JP3744233B2 - 偏光分離器および投射型画像表示装置 - Google Patents
偏光分離器および投射型画像表示装置 Download PDFInfo
- Publication number
- JP3744233B2 JP3744233B2 JP31044498A JP31044498A JP3744233B2 JP 3744233 B2 JP3744233 B2 JP 3744233B2 JP 31044498 A JP31044498 A JP 31044498A JP 31044498 A JP31044498 A JP 31044498A JP 3744233 B2 JP3744233 B2 JP 3744233B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarization
- wavelength
- polarized light
- diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Optical Elements Other Than Lenses (AREA)
- Polarising Elements (AREA)
Description
【発明の属する技術分野】
本発明は、投射型画像表示装置等の光学装置に用いられる偏光分離器に関し、より詳しくは、ブレーズ型回折格子と複屈折材料の組み合わせによって、偏光面が垂直な2つの偏光を分離する偏光分離器に関する。
【0002】
【従来の技術】
複屈折材料をブレーズ型回折格子に密着させ、偏光面が垂直な2つの偏光に対する複屈折材料の屈折率の差を利用して、両偏光を分離するすることが行われている。ブレーズ型回折格子の材料の屈折率をN、第1の偏光面をもつ偏光に対する複屈折材料の屈折率をNo、第1の偏光面に垂直な第2の偏光面をもつ偏光に対する複屈折材料の屈折率をNeとするとき、回折格子面における屈折率の差が、第1の偏光面をもつ偏光に対しては(No−N)、第2の偏光面をもつ偏光に対しては(Ne−N)となって、両偏光の回折角に差異が生じることにより、これらを分離することができる。
【0003】
特開平6−274927号公報には、この方法を用いた光磁気ヘッドが開示されている。この公報では、複屈折材料として水晶、方解石等の鉱物を使用し、レーザ光源が発する単波長の光を分離している。第1の実施例では、回折格子の屈折率Nを2つの偏光に対する複屈折材料の屈折率NoとNeの中間値に設定して、±1次の回折光として2つの偏光を取り出している。また、第2の実施例では、回折格子の屈折率Nを第1の偏光面をもつ偏光に対する複屈折材料の屈折率Noと等しく設定して、第1の偏光面をもつ偏光を0次の回折光として、第2の偏光面をもつ偏光を1次の回折光として取り出すようにしている。
【0004】
実際には、第1の実施例のように、複屈折材料の屈折率NoとNeのちょうど中間の屈折率Nを有する回折格子材料が存在するとは限らない。このため、第2の実施例のように、回折格子の屈折率Nを複屈折材料の2つの屈折率No、Neのいずれかに等しくして、分離される偏光の一方を0次とすることが多い。
【0005】
【発明が解決しようとする課題】
上記公報の装置は、光磁気ヘッドのように、光束径の小さい光を分離する場合に有用である。しかしながら、投射テレビ、データプロジェクタ等の投射型画像表示装置のように大きな光束径を必要とする装置では、複屈折材料として大口径のものが要求される。しかも、明るい画像を表示するために回折効率をできるだけ高める必要があり、複屈折材料の2つの屈折率の差(No−Ne)を大きくしなければならない。このため、水晶等の鉱物は複屈折材料として採用し難い。
【0006】
口径に制約がなくしかも2つの複屈折率の差が大きい複屈折材料に、液晶がある。回折格子の基板材料として熱可塑性樹脂や紫外線硬化樹脂を用い、金型からの転写により回折格子を形成して、これに液晶を配向を揃えて密着させるようにすれば、投射型画像表示装置で求められる大口径で回折効率の高い偏光分離器を容易にかつ効率よく製造することができる。
【0007】
ところが、そのようにして偏光分離器を製造すると、前記公報の装置のように0次と1次の回折光を取り出す構成では別な問題が生じる。分離の対象である光の波長をλ、回折角をθとすると、1次の回折を生じさせるための格子の配列ピッチpは、p=λ/sinθで求められる。また、1次の回折効率が最大になるようにするための格子の高さhは、h=λ/(Ne−N)となる。
【0008】
光の波長λが0.55μmで回折角θが5゜のとき、1次の回折光を得るためには格子ピッチpは6.3μmとなり、複屈折材料の屈折率差(Ne−N)を0.17とすれば格子高さhは3.2μmとなる。このようなブレーズ型回折格子は非常に細かく、金型作製精度や成型転写精度等の回折格子の作製精度の影響が格子の性能に大きく現れる。上記数値の理想的な回折格子と、作製精度の影響により格子のエッジに略1μmのだれが生じたときの回折格子を、図12の(a)、(b)にそれそれ示す。(b)の回折格子では、格子表面の約30%の部分がだれることになり、回折効率が大きく低下する。
【0009】
また、投射型画像表示装置では、カラー画像を表示するために可視領域全体にわたる波長(0.45〜0.65μm)の光を使用するから、前記公報の如く単一波長の偏光を分離する場合と異なり、波長による回折角の違いや回折効率の低下が問題となる。回折角は波長に比例して変化するため、可視領域の光の同一次数の回折角は、短波長側と長波長側で略1.5倍も相違する。図12に、赤色(R)光、緑色(G)光、および青色(B)光の1次の回折光を模式的に示す。R、G、Bの3色の光は、回折角の差により互いに違う方向に進む。実際には、(b)に示したように、格子のだれによる不要光がR光とB光の外側に生じる。
【0010】
屈折率Nが1.50(Nd)でアッベ数νが64(νd)の回折格子と、屈折率Neが1.67でアッベ数νeが30の複屈折材料を用いた場合の、第2の偏光面をもつ偏光の1次の回折光の回折角と回折効率をそれぞれ図13、14に示す。図13から明らかなように、波長0.55μmのG光の回折角を5.0゜とするとき、0.45μmのB光から0.65μmのR光までの回折角は、4.1゜から5.9゜までの1.8゜の範囲に広がる。また、図14に見られるように、波長0.55μmのG光の回折効率を1とするとき、B光の回折効率は大きく低下して60〜70%程度となり、R光の回折効率も80〜90%程度に低下する。なお、屈折率NとNoが等しいため、第1の偏光面をもつ偏光に回折は生じない。
【0011】
このように、従来の偏光分離器では、波長に広がりをもつ大きな光束径の光を回折させて偏光分離し、所望の2以上の波長帯の偏光を同程度の回折角でかつ効率よく取り出すことはできない。本発明は、これを可能とする偏光分離器を提供し、また、そのような偏光分離器を備えた投射型画像表示装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明では、ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、第1の式(No(λ)−N(λ))・h/λと第2の式(Ne(λ)−N(λ))・h/λの値の差の絶対値が、前記所定範囲内の光の分光強度分布の極大の波長に略等しい基準波長の光に対して、3以上かつ10以下となるようにする。ここで、hはブレーズ型回折格子の格子の高さ、N(λ)は波長λの光に対する第1の部材の屈折率、No(λ)およびNe(λ)はそれぞれ波長λの第1の偏光と第2の偏光に対する第2の部材の屈折率である。
【0013】
上記第1の式は波長λの第1の偏光の回折次数を表し、第2の式は波長λの第2の偏光の回折次数を表す。したがって、この偏光分離器によって分離された基準波長の2つの偏光の回折次数は、少なくとも3以上相違することになる。また、両偏光の回折次数の差は多くとも10以下に留まることになる。
【0014】
分離する2つの偏光の回折次数の差を3以上とすることで、回折次数の差が1の場合に比べて、ブレーズ型回折格子の格子ピッチが3倍以上となる。その結果、回折格子全体に占める作製精度の影響によるだれの部分の割合が大幅に低下し、回折効率を大きく向上させることができる。また、回折次数の差を10以下とすることで、第1の部材と第2の部材のアッベ数の差に起因する不要な回折の発生が抑えられ、これによっても回折効率が向上する。また、透過させる光の分光強度分布の極大近傍の波長を基準波長とすることで、透過させる光の波長範囲全体について、回折効率を高めることができる。
【0015】
回折効率の高い次数は波長に応じて変化していき、回折効率の高い波長領域の回折角は、1次の回折光の回折角に比べて狭い範囲内に収まる。換言すれば、比較的狭い回折角の範囲内に、それぞれ回折次数の異なる複数の回折波長帯が現れる。したがって、基準波長近傍の光が効率よく第1と第2の偏光に分離されるだけでなく、基準波長から離れた波長の光も効率良く第1と第2の偏光に分離され、しかも、後者の第1と第2の偏光はそれぞれ前者の第1と第2の偏光と略同一方向に進むことになる。
【0016】
基準波長の第2の偏光に対する第2の式の値を、差が0.2未満の範囲内で、整数に近似するようにするのが好ましい。回折格子のピッチや高さは、この条件に合致するように設定することになる。基準波長の第2の偏光に対する第2の式の値が整数に近いということは、その整数の次数での回折光の強度がピーク強度に近いということである。したがって、回折した第2の偏光は強度が高くなる。
【0017】
また、本発明では、ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、第1の式(No(λ)−N(λ))・h/λと第2の式(Ne(λ)−N(λ))・h/λの値の差の絶対値が、基準波長の光に対して、3以上かつ10以下であり、前記所定範囲は青色光から赤色光までに対応する範囲であって、前記基準波長は、緑色光の中心波長に略等しく、青色光、緑色光および赤色光の中心波長に略等しい3つの波長の第2の偏光に対する第2の式の値は、差が0.2未満の範囲内で、互いに異なる3つの整数に近似するようにする。
また、本発明では、ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、第1の式(No(λ)−N(λ))・h/λと第2の式(Ne(λ)−N(λ))・h/λの値の差の絶対値が、基準波長の光に対して、3以上かつ10以下であり、前記所定範囲は青色光から赤色光までに対応する範囲であって、前記基準波長は、緑色光の中心波長に略等しく、青色光、緑色光および赤色光の中心波長に略等しい3つの波長の第1の偏光に対する第1の式の値は、差が0.2未満の範囲内で、互いに異なる3つの整数に近似するようにする。
ここで、hはブレーズ型回折格子の格子の高さ、N(λ)は波長λの光に対する第1の部材の屈折率、No(λ)およびNe(λ)はそれぞれ波長λの第1の偏光と第2の偏光に対する第2の部材の屈折率である。
上記の構成によれば、分離する2つの偏光の回折次数の差を3以上とすることで、回折次数の差が1の場合に比べて、ブレーズ型回折格子の格子ピッチが3倍以上となる。その結果、回折格子全体に占める作製精度の影響によるだれの部分の割合が大幅に低下し、回折効率を大きく向上させることができる。また、回折次数の差を10以下とすることで、第1の部材と第2の部材のアッベ数の差に起因する不要な回折の発生が抑えられ、これによっても回折効率が向上する。また、R、G、Bの各色の第2または第1の偏光がそれぞれ異なる次数で回折することになり、それらの回折角を略同じにすることができる。
【0018】
本発明では、上記の偏光分離器を、光源からの光を偏光分離して分離後の偏光を画像の投射に用いる投射型画像表示装置に備える。光源からの光を効率よく偏光分離することが可能になり、例えば、液晶パネルで光を変調する構成のように特定の偏光を投射に利用する装置であっても、分離後の偏光の一方の偏光面を他方の偏光面に揃える偏光変換を行うことによって、明るい画像を表示することができる。また、分離後の各組の偏光のR、G、Bの3色光を略同一方向に進ませることができるから、光学系を小型に構成することが可能になる。
【0019】
【発明の実施の形態】
本発明の偏光分離器および投射型画像表示装置(以下、単に投射表示装置ともいう)の実施形態について、図面を参照しながら説明する。図1に第1の実施形態の投射型画像表示装置1の光学系の構成を示す。投射表示装置1は、光源が発する白色光をR、G、Bの3色の光に分解し、分解後の3色の光を3つの液晶パネルで個別に変調して、変調後の光を合成して投射することにより、カラー画像を表示するものである。また、投射への光の利用効率を高めるために、光源からの光を偏光分離し、分離後の一方の偏光を変換して他方の偏光に合致させて、偏光面が一定の直線偏光とする。
【0020】
投射表示装置1は、光源11、偏光分離のための偏光分離器12、光の強度均一化と偏光変換のためのインテグレータ13、変調のための3つの透過型液晶パネル21R、21G、21B、および投射レンズ27を備えている。また、投射表示装置1は、光を分解するための2つのダイクロイックミラー15a、15b、分解後の光を液晶パネルに導くための3つの全反射ミラー16a、16b、16cおよび2つのリレーレンズ17a、17b、ならびに液晶パネルで変調された光を合成するための2つのダイクロイックミラー24、25を備えている。
【0021】
3つの液晶パネル21R、21G、21Bにはそれぞれ、入射する光を集光させるコンデンサレンズ22R、22G、22Bと、射出する光を集光させるコンデンサレンズ23R、23G、23Bが備えられている。また、液晶パネル21Bとダイクロイックミラー25の間にはダミー平板26が配置されている。合成のためのダイクロイックミラー24、25、ダミー平板26および投射レンズ27は投射光学系を成す。
【0022】
液晶パネル21R、21G、21Bは同じ大きさであり、同等の性能を有する。液晶パネル21R、21G、21Bにはそれぞれ駆動回路(不図示)が設けられており、これらの駆動回路にはそれぞれ、画像のR、G、Bの成分を表す信号が与えられる。したがって、液晶パネル21Rが変調した光はR成分の画像、液晶パネル21Gが変調した光はG成分の画像、液晶パネル21Bが変調した光はB成分の画像となる。
【0023】
液晶パネル21Gは投射レンズ27の光軸Ax上に位置し、光軸Axに対して垂直に配置されている。ダイクロイックミラー24は光軸Ax上に位置し、液晶パネル21Gに近接して投射レンズ27側に配置されている。ダイクロイックミラー24は光軸Axに対して45゜傾けて配置されている。ダイクロイックミラー25は光軸Ax上に位置し、ダイクロイックミラー24に近接して投射レンズ27側に配置されている。ダイクロイックミラー25は光軸Axに対して45゜傾けて配置されており、ダイクロイックミラー24、25は互いに垂直である。
【0024】
液晶パネル21Rは、ダイクロイックミラー24に関して、液晶パネル21Gと対称に配置されている。液晶パネル21Bは、ダイクロイックミラー25に関して、液晶パネル21Gと対称に配置されており、ダミー平板26も、ダイクロイックミラー25に関して、ダイクロイックミラー24と対称に配置されている。
【0025】
コンデンサレンズ22R、22G、22Bはそれぞれ、光軸が液晶パネル21R、21G、21Bに対して垂直になるように配置されている。コンデンサレンズ23R、23G、23Bも同様である。
【0026】
ダイクロイックミラー24、25は反射膜を2枚の平板ガラスで挟んだ高精度サンドイッチミラーであり、両者は同じ大きさ同じ厚さである。ダイクロイックミラー24の反射膜はR光を反射し、G光とB光を透過させるように設定されている。ダイクロイックミラー25の反射膜はB光を反射し、G光とR光を透過させるように設定されている。ダミー平板26はダイクロイックミラー24、25と同材質のガラス製であり、大きさや厚さも同じである。ただし、ダミー平板26には反射膜は形成されていない。
【0027】
ダイクロイックミラー15bは、光軸Ax上で液晶パネル21Gに関して投射レンズ27の反対側に位置し、ダイクロイックミラー24と平行に配置されている。ダイクロイックミラー15bはB光を透過させ、R光とG光を反射するように設定されている。全反射ミラー16aは、ダイクロイックミラー24に関して、ダイクロイックミラー15bと対称に配置されている。ダイクロイックミラー15aは、ダイクロイックミラー15bによって折り返された光軸Axと、ダイクロイックミラー24と全反射ミラー16aによって2度折り返された光軸Axの交点上に位置し、ダイクロイックミラー24と平行に配置されている。ダイクロイックミラー15aはR光を透過させ、G光とB光を反射するように設定されている。
【0028】
全反射ミラー16cは、ダイクロイックミラー25によって折り返された光軸Ax上に位置し、ダイクロイックミラー25と平行に配置されている。全反射ミラー16bは、ダイクロイックミラー25と全反射ミラー16cによって2度折り返された光軸Axと、ダイクロイックミラー15bによって折り返された光軸Axの延長線の交点上に位置し、ダイクロイックミラー24と平行に配置されている。
【0029】
光源11は、メタルハライドランプ11aと放物面リフレクタ11bを有しており、ダイクロイックミラー15aに関して全反射ミラー16aの反対側に位置する。光源11は、リフレクタ11bの光軸が、ダイクロイックミラー24と全反射ミラー16aによって2度折り返された光軸Axに一致するように配置されている。ランプ11aはリフレクタ11bの焦点に位置する。
【0030】
偏光分離器12は光源11とダイクロイックミラー15aの間に位置し、インテグレータ13は偏光分離器12とダイクロイックミラー15aの間に位置している。偏光分離器12およびインテグレータ13は、ダイクロイックミラー24と全反射ミラー16aによって2度折り返された光軸Axに対して垂直に配置されている。
【0031】
リレーレンズ17aおよび17bはそれぞれ、ダイクロイックミラー15bと全反射ミラー16bの間および全反射ミラー16bと全反射ミラー16cの間に位置する。リレーレンズ17aおよび17bの光軸は光軸Axに対して、それぞれ垂直および平行である。
【0032】
ダイクロイックミラー15aから全反射ミラー16aを経て液晶パネル21Rに至る光路長と、ダイクロイックミラー15aからダイクロイックミラー15bを経て液晶パネル21Gに至る光路長は等しいが、ダイクロイックミラー15aからダイクロイックミラー15bおよび全反射ミラー16b、16cを経て液晶パネル21Bに至る光路長は、これらと異なる。リレーレンズ17a、17bは、この光路長差を補正して、液晶パネル21Bに入射する光を液晶パネル21R、21Gに入射する光と実質的に等価にするために配設されている。
【0033】
液晶パネル21R、21Gから投射レンズ27に至る光路には、光軸Axに斜交する2つのダイクロイックミラー24、25が存在する。これによって生じる液晶パネル21R、21Gからの光の収差を補正するために、投射レンズ27には、プラスチックをモールドして成るシリンダーレンズ27aが備えられている。シリンダーレンズ27aの軸は、ダイクロイックミラー24または25によって折り返された光軸Axと平行である。
【0034】
一方、液晶パネル21Bから投射レンズ27に至る光路にはダイクロイックミラー24は存在ず、液晶パネル21Bからの光は液晶パネル21R、21Gからの光と非等価になって、補正を過剰に受けてしまう。これを防止するために、ダミー平板26が液晶パネル21Bとダイクロイックミラー25の間に配設されている。なお、投射レンズ27は、プラスチックをモールドして成る大口径の非球面レンズ27bを前群に備えており、中群と後群の間に絞り27cを有している。
【0035】
光源11、偏光分離器12およびインテグレータ13の構成を図2に示す。光源11はリフレクタ11bの前方に、UV・IRカットフィルタ11cを有している。ランプ11aが発する光はリフレクタ11bによって反射されて平行光束とされ、UV・IRカットフィルタ11cを透過することにより紫外領域と赤外領域の波長成分を除去されて、可視領域の波長成分(波長0.45〜0.65μm)のみを含む光となる。この光は振動方向が無秩序な偏光成分の集合である。
【0036】
偏光分離器12は、ブレーズ型回折格子が表面に形成された格子基板12a、格子基板12aの格子面に対向して平行に配置された平板12c、および格子基板12aと平板12cに挟まれた液晶12bより成る。格子基板12aの回折格子は、各格子の傾斜面を同じ向きに揃えて平行に配列されている。格子基板12aの屈折率は等方性であり、その屈折率をNで表す。格子基板12aはアクリル等の熱可塑性の樹脂製であり、金型を用いた量産が可能である。なお、格子基板12aの材料は熱可塑性樹脂に限られるものではなく、例えば紫外線硬化樹脂も利用可能であり、その場合も金型を用いて量産することができる。
【0037】
液晶12bは複屈折材料であり、屈折率に異方性を有する。液晶12bは、格子基板12aの格子の配列方向の偏光面Y(図中矢印で示す)をもつ偏光PY(図中実線で示す)に対する屈折率と、偏光面Yに対して垂直な偏光面X(図中丸印で示す)をもつ偏光PX(図中破線で示す)に対する屈折率とが、異なるように配向されている。液晶12bの、偏光PYに対する屈折率をNo、偏光PXに対する屈折率をNeで表す。
【0038】
屈折率N、No、Neは透過する光の波長に応じて変化し、波長λの光に対する各屈折率はN(λ)、No(λ)、Ne(λ)で表される。屈折率の変化は分散が大きいほど、したがってアッベ数が小さいほど大きくなる。ここでは、格子基板12aのアッベ数νと偏光PYに対する液晶12bのアッベ数νoを大きくして、短波長側の一部の波長領域を除き、格子基板12aの屈折率Nと偏光PYに対する液晶12bの屈折率Noを等しくしている。また、偏光PXに対する液晶12bの屈折率Neを格子基板12aの屈折率Nよりも大きくしている。格子基板12aの屈折率N、液晶12bの屈折率No、Ne、および格子基板12aの格子のピッチや高さについては、後に具体的数値を掲げて説明する。
【0039】
格子基板12aの屈折率Nと液晶12bの屈折率Neが異なるため、光源11から入射する光のうち偏光面Xをもつ偏光PXには、格子の配列方向に回折が生じる。一方、格子基板12aの屈折率Nと液晶12bの屈折率Noは等しいため、光源11から入射する光のうち偏光面Yをもつ偏光PYは、回折せずに直進する。その結果、光源11からの光は偏光面が垂直なこれら2つの偏光PX、PYに分離される。
【0040】
インテグレータ13は、レンズセルが2次元に配列された第1のレンズアレイ13aと、レンズアレイ13aに対応してレンズセルが配列された第2のレンズアレイ13bより成る。これらのレンズアレイ13a、13bは平行に配置されており、レンズアレイ13aの各レンズセルの光軸はアレイ面に対して垂直である。第2のレンズアレイ13bのレンズセルは、偏心して形成されている。
【0041】
第1のレンズアレイ13aの各レンズセルは、偏光分離器12から入射する光を、第2のレンズアレイ13bの対応するレンズセル上に結像させる。このとき、偏光PXと偏光PYは分離されているため、両者は第2のレンズアレイ13bの各レンズセル上で異なる位置に結像することになる。偏光PYは第1のレンズアレイ13aに垂直に入射し、レンズアレイ13bのレンズセルの光軸上に結像する。一方、偏光PXは偏光分離器12による回折角だけ傾いて第1のレンズアレイ13aに入射し、レンズアレイ13bのレンズセルの光軸から外れた位置に結像する。第2のレンズアレイ13bのレンズセルが偏心しているのは、光軸から外れた位置に結像する偏光PXが、透過後に偏光PYと平行に進むようにするためである。
【0042】
第2のレンズアレイ13bは、それぞれのレンズセルを透過する光が液晶パネル21R、21G、21Bのパネル面全体に入射するように設定されており、液晶パネル21R、21G、21Bのパネル面のどの部位にも、第2のレンズアレイ13bの全てのレンズセルからの光が入射する。これにより、光源11が発する光の強度分布のむらがなくなって、各液晶パネルは強度分布が均一な光を受けることになる。また、第2のレンズアレイ13bは、それぞれのレンズセルを透過する光が全て液晶パネル21R、21G、21Bに入射するように設定されており、インテグレータ13からの光は損失なく各液晶パネルに導かれる。
【0043】
第2のレンズアレイ13bの第1のレンズアレイ13a側の面には、格子基板12aの各格子に沿う方向(紙面に対して垂直方向)に延びる1/2波長板14が設けられている。1/2波長板14は、格子の配列方向のレンズセル数と同数設けられており、偏光PXが通過する位置に配置されている。偏光PXは、1/2波長板14を透過することにより偏光面が90゜変化する。一方、偏光PYは1/2波長板14を透過せず、その偏光面は変化しない。こうして、第2のレンズアレイ13bに入射する光、したがってインテグレータ13から出る光は、全て偏光面Yをもつ偏光PYとなる。
【0044】
1/2波長板14が偏光変換することと、インテグレータ13が損失なく光を液晶パネル21R、21G、21Bに導くことにより、光源11が発する光は無駄なく変調に利用される。なお、1/2波長板14を、偏光PXが通過する位置ではなく、偏光PYが通過する位置に配置してもよい。その場合、液晶パネル21R、21G、21Bに与えられる光は全て、偏光面Xをもつ偏光PXとなる。
【0045】
インテグレータ13からの光はダイクロイックミラー15aに入射し、透過するR光と反射されるG光およびB光に分解される。R光は全反射ミラー16aによって反射され、コンデンサレンズ22Rを経て液晶パネル21Rに入射し、これを透過する間にR信号に応じて変調される。液晶パネル21Rを透過した変調後のR光は、コンデンサレンズ23Rを経てダイクロイックミラー24に入射して反射され、次いでダイクロイックミラー25に入射してこれを透過し、投射レンズ27に入射してスクリーンに向けて投射される。投射されたR光はスクリーン上に結像して、R成分の画像を形成する。
【0046】
ダイクロイックミラー15aで反射されたG光とB光はダイクロイックミラー15bに入射し、反射されるG光と透過するB光に分解される。G光はコンデンサレンズ22Gを経て液晶パネル21Gに入射し、これを透過する間にG信号に応じて変調される。液晶パネル21Gを透過した変調後のG光は、コンデンサレンズ23Gを経てダイクロイックミラー24に入射してこれを透過し、次いでダイクロイックミラー25に入射してこれも透過し、投射レンズ27に入射してスクリーンに向けて投射される。投射されたG光はスクリーン上に結像して、G成分の画像を形成する。
【0047】
ダイクロイックミラー15bを透過したB光は、リレーレンズ17aを経て全反射ミラー16bによって反射され、さらにリレーレンズ17bを経て全反射ミラー16cによって反射される。全反射ミラー16cによって反射されたB光は、コンデンサレンズ22Bを経て液晶パネル21Bに入射し、これを透過する間にB信号に応じて変調される。液晶パネル21Bを透過した変調後のB光は、コンデンサレンズ23Bを経てダミー平板26に入射してこれを透過し、次いでダイクロイックミラー25に入射して反射され、投射レンズ27に入射してスクリーンに向けて投射される。投射されたB光はスクリーン上に結像して、B成分の画像を形成する。
【0048】
液晶パネル21R、21Gによって個別に変調されたR光とG光がダイクロイックミラー24によって合成され、この合成された光に、液晶パネル21Bによって変調されたB光がさらに合成されることにより、3色の光は重なり合ってスクリーン上にずれなく結像する。これにより、スクリーン上にカラー画像が表示される。
【0049】
偏光分離器12について説明する。偏光分離器12に入射する光の波長をλ、格子基板12aの格子の配列ピッチをp、格子の高さをhで表すと、偏光面Xをもつ偏光PXの回折次数me(λ)および偏光面Yをもつ偏光PYの回折次数mo(λ)は、
me(λ)=(Ne(λ)−N(λ))・h/λ
mo(λ)=(No(λ)−N(λ))・h/λ
によって求められる。また、これらの回折次数での偏光PXの回折角θe(λ)および偏光PYの回折角θo(λ)は、
sin(θe(λ))=λ・me(λ)/p
sin(θo(λ))=λ・mo(λ)/p
となる。
【0050】
格子基板12aの屈折率Nは1.50(Nd)であり、アッベ数νは64(νd)である。偏光面Xをもつ偏光PXに対する液晶12bの屈折率Neは1.67であり、アッベ数νeは30である。また、偏光PYに対する液晶12bの屈折率Noは、前述のように屈折率Nに等しく、1.50であり、そのアッベ数νoは40である。
【0051】
光源11が発する光の分光強度分布のピークはG光の領域にあり、偏光分離器12は、ピーク波長近傍の0.55μmを基準波長λ0として、この基準波長λ0の偏光PX、PYを約5゜の角度に分離するように設定されている。偏光PYは回折を起こさず、回折角0゜の0次の回折光として取り出される。したがって、偏光PXは約5゜の回折角で取り出されることになり、偏光分離器12では、この偏光PXの回折次数が6次になるように設定している。すなわち、me(λ0)=6、mo(λ0)=0である。
【0052】
上記の回折条件を満たすための格子のピッチpと高さhは、それぞれp=37.9μm、h=18.9μmであり、格子基板12aの格子はこれらの値に設定されている。格子基板12aの回折格子を図3に示す。図3は、理想の格子ではなく、作製精度の影響により格子のエッジに略1μmのだれが生じた格子を示したものである。(a)は偏光PXの回折、(b)は偏光PYの回折を表している。この格子は、図12に示した1次の回折光を取り出すための回折格子と略相似形である。しかしながら、格子基板12aの格子は図12の格子の約6倍の大きさであるから、作製精度の影響によるだれの部分が回折格子全体に占める割合は1/6の約5%程度となり、回折効率が大幅に向上する。
【0053】
偏光面Xをもつ偏光PXの波長、回折角および回折次数の関係を図4に示し、波長と回折効率の関係を図5に示す。図4に示すように、回折角5゜付近において、基準波長λ0では6次の回折が生じ、これより長波長の0.65μm近傍では5次の回折が生じ、短波長の0.47μm近傍では7次の回折が生じている。図5に示すように、6次の回折光の最大強度は基準波長0.55μm近傍にあり、5次および7次の回折光の最大強度はそれぞれ、0.63μmおよび0.49μm近傍にある。
【0054】
図4において、斜線を付した範囲は、これら5次、6次、7次の各回折光の強度が他の次数の回折光の強度以上となる範囲を表している。この範囲を回折角についてみると4.4〜5.5゜の範囲に収まり、特に強い強度は回折角5゜の近傍に集中している。例えば、最大強度の80%以上の強度の範囲は4.6〜5.3゜である。5゜から離れた回折角で発生する0.58μm、0.52μmの回折光は、それぞれR光とG光およびG光とB光の境界領域であり、投射表示装置1では、表示する画像の色純度を高めるために利用しない不要な波長の光である。
【0055】
5次光の最大強度の波長0.63μm、6次光の最大強度の波長0.55μm、および7次光の最大強度の波長0.49μmは、それぞれR、GおよびBの原色光の中心近傍の波長であり、各中心波長の回折角は4.8〜5.2゜の範囲内に収まる。R光、G光、B光の中心波長をそれぞれλR、λG、λBで表すと、me(λG)=me(λ0)=6、me(λR)≒5、me(λB)≒7となる。ここで、近似等号≒は、計算によって求められる回折次数が、±0.2の範囲内で整数となることを表す。
【0056】
このように、使用する波長中に複数の重要な波長がある場合、それらの重要な波長を異なる次数で回折させ、しかも回折角の差を小さくするのがよい。回折角の差を小さくしたことで、この投射表示装置1では、1/2波長板14の幅を大きくする必要がなくなり、インテグレータ13を構成するレンズアレイ13a、13bを小さくするとともに、両者間の距離を短くすることが可能になっている。これにより、インテグレータ13自体が小型化するのみならず、他の構成要素も小型化し、投射表示装置1全体も小型軽量となっている。
【0057】
偏光面Yをもつ偏光PYは、前述のように、回折角0゜の0次光として取り出される。偏光PYの波長と回折効率の関係を図6に示す。この図に示すように、回折効率は0.53μm以上の波長範囲では一定であるが、これ以下の波長では低下し、波長0.45μmでは80%程度となる。これは、格子基板12aのアッベ数νと偏光PYに対する液晶12bのアッベ数νoに差があることにより、短波長で1次以上の回折が若干発生するためである。
【0058】
偏光分離器12を作製するにあたっては、格子のだれを極力小さくするのが望ましい。しかしながら、どのように加工技術が進歩しても、加工精度に誤差が含まれ、これにより生じる格子のだれが回折効率の低下を招くことは避けられない。回折効率への格子のだれの影響を少なくし、広い波長領域で回折角の差を小さくするためには、基準波長λ0の偏光PX、PYの回折次数me(λ0)、mo(λ0)の差が大きい方がよく、3≦|me(λ0)−mo(λ0)|であることが必要である。偏光分離器12においては、|me(λ0)−mo(λ0)|=6であり、この条件が満たされている。
【0059】
偏光PYの0次の回折効率の低下は、格子基板12aと液晶12bのアッベ数ν、νoを等しくすれば防止される。しかしながら、一般に、液晶はガラスやプラスチックに比べてアッベ数が小さいという特性があるため、現実にこの条件を液晶で達成することはほとんど不可能である。また、屈折率Nと屈折率Noが等しく、アッベ数νとアッベ数νoが等しく、しかも屈折率Nと屈折率Neの差が大きいという、等方性材料と複屈折材料の組み合わせを見い出すこともほとんど不可能である。
【0060】
不要な次数の回折が発生することによる所望の次数の回折効率の低下は、偏光PX、PYの回折次数me(λ0)、mo(λ0)の差が大きい方ほど顕著になる。このため|me(λ0)−mo(λ0)|≦10とするのがよい。また、回折次数me(λ0)、mo(λ0)の差を大きくするためには、格子の高さhを大きくする必要がある。格子の高さhを大きくすれば、複屈折材料の厚さが格子の山と谷の部位で大きく異なることになって、本実施形態のように複屈折材料として液晶を使用する場合、液晶の配向を一定にすることが困難になる。この点でも、回折次数me(λ0)、mo(λ0)の差を10以下とするのが好ましいといえる。偏光分離器12ではこの条件も満たされている。
【0061】
第2の実施形態の投射型画像表示装置2について説明する。本実施形態の投射表示装置2は、偏光分離器とインテグレータの構成が上述の投射表示装置1と異なるのみで、他の構成は同じである。投射表示装置1と同一の構成要素は同一の符号で表し、図1を参照して既に説明した光学系全体の構成については説明を省略する。
【0062】
投射表示装置2における光源11、偏光分離器32およびインテグレータ33の構成を図7に示す。偏光分離器32は、ブレーズ型回折格子が表面に形成された格子基板32a、格子基板32aの格子面に対向して平行に配置された平板32c、および格子基板32aと平板32cに挟まれた液晶32bより成る。格子基板32aの回折格子は、格子の配列方向の中央に関して対称に形成されており、半分の傾斜面は他の半分の傾斜面と逆向きになっている。
【0063】
液晶32bは、格子基板32aの格子の配列方向の偏光面Yをもつ偏光PYに対する屈折率と、偏光面Yに対して垂直な偏光面Xをもつ偏光PXに対する屈折率とが、異なるように配向されている。格子基板32aの屈折率、液晶32bの偏光PY、偏光PXに対する屈折率を、第1の実施形態と同様に、それぞれN、No、Neで表す。
【0064】
格子基板32aの屈折率Nは、液晶の2つの屈折率No、Neの間の値に設定されており、偏光分離器32は、偏光PXを正の次数の回折光として、偏光PYを負の次数の回折光として、両者を分離する。
【0065】
インテグレータ33は、レンズセルが2次元に配列された第1のレンズアレイ33aと、レンズアレイ33aに対応してレンズセルが配列された第2のレンズアレイ33bより成る。レンズアレイ33a、33bは平行に配置されており、レンズアレイ33a、33bの各レンズセルの光軸はアレイ面に対して垂直である。また、第1のレンズアレイ33aの各レンズセルの光軸と、第2のレンズアレイ33bの対応するレンズセルの光軸は一致している。
【0066】
第2のレンズアレイ33bのレンズセルは偏心して形成されているが、格子基板32aの回折格子が対称であることに対応して、第2のレンズアレイ33bのレンズセルも対称に配置されている。また、偏光分離器32による偏光PX、PYの回折角が正と負になることから、レンズアレイ33bのレンズセルの偏心の程度は、投射表示装置1のレンズアレイ13bのレンズセルよりも小さい。
【0067】
第1のレンズアレイ33aの各レンズセルは、偏光分離器32から入射する光を、第2のレンズアレイ33bの対応するレンズセル上に結像させる。このとき、偏光PXと偏光PYは分離されているため、両者は第2のレンズアレイ33bの各レンズセル上で異なる位置に結像する。偏光PXと偏光PYはレンズアレイ33bのレンズセルの光軸上から外れた位置に結像し、2つの結像位置はレンズセルの光軸に関して反対側になる。レンズアレイ32bを透過した両偏光は、レンズセルの光軸に平行に進む。
【0068】
第2のレンズアレイ33bは、それぞれのレンズセルを透過する光が液晶パネル21R、21G、21Bのパネル面全体に入射するように設定されており、液晶パネル21R、21G、21Bのパネル面のどの部位にも、第2のレンズアレイ33bの全てのレンズセルからの光が入射する。これにより、光源11が発する光の強度分布のむらがなくなって、各液晶パネルは強度分布が均一な光を受けることになる。また、第2のレンズアレイ33bは、それぞれのレンズセルを透過する光が全て液晶パネル21R、21G、21Bに入射するように設定されており、インテグレータ33からの光は損失なく各液晶パネルに導かれる。
【0069】
しかも、偏光分離器32とインテグレータ33がそれぞれ対称に構成されているため、各液晶パネルに導かれる光は、レンズアレイ33bを出る光束の対称な部分同士が重なり合ったものとなる。このため、回折効率に波長によるばらつきが生じて光束に強度むらが発生した場合でも、その強度むらが相殺されることになり、表示する画像に色むらが発生することが防止される。
【0070】
第2のレンズアレイ33bの第1のレンズアレイ33a側の面には、格子基板32aの各格子に沿う方向(紙面に対して垂直方向)に延びる1/2波長板34が設けられている。1/2波長板34は、格子の配列方向のレンズセル数と同数設けられており、偏光PXが通過する位置に配置されている。1/2波長板34も対称に配置されており、中央の2つの1/2波長板34は一体化して他の略2倍の大きさとなっている。偏光PXは、1/2波長板34を透過することにより偏光面が90゜変化する。一方、偏光PYは1/2波長板34を透過せず、その偏光面は変化しない。したがって、インテグレータ33から出る光は、全て偏光面Yをもつ偏光PYとなる。
【0071】
偏光分離器32の格子基板32aの屈折率Nは1.59(Nd)であり、アッベ数νは35(νd)である。偏光PXに対する液晶32bの屈折率Neは1.73であり、アッベ数νeは25である。また、偏光PYに対する液晶32bの屈折率Noは1.50であり、アッベ数νoは30である。
【0072】
偏光分離器32は、光源11からの光のピーク強度の波長近傍の0.55μmを基準波長λ0として、この基準波長λ0の偏光PX、PYを約5゜の角度に分離するように設定されている。基準波長λ0の回折次数は、me(λ0)=4.9、mo(λ0)=−3.1である。基準波長λ0の近傍では、偏光PXに5次の回折が生じ、その回折角は3.1゜である。また、偏光PYには−3次の回折が生じ、その回折角は−1.9゜である。
【0073】
偏光面Xをもつ偏光PXの波長、回折角および回折次数の関係を図8に示し、波長と回折効率の関係を図9に示す。図8に示すように、回折角3゜付近において、基準波長λ0では5次の回折が生じ、これより長波長の0.65μm近傍では4次の回折が生じ、短波長の0.47μm近傍では6次の回折が生じている。図9に示すように、5次の回折光の最大強度は波長0.54μm近傍にあり、4次および6次の回折光の最大強度はそれぞれ、0.64μmおよび0.47μm近傍にある。
【0074】
図8において、斜線を付した範囲は、これら4次、5次、6次の各回折光の強度が他の次数の回折光の強度以上となる範囲を表している。この範囲を回折角についてみると2.6〜3.4゜の範囲に収まり、特に強い強度は回折角3゜の近傍に集中している。例えば、最大強度の80%以上の強度の範囲は2.8〜3.3゜である。3゜から離れた回折角で発生する0.58μm、0.50μmの回折光は、それぞれR光とG光およびG光とB光の境界領域であり、強度も弱い。
【0075】
4次光の最大強度の波長0.64μm、5次光の最大強度の波長0.54μm、および6次光の最大強度の波長0.47μmは、回折角2.9〜3.2゜の範囲内にほぼ収まる。R光、G光、B光の中心波長λR、λG、λBの回折次数は、me(λG)=me(λ0)≒5、me(λR)≒4、me(λB)≒6となる。ここで、近似等号≒は、計算によって求められる回折次数が、±0.2の範囲内で整数となることを表す。
【0076】
偏光面Yをもつ偏光PYの波長、回折角および回折次数の関係を図10に示し、波長と回折効率の関係を図11に示す。図10に示すように、短波長側の一部を除く可視領域の波長全体にわたって、回折角−2゜付近に−3次の回折が生じており、短波長では−4次の回折が生じている。図10において、斜線を付した範囲は、これら−3次、−4次の各回折光の強度が他の次数の回折光の強度以上となる範囲を表している。この範囲を回折角についてみると−2.2〜−1.6゜の範囲に収まる。
【0077】
基準波長λ0の偏光PX、PYの回折次数me(λ0)、mo(λ0)の差は8であり、本実施形態の偏光分離器32においても、3≦|me(λ0)−mo(λ0)|≦10の条件が満たされている。これにより、回折効率への格子のだれの影響を少なくして、広い波長領域で回折角の差を小さくすることが可能になっており、また、不要な次数の回折の発生による回折効率の低下が防止され、液晶32bの配向を一定に揃えることも容易になっている。
【0078】
なお、ここでは透過型液晶パネルによって光の変調を行う投射型画像表示装置の例を示したが、各実施形態の偏光分離器は、反射型液晶パネルによって光の変調を行う投射型画像表示装置にも適用可能であり、また、投射型画像表示装置以外の光学装置にも利用することができる。
【0079】
【発明の効果】
本発明の偏光分離器によるときは、ブレーズ型回折格子の格子ピッチが大きくなって、回折格子の作製精度の影響が回折効率に現れ難くなり、理想に近い効率で偏光分離をすることができる。また、波長の異なる光を同時に偏光分離することが可能であり、しかも各波長の回折角があまり違わず、波長の異なる偏光を分離後も方向を揃えて導くことができる。
【0080】
特に、透過させる光の極大強度近傍の波長を基準波長とし、この波長の第2の偏光の回折次数を整数に近似させることで、他の波長を含めた全体の回折効率が高くなり、光を有効に利用するできる。
【0081】
また、透過させる光の波長範囲を青色光から赤色光までに対応する範囲とし、青色光、緑色光および赤色光の中心波長に略等しい3つの波長の、第2の偏光または第1の偏光の回折次数を異なる3つの整数に近似させることで、R、G、Bの3色の光をそれぞれ偏光分離し、分離後の各光を方向を揃えて導くことができる。
【0082】
本発明の投射型画像表示装置は、光源からの光の利用効率が高く、明るい画像を表示することができる。しかも、カラー画像を表示する場合、偏光分離後のR、G、Bの3色の光の進行方向を略同一方向とすることが可能であるから、光学系が小型になって装置全体も小型化する。
【図面の簡単な説明】
【図1】 第1および第2の実施形態の投射型画像表示装置の光学系の全体構成を示す図。
【図2】 第1の実施形態の光源、偏光分離器、インテグレータの構成および1/2波長板を示す図。
【図3】 第1の実施形態の偏光分離器の回折格子を模式的に示す図。
【図4】 第1の実施形態の偏光分離器における偏光PXの波長、回折角および回折次数の関係を示す図。
【図5】 第1の実施形態の偏光分離器における偏光PXの波長と回折効率の関係を示す図。
【図6】 第1の実施形態の偏光分離器における偏光PYの波長と回折効率の関係を示す図。
【図7】 第2の実施形態の光源、偏光分離器、インテグレータの構成および1/2波長板を示す図。
【図8】 第2の実施形態の偏光分離器における偏光PXの波長、回折角および回折次数の関係を示す図。
【図9】 第2の実施形態の偏光分離器における偏光PXの波長と回折効率の関係を示す図。
【図10】 第2の実施形態の偏光分離器における偏光PYの波長、回折角および回折次数の関係を示す図。
【図11】 第2の実施形態の偏光分離器における偏光PYの波長と回折効率の関係を示す図。
【図12】 1次の回折光を取り出す回折格子の理想の状態と、作製精度の影響により格子のエッジにだれが生じた状態を示す図。
【図13】 1次の回折光を取り出す回折格子における偏光の波長と回折角の関係の例を示す図。
【図14】 1次の回折光を取り出す回折格子における偏光の波長と回折効率の関係の例を示す図。
【符号の説明】
1、2 投射型画像表示装置
11 光源
11a ランプ
11b リフレクタ
11c UV・IRカットフィルタ
12、32 偏光分離器
12a、32a 格子基板
12b、32b 液晶
12c、32c 平板
13、33 インテグレータ
13a、33a レンズアレイ
13b、33b レンズアレイ
14、34 1/2波長板
15a、15b ダイクロイックミラー
16a、16b、16c 全反射ミラー
17a、17b リレーレンズ
21R、21G、21B 透過型液晶パネル
22R、22G、22B コンデンサレンズ
23R、23G、23B コンデンサレンズ
24、25 ダイクロイックミラー
26 ダミー平板
27 投射レンズ
27a シリンダーレンズ
27b 非球面レンズ
27c 絞り
Claims (5)
- ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、
前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、
ブレーズ型回折格子の格子の高さをh、
波長λの光に対する第1の部材の屈折率をN(λ)、
波長λの第1の偏光に対する第2の部材の屈折率をNo(λ)、
波長λの第2の偏光に対する第2の部材の屈折率をNe(λ)
で表すとき、
第1の式(No(λ)−N(λ))・h/λと
第2の式(Ne(λ)−N(λ))・h/λ
の値の差の絶対値が、前記所定範囲内の光の分光強度分布の極大の波長に略等しい基準波長の光に対して、3以上かつ10以下であることを特徴とする偏光分離器。 - 基準波長の第2の偏光に対する第2の式の値は、差が0.2未満の範囲内で、整数に近似されていることを特徴とする請求項1に記載の偏光分離器。
- ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、
前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、
ブレーズ型回折格子の格子の高さをh、
波長λの光に対する第1の部材の屈折率をN(λ)、
波長λの第1の偏光に対する第2の部材の屈折率をNo(λ)、
波長λの第2の偏光に対する第2の部材の屈折率をNe(λ)
で表すとき、
第1の式(No(λ)−N(λ))・h/λと
第2の式(Ne(λ)−N(λ))・h/λ
の値の差の絶対値が、基準波長の光に対して、3以上かつ10以下であり、
前記所定範囲は青色光から赤色光までに対応する範囲であって、
前記基準波長は、緑色光の中心波長に略等しく、
青色光、緑色光および赤色光の中心波長に略等しい3つの波長の第2の偏光に対する第2の式の値は、差が0.2未満の範囲内で、互いに異なる3つの整数に近似されていることを特徴とする偏光分離器。 - ブレーズ型回折格子が形成された第1の部材と、複屈折材料より成り第1の部材の回折格子面に密着した第2の部材を備え、所定範囲の広がりをもつ波長の光を透過させて、偏光面が互いに垂直な第1の偏光と第2の偏光に分離する偏光分離器において、
前記第1の偏光の偏光面は、前記ブレーズ型回折格子の格子の配列方向に対して平行または垂直であり、前記第2の偏光の偏光面は、前記第1の偏光の偏光面に対して垂直であり、
ブレーズ型回折格子の格子の高さをh、
波長λの光に対する第1の部材の屈折率をN(λ)、
波長λの第1の偏光に対する第2の部材の屈折率をNo(λ)、
波長λの第2の偏光に対する第2の部材の屈折率をNe(λ)
で表すとき、
第1の式(No(λ)−N(λ))・h/λと
第2の式(Ne(λ)−N(λ))・h/λ
の値の差の絶対値が、基準波長の光に対して、3以上かつ10以下であり、
前記所定範囲は青色光から赤色光までに対応する範囲であって、
前記基準波長は、緑色光の中心波長に略等しく、
青色光、緑色光および赤色光の中心波長に略等しい3つの波長の第1の偏光に対する第1の式の値は、差が0.2未満の範囲内で、互いに異なる3つの整数に近似されていることを特徴とする偏光分離器。 - 光源からの光を偏光分離して分離後の偏光を画像の投射に用いる投射型画像表示装置であって、
光源からの光の偏光分離のために、請求項1ないし請求項4のいずれか1項に記載の偏光分離器を備えることを特徴とする投射型画像表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31044498A JP3744233B2 (ja) | 1998-10-30 | 1998-10-30 | 偏光分離器および投射型画像表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31044498A JP3744233B2 (ja) | 1998-10-30 | 1998-10-30 | 偏光分離器および投射型画像表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000137194A JP2000137194A (ja) | 2000-05-16 |
JP3744233B2 true JP3744233B2 (ja) | 2006-02-08 |
Family
ID=18005330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31044498A Expired - Fee Related JP3744233B2 (ja) | 1998-10-30 | 1998-10-30 | 偏光分離器および投射型画像表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3744233B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4374774B2 (ja) | 2000-12-06 | 2009-12-02 | コニカミノルタホールディングス株式会社 | 偏光変換光学系および偏光変換素子 |
CN100520457C (zh) | 2003-05-07 | 2009-07-29 | 日立化成工业株式会社 | 全息照相光学元件及使用它的面光源装置 |
JP2009294417A (ja) * | 2008-06-05 | 2009-12-17 | Nikon Corp | 偏光分離素子、偏光変換素子及び画像表示装置 |
TW201132932A (en) * | 2010-03-26 | 2011-10-01 | Ind Tech Res Inst | Adjustable range finder and the method thereof |
-
1998
- 1998-10-30 JP JP31044498A patent/JP3744233B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000137194A (ja) | 2000-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6535256B1 (en) | Color liquid crystal display device | |
US5801795A (en) | Single plate color liquid crystal display apparatus | |
JPH0756138A (ja) | カラー表示装置 | |
US6773111B2 (en) | Projection type image display apparatus | |
KR100231979B1 (ko) | 표시장치, 액정표시패널 및 이를 사용한 투사형 표시장치 | |
TWI224208B (en) | Illumination optical system and projector | |
JP2000180792A (ja) | 照明光学系および投射型画像表示装置 | |
EP1191796B1 (en) | Optical apparatus and projection type display apparatus | |
US6942345B2 (en) | Projection type image display apparatus and image display system | |
JP2001124987A (ja) | 投射レンズ | |
JP3744233B2 (ja) | 偏光分離器および投射型画像表示装置 | |
JP2001124988A (ja) | 投射レンズ | |
US7222965B2 (en) | Optical unit and a projection image display apparatus using the same | |
CN104570561B (zh) | 投影机 | |
US6816206B2 (en) | Polarizing illumination optical system and projection-type display device which uses same | |
JP3647206B2 (ja) | 光学変調装置及びそれを用いた投影装置 | |
JP2002006298A (ja) | 投射型カラー画像表示装置 | |
JP2005070632A (ja) | 空間光変調装置及びプロジェクタ | |
JP2001324762A (ja) | 単板式液晶プロジェクタの照明光学系 | |
JP2003066329A (ja) | 投射レンズ、及び映像表示装置 | |
US8128233B2 (en) | Illuminating optical system for projector including condenser lens and field lens | |
US6565212B2 (en) | Projection display apparatus, and information processing system and image recording/reproducing system using the same | |
JP3200335B2 (ja) | 光学変調装置及びそれを用いたカラー画像表示装置 | |
JP3236194B2 (ja) | 光学変調装置及びそれを用いたカラー画像表示装置 | |
KR100763396B1 (ko) | 조명 광학계 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111202 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |