding the alkali component is recognized. There wasn't.
[0064]
[Comparative Example 4]
Lithium acetate is used as the alkali source, and the charged underlayer composition is 10 Li2O-90SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0065]
As a result of evaluating the practical durability of the obtained underlayer and water repellent glass, the film quality of the underlayer (film thickness 110 nm) was slightly brown, but the film hardness was ΔH = 0.2 to 0.3. As compared with the silica film to which no alkali was added, no decrease was observed, and the transparency and film hardness were of a level causing no practical problems. However, the light resistance indicating the practical durability of the water repellent glass does not satisfy the target at 72 °, which is equivalent to the case where the alkali component of Comparative Example 1 is not added, and the effect of adding the alkali component was not recognized. .
[0066]
[Comparative Example 5]
Lithium chloride is used as the alkali source, and the charged underlayer composition is 10 Li2O-90SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0067]
As a result of evaluating the practical durability of the obtained underlayer and the water-repellent glass, the film quality of the underlayer (thickness 130 nm) is in a good state with high transparency, and the film hardness is also ΔH = 0.1-0. .2 and a silica film with no alkali added, and no decrease in film hardness was observed. However, the light resistance, which indicates the practical durability of the water-repellent glass, does not satisfy the target at 73 °, and is almost the same as the case where the alkali component of Comparative Example 1 is not added, and the effect of adding the alkali component is almost recognized. There wasn't.
[0068]
[Comparative Example 6]
Sodium methoxide is used as the alkali source, and the charged underlayer composition is 10Na.2O-90SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0069]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (thickness 110 nm) is in a good state with high transparency, and the film hardness is also ΔH = 0.2-0. .3, which is equivalent to a silica film to which no alkali is added, and has a level of transparency and film hardness with no practical problems. However, the light resistance, which indicates the practical durability of the water-repellent glass, does not satisfy the target at 73 °, which is almost the same as the case where the alkali component of Comparative Example 1 is not added, and the effect of adding the alkali component is almost recognized. There wasn't.
[0070]
[Comparative Example 7]
Lithium methoxide is used as an alkali source, and the charged underlayer composition is 50 Li2O-50SiO2A coating chemical solution was prepared in the same manner as in Example 1 except that it was changed to (mol%) to form an underlayer, and water-repellent glass was produced.
[0071]
As a result of evaluating the practical durability of the obtained underlayer and water repellent glass, the film quality of the underlayer (film thickness 140 nm) is cloudy and the film hardness is ΔH = 1.0 to 2.0 and alkali. Compared to the silica film not added, it was greatly reduced and was not at a level that could be put to practical use. The light resistance was as high as 92 °.
[0072]
[Comparative Example 8]
Lithium nitrate is used as an alkali source, and the charged underlayer composition is 50 Li2O-50SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and an underlayer was formed. However, the obtained underlayer was completely cloudy and poor in transparency, and was not of a level that was used for the underlayer of water-repellent glass. Therefore, practical durability was not evaluated.
[0073]
[Comparative Example 9]
The base layer composition of the charge is 60 Li2O-40SiO2A coating chemical solution was prepared and a base layer was formed in the same manner as in Comparative Example 8 except that (mol%) was used. However, the obtained underlayer was completely cloudy, poor in transparency, and was not of a level that was used for the underlayer of water-repellent glass. Therefore, practical durability was not evaluated.
[0074]
[Comparative Example 10]
Lithium acetate is used as the alkali source, and the charged underlayer composition is 50 Li2O-50SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced. However, the obtained underlayer (thickness 170 nm) was completely cloudy, had poor transparency, and was not of a level to be used for the underlayer of water-repellent glass. The obtained water-repellent glass had a very high light resistance of 93 °.
[0075]
[Comparative Example 11]
The base layer composition of the charge is 60 Li2O-40SiO2A coating chemical was prepared in the same manner as in Comparative Example 10 except that (mol%) was used, and a water-repellent glass was produced. However, the obtained underlayer was completely cloudy, poor in transparency, and was not of a level that was used for the underlayer of water-repellent glass. Therefore, practical durability was not evaluated.
[0076]
[Comparative Example 12]
Lithium chloride is used as the alkali source, and the charged underlayer composition is 50 Li2O-50SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and an underlayer was formed. However, the obtained underlayer was completely cloudy, poor in transparency, and was not of a level that was used for the underlayer of water-repellent glass. Therefore, practical durability was not evaluated.
[0077]
[Comparative Example 13]
Sodium methoxide is used as the alkali source, and the charged underlayer composition is 50 Na.2O-50SiO2A coating chemical was prepared in the same manner as in Example 1 except that (mol%) was used, and a water-repellent glass was produced.
[0078]
As a result of evaluating the practical durability of the obtained underlayer and water-repellent glass, the film quality of the underlayer (film thickness 100 nm) was considerably brown, but transparency was ensured and the film formability was good. . However, the film hardness was significantly lower than ΔH = 1.0 to 2.0 as compared with the silica film not added with alkali, and was not at a level that could be practically used. The light resistance of the water repellent glass was 75 °.
[0079]
【The invention's effect】
In the present invention, the same water repellency performance can be obtained for both the water repellent treatment without distinguishing between the top surface and the bottom surface, and the obtained water repellent coating has high hardness and high adhesion. In addition to durability and wear resistance, it is possible to maintain excellent water repellency over the long term, and to obtain highly active water-repellent glass and its manufacturing method by an inexpensive method. Have

Claims (2)

ガラス基板表面に形成されたxR2O-(100−x)SiO2(10<x<50mol%、R=リチウム、又はナトリウム、若しくはカリウム)で示される組成を有するケイ素酸化物およびアルカリ金属酸化物を主成分とする酸化物薄膜の表面から酸処理によりアルカリイオンを抽出してシラノール基濃度を増大させて活性を高めた下地層を形成したのちフルオロアルキル基含有シラン化合物の加水分解物、または重合体からなる撥水処理液を該下地層表面に塗布し、乾燥・焼成してフルオロアルキル基含有シランからなる撥水性被膜を固定化してなり、前記下地層は、前記アルカリ金属酸化物成分の出発原料であるアルコキシド、酢酸塩、塩化物、硝酸塩およびアセチルアセトナート塩のうちの少なくとも1種、及びケイ素酸化物源のシリカゾルからなる塗布液が成膜されたガラス基板を630〜660℃で本焼成することで形成することを特徴とする高耐久性撥水ガラスの製造方法。Silicon oxide and alkali metal oxide having a composition represented by xR 2 O— (100-x) SiO 2 (10 <x <50 mol%, R = lithium, sodium, or potassium ) formed on the surface of a glass substrate Extracting alkali ions from the surface of the oxide thin film containing as a main component by acid treatment to increase the silanol group concentration to form an underlayer having increased activity, and then hydrolyzate of a fluoroalkyl group-containing silane compound, or A water repellent treatment liquid made of a polymer is applied to the surface of the underlayer, dried and baked to fix a water repellent film made of a fluoroalkyl group-containing silane, and the underlayer is made of the alkali metal oxide component. At least one of starting alkoxides, acetates, chlorides, nitrates and acetylacetonates, and a silicon oxide source Method for manufacturing a highly durable water repellent glass, wherein a coating liquid comprising Kazoru is formed by the sintering of the glass substrate which is formed at six hundred and thirty to six hundred sixty ° C.. 請求項1の製造方法で得られる建築、自動車、船舶、航空機、電子機器のいずれかで使用される窓材用、又は浴室又は自動車で使用されるミラー用高耐久撥水ガラス A highly durable water-repellent glass for a window material used in any one of architecture, automobiles, ships, aircrafts, and electronic devices obtained by the production method of claim 1, or for a mirror used in a bathroom or an automobile .
JP00738699A 1999-01-14 1999-01-14 Method for producing highly durable water repellent glass Expired - Fee Related JP3748724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00738699A JP3748724B2 (en) 1999-01-14 1999-01-14 Method for producing highly durable water repellent glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00738699A JP3748724B2 (en) 1999-01-14 1999-01-14 Method for producing highly durable water repellent glass

Publications (2)

Publication Number Publication Date
JP2000203884A JP2000203884A (en) 2000-07-25
JP3748724B2 true JP3748724B2 (en) 2006-02-22

Family

ID=11664501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00738699A Expired - Fee Related JP3748724B2 (en) 1999-01-14 1999-01-14 Method for producing highly durable water repellent glass

Country Status (1)

Country Link
JP (1) JP3748724B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479528B2 (en) 2004-07-27 2010-06-09 富士電機デバイステクノロジー株式会社 Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
JP2006306631A (en) * 2005-04-26 2006-11-09 Central Glass Co Ltd Method for producing functional article and method for reactivating primer layer
JP4479571B2 (en) * 2005-04-08 2010-06-09 富士電機デバイステクノロジー株式会社 Method for manufacturing magnetic recording medium
CN102226073A (en) * 2011-05-11 2011-10-26 株洲合一建材有限责任公司 Waterborne permeable waterproof material and preparation method thereof
JP7439769B2 (en) * 2018-12-26 2024-02-28 Agc株式会社 Base material with water- and oil-repellent layer and method for producing the same
RU2769711C1 (en) * 2021-09-09 2022-04-05 Акционерное общество "НПО "Стеклопластик" Line for producing silica woven materials by leaching method
CN114057396A (en) * 2021-12-14 2022-02-18 赵嘉成 Acid and alkali resistant colorful glass and preparation method thereof

Also Published As

Publication number Publication date
JP2000203884A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
EP0548775B1 (en) Water-repellent metal oxide film coated on glass substrate and method of forming same
EP0825157B1 (en) Water-repellent glass pane and method for producing same
US6482524B1 (en) Substrate having a treatment surface
US6403225B1 (en) Article superior in slipping waterdrops down surface thereof
JP3883366B2 (en) Highly slidable substrate and manufacturing method thereof
JP3748724B2 (en) Method for producing highly durable water repellent glass
US20080026163A1 (en) Treatment For Forming Waterdrop Slidable Films And Process For Forming Waterdrop Slidable Films
JP3649585B2 (en) Water repellent coating solution
JP3599998B2 (en) Method for producing water-repellent liquid and water-repellent coating
JPH09202651A (en) Hydrophilic coating membrane and its formation
JP2758330B2 (en) Water-repellent agent, water-repellent substrate and method for producing the same
JPH09132433A (en) Sol-gel film and water-repellent glass using same
JPH05319867A (en) Water repellent for glass substrate and treatment for water repellency
JPH1059745A (en) Water repellent glass and its production
KR100216869B1 (en) Water-repellent glass having excellent durability and a method of manufacturing the same
KR100281993B1 (en) Durable water-repellent glass and its manufacturing method
JP3623108B2 (en) Water repellent glass manufacturing method
JP3744736B2 (en) Highly slidable base material and method for producing the same
JP3628881B2 (en) Manufacturing method of water repellent liquid and water repellent substrate
JP3268012B2 (en) Water-repellent oxide film and method for forming the same
JP4111558B2 (en) Water repellent glass manufacturing method
JP3672688B2 (en) Water repellent glass manufacturing method
JPH1111984A (en) Water-repellent glass and its production
JP2678844B2 (en) Method for producing water-repellent glass
JPH10265242A (en) Transparent water repellent film and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees