JP3748115B2 - Image data decoding apparatus and image data decoding method - Google Patents
Image data decoding apparatus and image data decoding method Download PDFInfo
- Publication number
- JP3748115B2 JP3748115B2 JP20835995A JP20835995A JP3748115B2 JP 3748115 B2 JP3748115 B2 JP 3748115B2 JP 20835995 A JP20835995 A JP 20835995A JP 20835995 A JP20835995 A JP 20835995A JP 3748115 B2 JP3748115 B2 JP 3748115B2
- Authority
- JP
- Japan
- Prior art keywords
- block
- pixel
- class
- value
- image data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
【0001】
【目次】
以下の順序で本発明を説明する。
発明の属する技術分野
従来の技術(図10及び図11)
発明が解決しようとする課題
課題を解決するための手段
発明の実施の形態
(1)全体構成(図1)
(2)クラス分類回路の構成例
(2−1)構成例I(図2及び図4)
(2−2)構成例II(図3及び図5)
(3)係数の選定(図6〜図9)
(4)動作
(5)効果
(6)他の実施例
発明の効果
【0002】
【発明の属する技術分野】
本発明は画像データ復号装置及び方法に関し、例えば伝送や記録のために圧縮符号化された画像信号を復号する圧縮デコーダに適用し得る。
【0003】
【従来の技術】
従来、例えばテレビ会議システムなどのように画像信号を遠隔地に伝送するいわゆる画像信号伝送システムや、画像信号をデイジタル化してビデオテープレコーダやビデオデイスクレコーダに記録し再生する装置においては、伝送路や記録媒体を効率的に利用するため、デイジタル化した画像信号の相関を利用して有意情報を効率的に符号化することにより伝送情報量や記録情報量を削減し、伝送効率や記録効率を高めるようになされている。
【0004】
具体的には、画像データを高能率圧縮符号化することにより、伝送するデータ量を大幅に削減する。この高能率符号化の一手法としてADRC(Adaptive Dynamic Range Coding )が提案されている(例えば特開昭61-144989 号公報参照)。ADRCは入力画像データを複数画素からなるブロツクに分割し、当該ブロツク単位で各画素データを原量子化ビツト数よりも小さいビツト数に符号化するものである。より具体的には、2次元ブロツク内に含まれる複数画素の最大値及び最小値により規定されるダイナミツクレンジを求め、このダイナミツクレンジに適応した符号化を行うことにより画像信号を高能率符号化する。
【0005】
このADRCを実現するADRCエンコーダは、図10に示すように構成されている。図10において、ADRCエンコーダ1はアナログデイジタル変換回路(A/D)2によつて入力画像信号S1を1画素当り8ビツトのデイジタルデータに変換した後、ブロツク化回路3に供給する。ブロツク化回路3は画像データを8画素×8ライン程度のブロツクに分割する。
【0006】
最大値算出回路4はブロツク内の最大画素値MAXを求め、最小値算出回路5はブロツク内の最小画素値MINを求める。そして最大画素値MAX及び最小画素値MINが差分回路7に与えられ、さらに最小画素値MINが差分回路8及びフレーム化回路10に与えられる。この結果差分回路7からはブロツク内のダイナミツクレンジDRが出力され、これがフレーム化回路10に送出される。また差分回路8では、遅延回路6を介して入力された各画素値と最小画素値MINとの差分演算が行われ、この結果得られた差分値が適応量子化回路9に送出される。
【0007】
適応量子化回路9は、ブロツク内の各画素値をLi としたとき、次式
【数1】
の演算に基づく再量子化を行う。この結果8ビツトで表現されていた各画素は、これよりも小さいnビツトの量子化コードQi で表現されることになり、画像情報量が有効に削減される。フオーマツト化回路10は、ブロツク内ダイナミツクレンジDR、最小画素値MIN及び量子化コードQi を伝送路や記録系の種類に応じてフオーマツトすることにより最終的な圧縮画像データS2を形成する。
かくしてADRCエンコーダ1においては、1画素当り8ビツトの画像情報をそのまま伝送する場合と比較して、情報量が格段に削減された圧縮画像データS2を得ることができる。
【0008】
この圧縮符号化されてなる圧縮画像データS2を復号するADRCデコーダは、図11に示すように構成されている。すなわちADRCデコーダ11はフレーム分解回路12に圧縮画像データS2を入力すると、これを最小画素値MIN、ブロツク内ダイナミツクレンジDR及び量子化コードQi に分解し、このうちブロツク内ダイナミツクレンジDR及び量子化コードQi を適応逆量子化回路13に供給すると共に、最小画素値MINを加算回路14に供給する。
【0009】
ここで適応逆量子化回路13及び加算回路14は、次式
【数2】
の演算を行うことにより、各画素についての復号値Li ′求め、これを復号画像データS3としてブロツク分解回路15に送出する。ブロツク分解回路15はADRCエンコーダ1(図10)のブロツク化回路3と逆の処理を行うことにより、復号画像データS3をテレビジヨン時系列に変換する。ブロツク分解された復号画像データはデイジタルアナログ変換回路16によりアナログ変換され、このようにして復元画像信号S4が得られる。
【0010】
【発明が解決しようとする課題】
ところが、従来のADRCの符号化復号化においては、(1)及び(2)式の演算を行う際に、除算部分でいわゆる近似演算が行われる。このためADRCの量子化ビツト数が少ない場合には、復元画質が劣化する問題があつた。
【0011】
かかる問題点を解決する一つの方法として従来、画像信号の相関性を考慮して、復号対象となる画素のみで復号値を求めるのではなく、その周辺画素のレベルをも参照して復号対象画素の復号値を求めることにより、復号時の量子化誤差を低減する復号装置が提案されている(特開平1-200885号公報)。
【0012】
しかしながら、この種の復号装置においては、注目復号画素の最近傍の画素による局所的な特徴のみを参照しているため、改善の効果はあるものの、真値に近い復号値を得る点で未だ不十分な問題がある。例えば注目復号画素の周囲の画素を含めた領域において、それらの画素値が原画像の画素値に対して全体としてどちらかにオフセツトしている場合がある(いわゆるオフセツト変動)。このような場合には、たとえ周辺画素のレベルを参照して復号対象画素を復号しても、その周辺画素全体に誤差があるので、正確な復号値を得ることはできなかつた。
【0013】
本発明は以上の点を考慮してなされたもので、ADRC等のブロツク単位の符号化により得られた圧縮画像データを復号する際に量子化誤差を低減することにより、原画像に非常に近い復元画像を得ることができる画像データ復号装置及び方法を提案しようとするものである。
【0014】
【課題を解決するための手段】
かかる課題を解決するため本発明においては、圧縮画像データ中の各注目画素を、当該注目画素を中心とするクラス分類ブロツク内の画素データを用いてクラス分類し、所定の学習用画像データを基に形成した学習用クラス分類ブロツクのブロツク内画素データを用いて学習用注目画素をクラス分類し、当該学習用注目画素を復号した際の復号値と当該学習用注目画素の真値との差分値を求め、分類されたクラス毎に当該差分値を上記学習用注目画素周辺の画素データと所定の係数との線形一次結合により表したときの各線形一次結合を解いて得た各係数が予め各クラスにそれぞれ対応付けて記憶された係数のうちクラス分類結果に応じた係数を用いて所定の演算を行うことにより上記注目画素を復号した際における上記真値と上記復号値との誤差に相当する補正値を求め、当該補正値を用いて注目画素データを補正して復号するようにする。
【0015】
この結果、分類されたクラスに応じて真値との誤差に相当する補正値を求めることができるため、例えば注目復号画素の周囲の画素を含めた領域においてそれらの画素値が原画像の画素値に対して全体としてどちらかにオフセツトしているような場合でも、当該オフセツト量をも含めた誤差量が、求められた補正値によつて有効にキヤンセルされる。
【0016】
【発明の実施の形態】
以下図面について、本発明の一実施例を詳述する。
【0017】
(1)全体構成
図11との対応部分に同一符号を付して示す図1において、20は全体として本発明による画像データ復号方法を適用したADRCデコーダを示す。ADRCデコーダ20はクラス分類適応処理部21を有する。クラス分類適応処理部21はフレーム分解回路12から出力された量子化コードQi に対してクラス分類適応処理を施すことにより、量子化コードQi をより真値に近い量子化コードQi ′に変換した後、適応逆量子化回路13に供給する。
【0018】
クラス分類適応処理部21は、量子化コードQi をクラス分類回路22に入力し、ここで注目する画素の量子化コードQi の周辺の情報を用いて注目画素をクラス分類し、当該分類結果を表わすクラスコードCLASS を出力する。係数ROM23には、予め学習によつて各クラス毎に求められた係数(この係数は複数の係数でなる係数組である)が記憶されており、クラスコードCLASS に応じた係数組wが読み出される。
【0019】
積和演算回路24は係数ROM23から読み出された係数組wと、注目画素の周辺画素の量子化コードQi を用いて、次式
【数3】
で表わされる線形一次結合演算を行うことにより、注目画素に対する補正値δi を求める。そして加算回路25において、注目画素の補正値δi と注目画素の量子化コードQi が加算されることにより、注目画素についての新たな量子化コードQi ′(=Qi + δi )が得られる。
【0020】
適応逆量子化回路13及び加算回路14においては、クラス分類適応処理部21によつて形成された新たな量子化コードQi ′を用いて、次式
【数4】
に基づく復号処理を行うことにより復号値Li ″を求め、これを復号画像データS10として出力する。復号画像データS10はブロツク分解回路15及びデイジタルアナログ変換回路16を順次通過させられることにより、復元画像信号S11とされる。
【0021】
(2)クラス分類回路の構成例
ここでクラス分類回路22は、例えば図2又は図3に示すように構成されている。ここで図2に示すクラス分類回路30及び図3に示すクラス分類回路40は、基本的には、注目画素を中心とする狭い範囲のブロツクの情報とさらにその外側のブロツクの情報とをコード化し、これをクラスコードCLASSとして出力するものである。
【0022】
なおADRCのようにブロツク単位で符号化されて得られた圧縮画像データS2においては、注目画素が符号化ブロツクの境界にある場合もあり、このような場合に注目画素の量子化コードとその周辺の量子化コードがそれぞれ異なる符号化ブロツクに存在することとなるため、注目量子化コードとその周辺の量子化コードとの関連が無くなつてしまう。
【0023】
そこでADRCデコーダ20においては、実際上、クラス分類回路22の前段に図示しないブロツク調整回路を設け、当該ブロツク調整回路によつて注目画素周辺の量子化コードQi を一旦復号し、注目画素の符号化ブロツクのダイナミツクレンジDR及び最小値MINに基づいてこの復号値を再量子化した量子化コードQi をクラス分類回路22に供給するようになされている。
【0024】
(2−1)構成例I
先ず図2に示すクラス分類回路30について説明する。クラス分類回路30は、フレーム分解回路12(図1)及び図示しないブロツク調整回路を介して入力された量子化コードQi を第1のブロツク化回路31及び第2のブロツク化回路32に入力する。第1のブロツク化回路は、図4に示すように、注目画素とその周辺8画素により第1のブロツクを形成し、このブロツク化データをタイミング合せのための遅延回路33を介してコード化回路34に送出する。コード化回路34は入力したブロツク化データに基づいて、注目画素の周囲8画素の量子化コードを所定の順に並べたものを第1のクラスコードD1として出力する。このようにして、注目画素の周辺の狭い範囲の画素レベル分布パターンを表わす第1のクラスコードD1が形成される。
【0025】
第2のブロツク化回路32は、図4に示すように、第1のブロツク化回路31で形成したブロツクのさらに外側の8画素により第2のブロツクを形成し、このブロツク化データを最大値検出回路35及び最小値検出回路36に送出する。最大値検出回路35及び最小値検出回路36はそれぞれ8画素の中の最大値及び最小値を検出し、当該検出結果を方向コード化回路37及び38に送出する。
【0026】
方向コード化回路37及び38は、中心からみた(すなわち注目画素からみた)最大値画素及び最小値画素の方向をコード化する。ここで中心からみた方向は8種類に別れるので、各方向コード化回路37及び38はそれぞれ3ビツトでなる方向コードを出力する。この方向コード化回路37の方向コードと方向コード化回路38の方向コードとを合わせたものが、第2のクラスコードD2として出力される。このようにして、注目画素周辺の画像の傾斜の方向を表わす第2のクラスコードD2が形成される。
【0027】
第1及び第2のクラスコードD1及びD2は続く合成回路39によつて合成され、この結果第1及び第2のクラスコードD1及びD2を合わせた最終的なクラスコードCLASS が形成され、当該クラスコードCLASS が係数ROM23に出力される。
【0028】
(2−2)構成例II
次に図3に示すクラス分類回路40について説明する。クラス分類回路40は、量子化コードQi を第1のブロツク化回路41及び第2のブロツク化回路42に入力する。第1のブロツク化回路41は図2の第1のブロツク化回路31と同様に注目画素とその周辺8画素により第1のブロツクを形成する。また第2のブロツク化回路42も上述した第2ブロツク化回路32と同様に外側の8画素により第2のブロツクを形成する。
【0029】
第1のブロツク化回路41により形成されたブロツク化データのうち、注目画素の周辺8画素の量子化値は順次比較回路43に与えられると共に注目画素の量子化値がメモリ(D)44を介して比較回路43に与えられる。比較回路43では、図5(A)に示すように、注目画素の量子化値とその周辺8画素の各量子化値の大小が順次比較される。コード化回路45は比較回路43の比較結果を「1」又は「0」でコード化し、これを第1のクラスコードD3として出力する。
【0030】
第2のブロツク化回路42により形成されたブロツク化データは、タイミング合せのための遅延回路46を介して比較回路47に供給される。また比較回路47には、第1のブロツク化回路41によつて形成されたブロツク化データが平均値算出回路48を介して供給される。この結果比較回路47では、図5(B)に示すように、注目画素とその周辺8画素の合わせて9画素の平均値と、その外側の8画素との大小が順次比較される。コード化回路49は比較回路47の比較結果を「1」又は「0」にコード化し、これを第2のクラスコードD4として出力する。
【0031】
このようにして、第1のクラスコードD3と比較して広い範囲の画素の状態を表わす第2のクラスコードD4が形成される。因にクラス分類回路40は、第2のクラスコードD4を求める際、注目画素の値をそのまま用いて外側の周辺画素との比較を行なわずに、近傍8画素を含めた9画素によつて予め平均値を求め、その平均値と外側8画素との比較を行うようにしたことにより、例えば注目画素が特異点である場合やノイズ等があつた場合でも、これらの影響を第2のクラスコードD4に及ばせることなく、的確に注目画素周辺の状態を表わす第2のクラスコードD4を形成することができる。
【0032】
第1及び第2のクラスコードD3及びD4は続く合成回路50によつて合成され、この結果第1及び第2のクラスコードD3及びD4を合わせた最終的なクラスコードCLASS が形成され、当該クラスコードCLASS が係数ROM23に出力される。
【0033】
(3)係数の選定
次に係数ROM23に記憶されるクラス毎の係数組wの選定の仕方について説明する。この係数組wは画質劣化の無い原画像データを用いた学習により求められる。図6に、これを実現するための学習回路60の構成を示す。学習回路60は劣化の無い学習用画像データS20を時系列変換61に入力すると、ここで当該学習用画像データS20に対して注目画素の画素値yと、その周辺の8画素x1 〜x8 (8画素でなくてもよい)とで1ブロツクを構成するような時系列変換処理を施し、これら9画素y、x1 〜x8 をADRCエンコーダ62に供給する。
【0034】
ADRCエンコーダ62は、図10において上述したADRCエンコーダ1と同様の構成でなり入力画像データを圧縮符号化することにより、各画素値y、x1 〜x8 に対応する量子化コードQi と、それらのダイナミツクレンジDRと、最小値MINとでなる圧縮画像データS21を生成し、当該圧縮画像データS21を、図11において上述した従来のADRCデコーダ11と同様の構成でなるADRCデコーダ63によつて復号する。
【0035】
そしてADRCデコーダ63によつて得られた復号画素値のうち注目画素の復号画素値が差分回路64に供給される。また差分回路64には、注目画素の真の画素値yがタイミング合せのための遅延回路65を介して供給される。この結果差分回路64では、ADRCエンコーダ62及びADRCデコーダ63を介して得られた圧縮復号誤差の有る注目画素の画素値と、加工されていない注目画素の真の画素値yとの差分がとられ、当該差分結果が誤差値δyとして係数算出回路66に送出される。
【0036】
また学習回路60は、ADRCエンコーダ62から出力される量子化コードQi をクラス分類回路67に送出する。クラス分類回路67は上述したクラス分類回路22(図1)と同様の構成でなり、注目画素の周辺の複数の量子化コードQi に基づいて当該注目画素のクラスを表わすクラスコードCLASS を形成し、当該クラスコードCLASS を係数算出回路66に送出する。またADRCエンコーダ62から出力された量子化コードQi はタイミング合せのための遅延回路68を介して係数算出回路66に与えられる。
【0037】
このように係数算出回路66はクラスコードCLASS を入力すると共に、注目画素周辺の量子化コードQ1 〜Q8 及び注目画素の真値からの誤差値δyを入力し、クラスコードCLASS で表わされるクラス毎に、誤差値δyと量子化コードQ1 〜Q8 との相関関係を表わす係数Wを最小二乗法を用いた学習により求める。
【0038】
すなわち係数算出回路66は、先ず量子化コードQ1 、Q2 、……、Q8 にそれぞれ係数w1 、w2 、……、w8 を掛けることにより、誤差値δyを周辺の量子化コードQ1 〜Q8 と係数w1 〜w8 との線形一次結合により表わす。具体的には、係数算出回路66は同じクラスの誤差値δy1 〜δyr それぞれについて、量子化コードQ(R.S) (但し、R=1、2、……r、S=1、2、……、8とする)と係数w1 〜w8 との線形一次結合式を立てて、この係数w1 〜w8 を最小二乗法により求める。
【0039】
これについて説明すると、先ず誤差値δy1 〜δyr の行列式Yは、周辺量子化コードQ(R.S) の行列式Xと係数w1 〜w8 の行列式Wを用いて、次式
【数5】
でなる観測方程式の形で表わすことができる。但し(5)式において、rは同一クラスの注目画素数を表わす。
【0040】
ここで(5)式の連立方程式を解くことにより係数w1 〜w8 を求めればよい。これを最小二乗法の演算により解く。すなわち先ず、(5)式を残差行列Eを用いて、次式
【数6】
のように残差方程式の形に表現し直す。
【0041】
ここで(6)式から各係数w1 〜w8 の最確値を求めるためには、e1 2+e2 2+……+er 2 を最小にする条件、すなわち次式
【数7】
なる8個の条件を入れてこれを満足する各係数w1 〜w8 を見つければ良い。ここで(6)式より、次式
【数8】
を得、(7)式の条件をi=1、2、……、8について立てればそれぞれ、次式
【数9】
が得られる。ここで(6)式及び(9)式から次式の正規方程式が得られる。
【数10】
【0042】
ここで(10)式で表わされる正規方程式は未知数が8個だけある連立方程式であるから、これにより最確値である各係数w1 〜w8 を求めることができる。正確には(10)式でwi にかかる(ΣQjkQjl)(但しj=1、……、r、k=1、……、8、l=1、……、8)のマトリクスが正則であれば解くことができる。実際には、Gauss-Jordanの消去法(掃き出し法)を用いて連立方程式を解く。
【0043】
実際上係数算出回路66は、図7に示すように構成されている。すなわち係数算出回路66は量子化コードQ1 〜Qr 及び誤差値δyを正規方程式生成回路70に入力し、当該正規方程式生成回路70によつてクラス毎に(10)式で表わされるような正規方程式を生成し、続くCPU演算回路71によつて掃き出し法の演算によりクラス毎の係数組w(w1 〜w8 )を求める。
【0044】
正規方程式生成回路70は先ず乗算器アレイ72によつて各画素同士の乗算を行う。乗算器アレイ72は、図8に示すように構成されており、四角で表わす各セル毎に画素同士の乗算を行い、これにより得た各乗算結果を続く加算器メモリ73に与える。
【0045】
加算器メモリ73は、図9に示すように、乗算器アレイ72と同様に配列された複数のセルでなる加算器アレイ74と複数のメモリ(又はレジスタ)アレイ75A、75B、……とにより構成されている。メモリアレイ75A、75B、……はクラスコードCLASS で表わされるクラス数分設けられており、クラスコードCLASS をデコードするクラスコードデコーダ77の出力(クラス)に応答して一つのメモリアレイ75A、75B、……が選択され、選択されたメモリアレイ75A、75B、……の格納値が加算器アレイ74に帰還される。このとき加算器アレイ74により得られる加算結果が再び対応するメモリアレイ75A、75B、……に格納される。
【0046】
このようにして乗算器アレイ72、加算器アレイ74及びメモリアレイ75によつて積和演算が行われ、クラスコードCLASS によつて決定されるクラス毎にメモリアレイ75A、75B、……のいずれかが選択されて、積和演算の結果によつてメモリアレイ75A、75B、……の内容が更新される。
【0047】
なお、各々のアレイの位置は(10)式で表わされる正規方程式のwi にかかるΣQjkQjl(但し、j=1、……、r、k=1、……、8、l=1、……、8)の位置に対応する。(10)式の正規方程式を見れば明らかなように右上の項を反転すれば左下と同じものになるため、各アレイは三角形の形状をしている。
【0048】
このようにして、ある一定期間の間に積和演算が行われて各画素位置毎のさらに各クラス毎の正規方程式が生成される。クラス毎の正規方程式の各項の結果はそれぞれのクラスに対応するメモリアレイ75A、75B、……に記憶されており、次にそれらのクラス毎の正規方程式の各項が掃き出し法演算を実現するCPU演算回路71によつて計算される。この結果クラス毎の係数組w(w1 〜w8 )が求められ、当該係数組w(w1 〜w8 )が係数ROM23(図1)の対応するクラスのアドレスに書き込まれる。
【0049】
(4)動作
以上の構成において、ADRCデコーダ20はADRCによる符号化により形成された圧縮画像データS2のうち量子化コードQi をクラス分類回路22に入力し、当該クラス分類回路22によつて注目画素(注目量子化コード)を中心とした複数画素データ(量子化コード)を集めてブロツクを形成し、そのブロツクの情報に基づいてクラスコードCLASS を生成する。
【0050】
次にこのクラスコードCLASS を読出しアドレスとして係数ROM23からクラスコードCLASS に応じた係数組wを読み出す。そして積和演算回路24において、係数組wと注目画素周辺の画素データ(量子化コード)とを用いた積和演算を行うことにより、注目量子化コードQi をそのまま続く適応逆量子化回路13によつて復号した場合に生じる真値から誤差値δi を求める。
【0051】
ADRCデコーダ20は加算回路25において誤差値δi を量子化コードQi に加算することにより、適応逆量子化回路13における復号時に発生する復号誤差を予めキヤンセルする。この結果補正された量子化コードQi ′が適応逆量子化回路13において伸長復号されることにより、適応逆量子化回路13からはほぼ真値に等しい復号画素値が出力される。
【0052】
ここで誤差値δi を算出する際に用いる係数組wは、圧縮画像データS2を形成する際に用いたADRCエンコーダ1(図10)に対応したADRCエンコーダ62や適応逆量子化回路13を有するADRCデコーダ63等によつて構成される学習回路60によつて、原画像に含まれる真値yを使つた学習により求められているため、たとえ圧縮画像データS2がオフセツト変動している場合でも、真値yを基準とした誤差値δi を得ることができる。従つてADRCデコーダ20では、誤差値δi によつて、オフセツト変動さらには圧縮符号化時の圧縮誤差をも有効にキヤンセルし得る。
【0053】
(5)効果
以上の構成によれば、原量子化ビツト数よりも小さいビツト数に圧縮符号化された圧縮画像データS2を復号する際に、当該圧縮画像データS2を注目画素毎にクラス分類し、予め原画素値(真値)yを使つて求められた係数組wの中からクラス分類結果CLASS に応じた係数組wを用いて誤差値δi を求め、当該誤差値δi によつてデータを補正するようにしたことにより、原画像にほぼ等しい復元画像を得ることができる。
【0054】
(6)他の実施例
なお上述の実施例においては、本発明を、ADRCによつて得られた圧縮画像データS2を復号するADRCデコーダ20に適用した場合について述べたが、本発明はこれに限らず、例えばDCT(Discrete Cosine Transform )符号化、DPCM(Differential Pulse Code Modulation)、BTC(Block Trancation Coding)等のようにブロツク単位で圧縮符号化された画像データを復号する場合に広く適用することができる。
【0055】
また上述の実施例においては、本発明による画像データ復号方法を、図1に示すようなハードウエアで実現する場合について述べたが、本発明はこれに限らず、圧縮画像データを計算機に取り込むことによりソフトウエアによつて計算処理するようにしても良い。
【0056】
さらに上述の実施例においては、クラスに対応した係数を記憶する係数記憶手段として係数ROM22を用いた場合について述べたが、本発明はこれに限らず、これに代えてRAM(Random Access Memory)やSRAM等を用いるようにしても良い。
【0057】
【発明の効果】
上述のように本発明によれば、圧縮画像データ中の各注目画素を、当該注目画素を中心とするクラス分類ブロツク内画素データを用いてクラス分類し、予めクラス毎に用意した係数中のクラス分類結果に応じた係数を用いて所定の演算を行うことにより復号値の真値との誤差に相当する補正値を求め、当該補正値を用いて注目画素データの復号誤差を補正するようにしたことにより、原画像に非常に近い復元画像を得ることができる。
【図面の簡単な説明】
【図1】本発明による画像データ復号方法を適用したADRCデコーダの構成を示すブロツク図である。
【図2】クラス分類回路の構成例を示すブロツク図である。
【図3】クラス分類回路の構成例を示すブロツク図である。
【図4】図2のクラス分類回路による分類処理の説明に供する略線図である。
【図5】図3のクラス分類回路による分類処理の説明に供する略線図である。
【図6】係数を求めるための学習回路の構成を示すブロツク図である。
【図7】係数算出回路の構成を示すブロツク図である。
【図8】係数算出回路の乗算器アレイの構成を示す略線的ブロツク図である。
【図9】係数算出回路の加算器メモリの構成を示す略線的ブロツク図である。
【図10】ADRCエンコーダの構成を示すブロツク図である。
【図11】従来のADRCデコーダの構成を示すブロツク図である。
【符号の説明】
1、62……ADRCエンコーダ、9……適応量子化回路、11、20、63……ADRCデコーダ、13……適応逆量子化、21……クラス分類適応処理部、22、30、40、67……クラス分類回路、23……係数ROM、60……学習回路、S1……入力画像信号、S2、S21……圧縮画像データ、S3、S10……復号画像データ、S4、S11……復元画像信号、MAX……最大画素値、MIN……最小画素値、DR……ダイナミツクレンジ、Qi 、Qi ′……量子化コード、CLASS ……クラスコード、w……係数組、δi ……補正値、y……真値、δy……誤差データ。[0001]
【table of contents】
The present invention will be described in the following order.
Prior art (FIGS. 10 and 11)
Means for Solving the Problems to be Solved by the Invention Embodiment (1) Overall Configuration of the Invention (FIG. 1)
(2) Configuration example of class classification circuit (2-1) Configuration example I (FIGS. 2 and 4)
(2-2) Configuration Example II (FIGS. 3 and 5)
(3) Selection of coefficients (Figs. 6-9)
(4) Operation (5) Effects (6) Effects of other embodiments of the invention
BACKGROUND OF THE INVENTION
The present invention relates to an image data decoding apparatus and method, and can be applied to, for example, a compression decoder that decodes an image signal that has been compression-encoded for transmission or recording.
[0003]
[Prior art]
Conventionally, in a so-called image signal transmission system that transmits an image signal to a remote place, such as a video conference system, or in an apparatus that digitizes an image signal and records and reproduces it on a video tape recorder or a video disk recorder, In order to efficiently use recording media, significant information is efficiently encoded using the correlation of digitized image signals to reduce the amount of transmitted information and recorded information, thereby increasing transmission efficiency and recording efficiency. It is made like that.
[0004]
Specifically, the amount of data to be transmitted is greatly reduced by performing high-efficiency compression coding on image data. ADRC (Adaptive Dynamic Range Coding) has been proposed as one method of this high-efficiency encoding (see, for example, Japanese Patent Laid-Open No. 61-144989). ADRC divides input image data into blocks composed of a plurality of pixels, and encodes each pixel data into a number of bits smaller than the number of original quantization bits in the block unit. More specifically, a dynamic range defined by the maximum value and the minimum value of a plurality of pixels included in the two-dimensional block is obtained, and an image signal is encoded with high efficiency by performing encoding suitable for the dynamic range. Turn into.
[0005]
An ADRC encoder that realizes this ADRC is configured as shown in FIG. In FIG. 10, an ADRC
[0006]
The maximum
[0007]
Requantization based on the operation of As a result, each pixel represented by 8 bits is represented by an n-bit quantization code Q i smaller than this, and the amount of image information is effectively reduced. The
Thus, the
[0008]
The ADRC decoder that decodes the compressed image data S2 that has been compression-encoded is configured as shown in FIG. That is, when the compressed image data S2 is input to the
[0009]
Here, the adaptive
As a result, the decoded value L i ′ for each pixel is obtained, and this is sent to the
[0010]
[Problems to be solved by the invention]
However, in conventional ADRC encoding / decoding, when performing the calculations of equations (1) and (2), a so-called approximate calculation is performed in the division part. For this reason, when the number of ADRC quantization bits is small, there is a problem that the restored image quality deteriorates.
[0011]
Conventionally, as one method for solving such a problem, the decoding target pixel is not referred to by obtaining the decoding value only with the pixel to be decoded in consideration of the correlation of the image signal, but also referring to the level of the surrounding pixels. There has been proposed a decoding device that reduces the quantization error at the time of decoding by obtaining the decoded value (Japanese Patent Laid-Open No. 1-200885).
[0012]
However, since this type of decoding device refers only to local features of pixels closest to the target decoding pixel, it has an improvement effect, but is still unsatisfactory in terms of obtaining a decoding value close to the true value. There are enough problems. For example, in the region including the surrounding pixels of the target decoding pixel, the pixel value may be offset to either one of the pixel value of the original image as a whole (so-called offset fluctuation). In such a case, even if the decoding target pixel is decoded with reference to the level of the surrounding pixels, there is an error in the entire surrounding pixels, so that an accurate decoded value cannot be obtained.
[0013]
The present invention has been made in consideration of the above points, and is very close to the original image by reducing quantization error when decoding compressed image data obtained by block unit encoding such as ADRC. It is an object of the present invention to propose an image data decoding apparatus and method capable of obtaining a restored image.
[0014]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, each target pixel in the compressed image data is classified using the pixel data in the class classification block centered on the target pixel, and based on predetermined learning image data. The class value of the pixel of learning is classified using the pixel data in the block of the class classification block for learning formed in the class, and the difference value between the decoded value when the pixel of interest for decoding is decoded and the true value of the pixel of interest for learning Each coefficient obtained by solving each linear primary combination when the difference value is expressed by a linear primary combination of pixel data around the learning target pixel and a predetermined coefficient for each classified class is obtained in advance. the true value and the decoded value at the time of decoding the target pixel by performing a predetermined calculation using the coefficient corresponding to the class classification results of the coefficients associated with respectively stored in the class and Obtains a correction value corresponding to the error, by correcting the target pixel data to be decoded using the correction value.
[0015]
As a result, a correction value corresponding to an error from the true value can be obtained according to the classified class. For example, in a region including pixels around the target decoding pixel, those pixel values are the pixel values of the original image. On the other hand, even when the offset is set as a whole, the error amount including the offset amount is effectively canceled by the obtained correction value.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0017]
(1) Overall Configuration In FIG. 1, in which parts corresponding to those in FIG. 11 are given the same reference numerals, 20 denotes an ADRC decoder to which the image data decoding method according to the present invention is applied as a whole. The
[0018]
The class classification
[0019]
The product-
The correction value δ i for the target pixel is obtained by performing a linear linear combination operation represented by: Then, the addition circuit 25 adds the correction value δ i of the target pixel and the quantization code Q i of the target pixel, so that a new quantization code Q i ′ (= Q i + δ i ) for the target pixel is obtained. can get.
[0020]
The adaptive
The decoding value L i ″ is obtained by performing the decoding process based on the above and is output as decoded image data S10. The decoded image data S10 is restored by being sequentially passed through the
[0021]
(2) Configuration Example of Class Classification Circuit Here, the
[0022]
In the compressed image data S2 obtained by encoding in units of blocks like ADRC, the target pixel may be at the boundary of the encoding block. In such a case, the quantization code of the target pixel and its surroundings Therefore, the relationship between the quantization code of interest and the surrounding quantization codes is lost.
[0023]
Therefore, in the
[0024]
(2-1) Configuration example I
First, the
[0025]
As shown in FIG. 4, the
[0026]
The
[0027]
The first and second class codes D1 and D2 are synthesized by the
[0028]
(2-2) Configuration example II
Next, the
[0029]
Of the block data generated by the
[0030]
The blocked data formed by the
[0031]
In this way, the second class code D4 representing the state of the pixels in a wider range compared to the first class code D3 is formed. Incidentally, when the
[0032]
The first and second class codes D3 and D4 are synthesized by the
[0033]
(3) Selection of Coefficient Next, a method of selecting the coefficient set w for each class stored in the
[0034]
The
[0035]
The decoded pixel value of the target pixel among the decoded pixel values obtained by the
[0036]
The
[0037]
As described above, the
[0038]
That
[0039]
When this is explained, the determinant Y of first error values δy 1 ~δy r, using the matrix equation W determinant X and a coefficient w 1 to w 8 near quantization code Q (RS), following equation 5]
Can be expressed in the form of an observation equation. However, in the formula (5), r represents the number of target pixels of the same class.
[0040]
Here, the coefficients w 1 to w 8 may be obtained by solving the simultaneous equations of equation (5). This is solved by the operation of the least square method. That is, firstly, using the residual matrix E, the following equation (5)
Re-express it in the form of a residual equation like
[0041]
Where (6) in order to determine the most probable value of each coefficient w 1 to w 8 from formula, e 1 2 + e 2 2 + ...... + e r 2 to minimize conditions, i.e. following equation 7]
It is only necessary to find the coefficients w 1 to w 8 that satisfy the following eight conditions. Here, from equation (6), the following equation:
If the conditions of the equation (7) are set for i = 1, 2,..., 8, respectively,
Is obtained. Here, the following normal equation is obtained from the equations (6) and (9).
[Expression 10]
[0042]
Here, since the normal equation represented by the equation (10) is a simultaneous equation having only eight unknowns, the coefficients w 1 to w 8 which are the most probable values can be obtained. More precisely, according to the w i in equation (10) (ΣQ jk Q jl) (however j = 1, ......, r, k = 1, ......, 8, l = 1, ......, 8) is a matrix of If it is regular, it can be solved. Actually, simultaneous equations are solved using Gauss-Jordan elimination (sweeping method).
[0043]
In practice, the
[0044]
The normal equation generation circuit 70 first multiplies each pixel by the
[0045]
As shown in FIG. 9, the
[0046]
In this way, the multiply-accumulate operation is performed by the
[0047]
Note that the position of each array is ΣQ jk Q jl (where j = 1,..., R, k = 1,..., 8, 1 = 1) applied to w i of the normal equation expressed by equation (10). , ..., 8). As apparent from the normal equation (10), if the upper right term is inverted, it becomes the same as the lower left, so each array has a triangular shape.
[0048]
In this way, a product-sum operation is performed during a certain period, and a normal equation for each class is generated for each pixel position. The result of each term of the normal equation for each class is stored in the
[0049]
(4) Operation In the above configuration, the
[0050]
Next, the coefficient set w corresponding to the class code CLASS is read from the
[0051]
The
[0052]
Here, the coefficient set w used when calculating the error value δ i includes the
[0053]
(5) According to the above configuration, when decoding the compressed image data S2 that has been compression-encoded to a number of bits smaller than the number of original quantized bits, the compressed image data S2 is classified into classes for each pixel of interest. obtains an error value [delta] i using coefficient set w in accordance with the classification result cLASS from the pre-original pixel value (true value) y the use connexion the obtained coefficient set w, Yotsute to the error value [delta] i By correcting the data, a restored image almost equal to the original image can be obtained.
[0054]
(6) Other Embodiments In the above-described embodiment, the case where the present invention is applied to the
[0055]
In the above-described embodiment, the case where the image data decoding method according to the present invention is realized by hardware as shown in FIG. 1 is described. However, the present invention is not limited to this, and compressed image data is taken into a computer. Thus, calculation processing may be performed by software.
[0056]
Further, in the above-described embodiment, the case where the
[0057]
【The invention's effect】
As described above, according to the present invention, each pixel of interest in the compressed image data is classified using the pixel data in the class classification block centered on the pixel of interest, and a class in a coefficient prepared for each class in advance. A correction value corresponding to an error from the true value of the decoded value is obtained by performing a predetermined calculation using a coefficient corresponding to the classification result, and the decoding error of the target pixel data is corrected using the correction value. Thus, a restored image that is very close to the original image can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an ADRC decoder to which an image data decoding method according to the present invention is applied.
FIG. 2 is a block diagram showing a configuration example of a class classification circuit.
FIG. 3 is a block diagram illustrating a configuration example of a class classification circuit.
4 is a schematic diagram for explaining classification processing by the class classification circuit of FIG. 2; FIG.
FIG. 5 is a schematic diagram for explaining classification processing by the class classification circuit of FIG. 3;
FIG. 6 is a block diagram showing a configuration of a learning circuit for obtaining coefficients.
FIG. 7 is a block diagram showing a configuration of a coefficient calculation circuit.
FIG. 8 is a schematic block diagram showing a configuration of a multiplier array of a coefficient calculation circuit.
FIG. 9 is a schematic block diagram showing a configuration of an adder memory of a coefficient calculation circuit.
FIG. 10 is a block diagram showing a configuration of an ADRC encoder.
FIG. 11 is a block diagram showing a configuration of a conventional ADRC decoder.
[Explanation of symbols]
DESCRIPTION OF
Claims (10)
上記圧縮画像データから、注目画素を中心とする所定範囲のクラス分類ブロツクを形成し、当該クラス分類ブロツクのブロツク内画素データを用いて上記注目画素をクラス分類するクラス分類手段と、
所定の学習用画像データを基に形成した学習用クラス分類ブロツクのブロツク内画素データを用いて学習用注目画素をクラス分類し、当該学習用注目画素を上記画像符号化手段の符号化手法に対応した復号手法により復号した際の復号値と当該学習用注目画素の真値との差分値を求め、分類されたクラス毎に当該差分値を上記学習用注目画素周辺の画素データと所定の係数との線形一次結合により表したときの各線形一次結合を解いて得た各係数が予め各クラスにそれぞれ対応付けて記憶され、上記クラス分類手段による分類結果に応じたクラスの係数を出力する係数記憶手段と、
上記係数記憶手段から出力された係数と上記注目画素周辺の画素データとを用いた演算を行うことにより、上記注目画素を復号した際における上記真値と上記復号値との誤差に相当する補正値を算出する補正値算出手段と、
上記補正値に基づいて上記注目画素のデータを補正する補正手段と、
上記補正手段によつて補正された画素データを、上記画像符号化手段の符号化手法に対応した復号手法を用いて復号することにより復号データを得る復号手段と
を具えることを特徴とする画像データ復号装置。Compressed image data formed by image encoding means that divides input image data into encoding blocks consisting of a plurality of pixels and encodes each pixel data into a number of bits smaller than the number of original quantized bits in units of the encoding blocks. In the image data decoding apparatus for decoding
A class classification unit that forms a class classification block of a predetermined range centered on the target pixel from the compressed image data, and classifies the target pixel using pixel data in the block of the class classification block;
Classifying the target pixel for learning using the pixel data in the block of the class classification block for learning formed based on the predetermined learning image data, and corresponding the target pixel for learning to the encoding method of the image encoding means A difference value between a decoded value obtained by decoding using the decoding method and a true value of the learning target pixel is obtained, and the difference value is determined for each classified class, pixel data around the learning target pixel, and a predetermined coefficient. Coefficient coefficients obtained by solving each linear linear combination when expressed by the linear linear combination are stored in advance in association with each class, and the coefficient storage for outputting the coefficient of the class according to the classification result by the class classification means Means,
A correction value corresponding to an error between the true value and the decoded value when the pixel of interest is decoded by performing an operation using the coefficient output from the coefficient storage means and pixel data around the pixel of interest. Correction value calculating means for calculating
Correction means for correcting the data of the pixel of interest based on the correction value;
Decoding means for obtaining decoded data by decoding the pixel data corrected by the correcting means by using a decoding method corresponding to the encoding method of the image encoding means, Data decoding device.
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成する第1のブロツク化手段と、
上記第1のブロツクの外側の画素を集めて第2のブロツクを形成する第2のブロツク化手段と、
上記第1のブロツクのブロツク内画素データを用いて第1のクラスコードを形成する第1のクラスコード形成手段と、
上記注目画素から見た上記第2のブロツクのブロツク内画素の画素レベルの最大値及び最小値の方向に基づいて第2のクラスコードを形成する第2のクラスコード形成手段と
を具え、当該第1及び第2のクラスコードの両方をクラス分類結果とする
ことを特徴とする請求項1に記載の画像データ復号装置。The classification means is
First blocking means for collecting peripheral pixels centered on the pixel of interest and forming a first block;
Second blocking means for collecting pixels outside the first block to form a second block;
First class code forming means for forming a first class code using in-block pixel data of the first block;
Second class code forming means for forming a second class code based on directions of maximum and minimum pixel levels of pixels in the block of the second block as viewed from the target pixel. The image data decoding apparatus according to claim 1, wherein both the first and second class codes are used as a classification result.
上記第1のブロツクにおけるブロツク内画素データのレベル分布パターンに基づき上記第1のクラスコードを形成する
ことを特徴とする請求項2に記載の画像データ復号装置。The first class code forming means includes:
3. The image data decoding apparatus according to claim 2, wherein the first class code is formed based on a level distribution pattern of pixel data in the block in the first block.
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成する第1のブロツク化手段と、
上記第1のブロツクの外側の画素を集めて第2のブロツクを形成する第2のブロツク化手段と、
上記第1のブロツクのブロツク内画素データを用いて第1のクラスコードを形成する第1のクラスコード形成手段と、
上記注目画素から見た上記第2のブロツクのブロツク内画素の画素レベルの最大値及び最小値の方向に基づいて第2のクラスコードを形成する第2のクラスコード形成手段と
を具え、当該第1及び第2のクラスコードを合成してクラス分類結果とする
ことを特徴とする請求項1に記載の画像データ復号装置。The classification means is
First blocking means for collecting peripheral pixels centered on the pixel of interest and forming a first block;
Second blocking means for collecting pixels outside the first block to form a second block;
First class code forming means for forming a first class code using in-block pixel data of the first block;
Second class code forming means for forming a second class code based on directions of maximum and minimum pixel levels of pixels in the block of the second block as viewed from the target pixel. The image data decoding apparatus according to claim 1, wherein the first and second class codes are combined to obtain a classification result.
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成する第1のブロツク化手段と、
上記第1のブロツクの外側の画素を集めて第2のブロツクを形成する第2のブロツク化手段と、
上記第1のブロツクの各ブロツク内画素の画素レベルと上記注目画素の画素レベルとの大小を「1」又は「0」の論理値にコード化することにより第1のクラスコードを形成する第1のクラスコード形成手段と、
上記第2のブロツクの各ブロツク内画素の画素レベルと上記第1のブロツクのブロツク内画素の画素レベルの平均値との大小を「1」又は「0」の論理値にコード化することにより第2のクラスコードを形成する第2のクラスコード形成手段と
を具え、当該第1及び第2のクラスコードの両方をクラス分類結果とする
ことを特徴とする請求項1に記載の画像データ復号装置。The classification means is
First blocking means for collecting peripheral pixels centered on the pixel of interest and forming a first block;
Second blocking means for collecting pixels outside the first block to form a second block;
A first class code is formed by encoding the magnitude of the pixel level of each pixel in the block of the first block and the pixel level of the pixel of interest into a logical value of “1” or “0”. Class code forming means,
By encoding the magnitude of the pixel level of each pixel in the block of the second block and the average value of the pixel level of the pixel in the block of the first block to a logical value of “1” or “0”, 2. The image data decoding apparatus according to claim 1, further comprising: a second class code forming unit that forms two class codes, wherein both the first and second class codes are used as a class classification result. .
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成する第1のブロツク化手段と、
上記第1のブロツクの外側の画素を集めて第2のブロツクを形成する第2のブロツク化手段と、
上記第1のブロツクの各ブロツク内画素の画素レベルと上記注目画素の画素レベルとの大小を「1」又は「0」の論理値にコード化することにより第1のクラスコードを形成する第1のクラスコード形成手段と、
上記第2のブロツクの各ブロツク内画素の画素レベルと上記第1のブロツクのブロツク内画素の画素レベルの平均値との大小を「1」又は「0」の論理値にコード化することにより第2のクラスコードを形成する第2のクラスコード形成手段と
を具え、当該第1及び第2のクラスコードを合成してクラス分類結果とする
ことを特徴とする請求項1に記載の画像データ復号装置。The classification means is
First blocking means for collecting peripheral pixels centered on the pixel of interest and forming a first block;
Second blocking means for collecting pixels outside the first block to form a second block;
A first class code is formed by encoding the magnitude of the pixel level of each pixel in the block of the first block and the pixel level of the pixel of interest into a logical value of “1” or “0”. Class code forming means,
By encoding the magnitude of the pixel level of each pixel in the block of the second block and the average value of the pixel level of the pixel in the block of the first block to a logical value of “1” or “0”, 2. The image data decoding according to claim 1, further comprising: a second class code forming unit that forms two class codes, and combining the first and second class codes into a class classification result. apparatus.
上記入力画像データを上記符号化ブロツクに分割し、上記符号化ブロツク毎のダイナミツクレンジ及び最小値を検出して当該最小値が除去された画素データを上記ダイナミツクレンジに応じて再量子化し、当該符号化ブロツク単位で各画素データを原量子化ビツト数よりも小さいビツト数に符号化する
ことを特徴とする請求項1に記載の画像データ復号装置。The image encoding means includes
The input image data is divided into the encoding blocks, the dynamic range and minimum value for each encoding block are detected, and the pixel data from which the minimum value has been removed are requantized according to the dynamic range, 2. The image data decoding apparatus according to claim 1, wherein each pixel data is encoded to a number of bits smaller than the number of original quantization bits in units of the encoding block.
上記圧縮画像データから、注目画素を中心とする所定範囲のクラス分類ブロツクを形成するブロツク化ステツプと、
上記ブロツク化ステツプで形成したクラス分類ブロツクのブロツク内画素データを用いて上記注目画素をクラス分類するクラス分類ステツプと、
所定の学習用画像データを基に形成した学習用クラス分類ブロツクのブロツク内画素データを用いて学習用注目画素をクラス分類し、当該学習用注目画素を上記画像符号化手法に対応した復号手法により復号した際の復号値と当該学習用注目画素の真値との差分値を求め、分類されたクラス毎に当該差分値を上記学習用注目画素周辺の画素データと所定の係数との線形一次結合により表したときの各線形一次結合を予め解いて得た、各クラスにそれぞれ対応付けて記憶された各係数のうち、上記クラス分類ステツプによる分類結果に応じたクラスの係数を選択し、当該係数と上記注目画素周辺の画素データとを用いた演算を行うことにより、上記注目画素を復号した際における上記真値と上記復号値との誤差に相当する補正値を算出する補正値算出ステツプと、
上記補正値算出ステツプで得た上記補正値を用いて上記注目画素のデータを補正し、補正後した当該注目画素データを上記画像符号化手法に対応した復号手法を用いて復号することにより復号データを得る復号ステツプと
を具えることを特徴とする画像データ復号方法。Compressed image data formed by an image encoding method that divides input image data into encoding blocks consisting of a plurality of pixels and encodes each pixel data to a number of bits smaller than the number of original quantization bits in the unit of the encoding block. In the image data decoding method for decoding
A blocking step for forming a predetermined range of class classification blocks centered on the pixel of interest from the compressed image data;
A class classification step for classifying the pixel of interest using in-block pixel data of the class classification block formed in the blocking step;
The pixel of interest for learning is classified using the pixel data in the block of the learning class classification block formed based on the predetermined image data for learning, and the pixel of interest for learning is classified by a decoding method corresponding to the image coding method. A difference value between the decoded value at the time of decoding and the true value of the target pixel for learning is obtained, and for each classified class, the difference value is linearly combined with pixel data around the target pixel for learning and a predetermined coefficient. The coefficient of the class corresponding to the classification result by the class classification step is selected from the coefficients stored in association with the classes obtained by solving each linear linear combination when expressed by and by performing a calculation using pixel data around the pixel of interest, calculates a correction value corresponding to the error between the true value and the decoded value at the time of decoding the target pixel corrected A calculation step,
Decoded data by the using the correction value calculating the correction value obtained in step to correct the data of the pixel of interest is decoded using the decoding technique of the target pixel data after correction corresponding to the image coding method An image data decoding method comprising: a decoding step for obtaining
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成すると共に、当該第1のブロツクの外側の画素データを集めて第2のブロツクを形成し、
上記クラス分類ステツプにおいて、
上記第1のブロツクのブロツク内画素データを用いて第1のクラスコードを形成すると共に、上記注目画素から見た上記第2のブロツクのブロツク内画素データの最大値及び最小値の方向に基づいて第2のクラスコードを形成し、当該第1及び第2のクラスコードの両方をクラス分類結果とする
ことを特徴とする請求項8に記載の画像データ復号方法。In the blocking step,
Collecting peripheral pixels centered on the target pixel to form a first block, and collecting pixel data outside the first block to form a second block;
In the above classification step,
The first class code is formed using the pixel data in the block of the first block, and based on the direction of the maximum value and the minimum value of the pixel data in the block of the second block as viewed from the target pixel. The image data decoding method according to claim 8 , wherein a second class code is formed, and both the first and second class codes are used as a classification result.
上記注目画素を中心とする周辺画素を集めて第1のブロツクを形成すると共に、当該第1のブロツクの外側の画素を集めて第2のブロツクを形成し、
上記クラス分類ステツプにおいて、
上記第1のブロツクの各ブロツク内画素データと上記注目画素データとの大小を「1」又は「0」の論理値にコード化することにより第1のクラスコードを形成すると共に、上記第2のブロツクの各ブロツク内画素データと上記第1のブロツクのブロツク内画素データの平均値との大小を「1」又は「0」の論理値にコード化することにより第2のクラスコードを形成し、当該第1及び第2のクラスコードの両方をクラス分類結果とする
ことを特徴とする請求項8に記載の画像データ復号方法。In the blocking step,
Collecting peripheral pixels centered on the pixel of interest to form a first block, and collecting pixels outside the first block to form a second block;
In the above classification step,
The first class code is formed by coding the size of each block pixel data of the first block and the target pixel data into a logical value of “1” or “0”, and the second class code. A second class code is formed by coding the size of each block pixel data of the block and the average value of the block block pixel data of the first block into a logical value of "1" or "0"; The image data decoding method according to claim 8 , wherein both the first and second class codes are used as a classification result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20835995A JP3748115B2 (en) | 1995-07-24 | 1995-07-24 | Image data decoding apparatus and image data decoding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20835995A JP3748115B2 (en) | 1995-07-24 | 1995-07-24 | Image data decoding apparatus and image data decoding method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005290375A Division JP4240322B2 (en) | 2005-10-03 | 2005-10-03 | Coefficient generation apparatus and coefficient generation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0937250A JPH0937250A (en) | 1997-02-07 |
JP3748115B2 true JP3748115B2 (en) | 2006-02-22 |
Family
ID=16554992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20835995A Expired - Lifetime JP3748115B2 (en) | 1995-07-24 | 1995-07-24 | Image data decoding apparatus and image data decoding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3748115B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6151416A (en) * | 1999-02-12 | 2000-11-21 | Sony Corporation | Method and apparatus for adaptive class tap selection according to multiple classification |
JP4748113B2 (en) * | 2007-06-04 | 2011-08-17 | ソニー株式会社 | Learning device, learning method, program, and recording medium |
KR101325088B1 (en) * | 2012-01-13 | 2013-11-06 | (주)에프씨아이 | Demapper |
-
1995
- 1995-07-24 JP JP20835995A patent/JP3748115B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0937250A (en) | 1997-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4815078A (en) | Method of quantizing predictive errors | |
JP3590996B2 (en) | Hierarchical encoding and decoding apparatus for digital image signal | |
US5293230A (en) | Pyramidal encoder for encoding error images | |
US6292591B1 (en) | Image coding and decoding using mapping coefficients corresponding to class information of pixel blocks | |
JP2001519988A (en) | System for extracting coding parameters from video data | |
CN1224310A (en) | Image encoding/decoding by eliminating color components in pixels | |
US5793428A (en) | Self-encoded deltas for digital video data transmission | |
JP3348318B2 (en) | Digital image signal processing apparatus and processing method | |
JP3748115B2 (en) | Image data decoding apparatus and image data decoding method | |
JP2723867B2 (en) | Image signal decoding device | |
US7450769B2 (en) | Image processing method for facilitating data transmission | |
JP3758211B2 (en) | Hierarchical coding apparatus and method for digital image signal, and decoding apparatus and method | |
JP4240322B2 (en) | Coefficient generation apparatus and coefficient generation method | |
JP3716997B2 (en) | Image conversion method and apparatus | |
JPH08307835A (en) | Classification adaptive processing unit and its method | |
JP3627256B2 (en) | Apparatus and method for receiving / reproducing digital image signal | |
JP3271109B2 (en) | Digital image signal processing apparatus and processing method | |
JP3326828B2 (en) | Digital image signal receiving / reproducing device | |
JP3170929B2 (en) | Digital signal quantizer | |
JP3480461B2 (en) | Digital image signal processing apparatus and processing method | |
JPH0746548A (en) | Digital image signal processor | |
JP3831955B2 (en) | Class classification adaptive processing apparatus and method | |
JP2698641B2 (en) | Color image data encoding method and decoding method | |
JP3169369B2 (en) | Image signal encoding apparatus and encoding method | |
JP3291786B2 (en) | Transmission device for block transform coded data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131209 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |