[go: up one dir, main page]

JP3744140B2 - Hollow fiber membrane module and method of use thereof, separation unit, water treatment device - Google Patents

Hollow fiber membrane module and method of use thereof, separation unit, water treatment device Download PDF

Info

Publication number
JP3744140B2
JP3744140B2 JP23073697A JP23073697A JP3744140B2 JP 3744140 B2 JP3744140 B2 JP 3744140B2 JP 23073697 A JP23073697 A JP 23073697A JP 23073697 A JP23073697 A JP 23073697A JP 3744140 B2 JP3744140 B2 JP 3744140B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane module
module
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23073697A
Other languages
Japanese (ja)
Other versions
JPH10118466A (en
Inventor
利次 尾上
和彦 西村
弘之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP23073697A priority Critical patent/JP3744140B2/en
Publication of JPH10118466A publication Critical patent/JPH10118466A/en
Application granted granted Critical
Publication of JP3744140B2 publication Critical patent/JP3744140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
排水処理等に利用する中空糸膜モジュールおよびその使用方法、分離ユニット、水処理装置に関する。
【0002】
【従来の技術】
膜による液体分離技術が注目され、様々な用途に向けた分離膜が開発されており、そのひとつに中空糸膜が挙げられる。中空糸膜は膜モジュール化された際に単位体積当たりの膜面積が大きく取れる点で優位であり、様々な目的に応じた中空糸膜モジュールの開発が行われている。
【0003】
中空糸膜モジュールに期待される用途の一つに排水処理が挙げられる。排水処理では膜分離に関わらす、大量処理が可能で、流入排水の負荷変動に強く、長期にわたり安定して運転できる技術が要求される。しかし膜分離を用いると排水処理のように高濃度の液体の分離の際には膜面の汚れが激しく膜の分離性能が低下しやすい。この分野に使用される中空糸膜は分離の際に、膜面への汚物の堆積が激しいことから、中空糸膜の外表面から内表面へ向かって分離を行う外圧型中空糸膜が好適である。外圧型中空糸膜では内圧型のように中空糸膜内部が汚れにより閉塞されることがなく、気泡などの水流で中空糸膜を揺動させたり、膜の内部から液体を圧入する逆洗等により堆積した汚れを容易に剥離できる。この外圧式中空糸膜を複数用いてケース内に膜束を収容した中空糸膜モジュール、あるいは密閉可能なタンクに複数の中空糸膜モジュール懸垂して使用するものがある。双方ともに密閉容器内に原水を加圧供給することで分離に必要な膜間差圧を得る。しかし原水が高濃度あるいは時として高粘度になる排水処理の場合では、容器内に液体を供給することが困難であること、膜面から剥離された汚れを容器外に排出することが困難であることが挙げられる。そこで最近になり特開平5-23549号公報のように膜モジュールを内部に気体噴出或いは撹拌等による水流を有する水槽内に浸漬して、中空糸膜内部を吸引することにより透過水を得る、槽浸漬タイプの中空糸膜モジュールがある。このモジュールを排水処理槽に浸漬して使用すれば、槽内の水流により膜外表面の堆積物を剥離除去しながら透過側を吸引することにより分離を行うことができる。
【0004】
【発明が解決しようとする課題】
しかし、円形断面の接着固定部を有する場合、中空糸膜の両端を接着固定したものには接着固定部中央部付近に膜束へは水流が行き渡りにくい。一方片端のみを接着固定した特開平5-23549号公報のようなモジュールを使用しても下方から来る水流は下側の膜束根元の接着固定部中央付近の中空糸膜には下方からの水流が行き渡りにくい。このような形状であると水流の行き渡らない部分の膜面に汚物が堆積して中空糸膜間が閉塞し、その結果、有効膜面積が減少し分離能力が低下する。このような構造は高い分離機能を有する中空糸膜には不向きである。
【0005】
また一方で原水を容器に加圧供給する場合には実開昭61-106307号公報、特開昭61-291007号公報や特公平1-30524号公報のようにモジュールの下部に当たる部分に貫通孔を有することで内側の膜束へも原水を進入させたり、逆洗により除去した汚れを内側からも排出する形状がある。しかし水槽内に浸漬して中空糸膜の内部を吸引して使用する方法では、原水を容器に加圧供給する場合とは異なり、接着固定部に設けた小さな貫通孔には、槽内の気泡あるいは撹拌による水流は接着固定部中央には行き渡らない。さらに片端のみの貫通孔では逆端付近で水流がよどんでしまい剥離除去の効果を疎外する。加えて中央貫通孔から内側の中空糸膜束を多孔質の内筒あるいは保護筒で覆っても、水流による膜面堆積物剥離除去の効果を疎外し、膜束の外側を外筒で覆った場合も同じである。
【0006】
中空糸膜束の表面には水流が当たっても、接着固定部の外側から内側、或いは内側から外側に厚みのあると、中空糸膜束の内側の中空糸膜には構造的に水流が行き渡りにくくなり、接着固定部付近では汚れが堆積しやすくなる。
【0007】
本用途に使用される中空糸膜モジュールには接着固定部内部へも水流が行き渡りやすく分離による汚れが堆積しにくい新たな構造が必要であった。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、基本的に下記の構成を有する。
【0009】
(1)複数の中空糸膜が端部で固定された固定端部を有し、固定端部で中空糸膜内部を開口して集水する構造であるとともに、外筒で覆われることなく構成された中空糸膜モジュールであって、該中空糸膜モジュールは、少なくとも一端の固定端部に貫通部を有し、該中空糸膜モジュールが、原液が実質的に大気圧力に開放された槽内に浸漬設置して用いられるに際し、前記少なくとも一端の固定端部に有する貫通部を下方に配置して用いられることを特徴とする中空糸膜モジュール。
(2)固定端部に隣接して、中空糸膜から生じた透過液を集めるための手段をさらに具備している、上記中空糸膜モジュール。
(3)中空糸膜を支持する固定端部が2つである上記中空糸膜モジュール。
(4)中空糸膜の両端が一つの固定端部に支持されているものである上記中空糸膜モジュール。
(5)上記中空糸膜モジュールを、原液が実質的に大気圧力に開放された槽内に設置された気体噴出手段の上方に浸漬設置し、前記中空糸膜の外側に原液を流通させ、中空糸膜の内側を原液の圧力より低い圧力として、原液から中空糸膜を通じて透過液を得る中空糸膜モジュールの使用方法において、前記気体噴出手段を用いて原液中に気体を噴出させる操作を有する中空糸膜モジュールの使用方法。
(6)上記中空糸膜モジュール複数配置してる分離ユニット。
(7)前記複数の中空糸膜モジュール同士が、各中空糸膜モジュールに備えられた前記透過液を集めるための手段を介して連結されている上記分離ユニット。
(8)(1)〜(4)のいずれかに記載の中空糸膜モジュールが、原液が実質的に大気圧力に開放された槽内に浸漬設置されてなる水処理装置であって、前記中空糸膜モジュールが該槽内に設置された気体噴出手段の上方に設置されている水処理装置。
(9)(6)または(7)に記載の分離ユニットが、原液が実質的に大気圧力に開放された槽内に浸漬設置されてなる水処理装置であって、前記分離ユニットが該槽内に設置された気体噴出手段の上方に設置されている水処理装置。
【0013】
【発明の実施の形態】
以下本発明の実施の形態について説明する。
【0014】
本発明の中空糸膜モジュールにおける貫通部とは、中空糸膜の固定部の表面からその反対面まで貫かれた構造であり、その方向は、モジュールの長軸方向あるいは中空糸膜が直線状に走行している(即ち、U字型配置の中空糸膜の湾曲部分ではない)方向にほぼ平行である。これは処理液がよどみなく流れることを図ったものであるので、中空糸内部や集水部とは、隔てられていて、つながっていない構造である。
【0015】
以下、図面に基づいて本発明の詳細を説明するが、本発明はこれら図面により特に限定されるものではない。
【0016】
図1は本発明による中空糸膜モジュールの一例である。中空糸膜1は両端で接着固定された後、接着固定端部で中空糸膜内部を開口して透過水が取り出せるようになっている。両端の接着固定部2には集水キャップ4が装着され透過水を集める集水部を形成する。モジュール端部の集水部には貫通部3が設けてある。貫通部3は、図2のように中空糸膜1の両端を曲げ片端で接着固定した中空糸膜モジュールに設けられていても良い。貫通部3は複数を均等に配置するのも良いが、好ましくは単数が中央に設けられていることである。貫通部内部を水流が通過し得る形状であれば多角形断面であっても良く、特に限定するものではない。製作上簡単な構造である円形で有ればより好ましい。
【0017】
図1では、他端にも貫通部を有する固定端部が設けられていることにより、固定端部の隣接する膜間の投影領域を横切らずに膜束領域から出る水流路を有することができる。即ち、水流が中空糸膜にほぼ平行になり、モジュールを貫通するように流れるので内部で水流によどみがなく好ましい。かかる機構は、図2や図3のようなU字型モジュール構成でも実現できるが、最も好ましくは図1のように両方の接着固定部に貫通部が設けられていることで、進入した水流がより通過しやすくなる。なお、図3のようにU字型モジュール構成にして上部に連結手段を有する場合、該連結手段に貫通部がないときは中空糸膜屈曲部は、液内にあり連結手段は液外にあることが好ましく、双方が液内にある場合は双方の間にはモジュール全長に対して5〜30%程度の長さの距離を有することが好ましい。貫通部3は所定の接着固定部断面積に対して、大きいほど進入した水流を保持でき、大量の水を循環させることができ、かつ接着固定部2が薄く小さくなることにより構造的にも汚泥が堆積しにくくなる。よって接着固定部付近に水が行き渡り、堆積物除去の面で効果が現れる。ただ大きすぎると接着固定部が小さくなり装填する中空糸膜の本数が減少し、モジュール当たりの処理能力が低くなる。これらの点を考慮すると貫通部の大きさはモジュール端部断面における貫通部の開口部の面積占有率が5〜93%が好ましく、より好ましくは10〜72%であり、さらに好ましくは30〜68%である。ここで、端部断面とは、モジュールの長軸方向あるいは中空糸膜が平行に走行している方向に直交する平面で切った時の断面を指す。もちろん、該貫通部の面積に中空糸膜内の孔の断面積が含まれるものではない。
【0018】
貫通部3の製作方法は円形容器内に内部に貫通部を有し得るように中空糸膜を配列して接着固定後、機械加工により設けても良いし、矩形の接着固定部を曲げて環状に変形させて製作しても良い。また、円弧の一部をなす形状の容器で接着固定されたものを結合することで環状の接着固定部を形成するのも良い。単に矩形の接着固定部でつないで囲むようにし、内部に多角形の貫通部を持つようにするのも良い。好ましくは内部に貫通部を有する容器内で接着固定することで、最も好ましくは中心部分に貫通部を有する環状容器内で接着固定することである。
【0019】
ここでいう貫通部は接着固定部内側へも水流が進入しうるもので、貫通部内側を内筒などで覆うことは膜面への水流の接触を低減させるのであまり好ましくない。むしろモジュールの内外面の中空糸膜は覆われることのない方が好ましい。膜束の損傷等を考慮し覆う必要が有ればできるだけ水流による剥離除去の効果を損なわないものがよい。
【0020】
中空糸膜の本数は多本数を貫通部を有する接着固定部に高い充填率で装填すれば、モジュール当たりの処理能力が上がり好ましいが、接着固定部に均一になるように配し、汚泥の堆積を防止しても良い。水流が行き渡りやすいように貫通部を囲むように筒状に中空糸膜が配列されていればより好ましい。配列方法は一本ずつ均等に配することも好ましいが、少数の膜束を製作し、膜束単位で均一に配するのも良い。より好ましくは、予め平面的に規則正しく配列させた中空糸膜を数層重ねた膜束を複数用いて製作することで、この膜束を使用すれば膜束内でも水流が循環し、膜束は薄い接着固定部に均一にかつ高い充填率で配することが可能で処理能力の高いモジュールを製作できる。図4や図5のように片端で接着固定した場合も、平面的に規則正しく配列させた中空糸膜を数層重ねた膜束7を使用することで製作できる。こうした場合には、支持パイプ6により、膜束を容易に支持することも好ましい。図6のように平面的に規則正しく配列させた中空糸膜を数層重ねた膜束7を交差させるように支持することが好ましい。モジュール化する際、中空糸の両端を固定すると水流による膜の揺動が小さくなるが、膜の乱れが防止でき良い。一方、片端でU字状に曲げる形状では大きな揺動を得ることができて良い。しかし、曲げ部分の中空糸膜間を水流が通過し得るように配すること、大きな揺れにより破損を生じることに注意して使用する必要がある。使用環境に応じてモジュール形状に変化を持たせるのも良い。
【0021】
両端を接着固定するものには、両接着固定部2を連結するための支持パイプ6を有することが好ましい。これによりモジュールの構造が保持され、中空糸膜1の折れ曲がりを防止できる。また片端を接着固定したものも、膜の倒れや乱れを防ぐ上でも支持パイプを有することが好ましい。支持パイプ6は接着固定部2外側に接着することも良い。接着固定部2に埋め込むようにすると、モジュール構造あるいは膜束の支持強度が上がりより好ましい。埋め込む際には膜面積の減少を最小限に抑えるためできるだけ細いものを選ぶ方がよい。本数については特に限定はしないが、接着固定部に均等に配されることが好ましい。また支持パイプを中空糸開口端で開口させれば、透過水を逆端に移送できるためより好ましい。透過水移送に支持パイプを用いる場合は透過水の圧損ができるだけ小さいように内径の太いものを用いるのも良い。
【0022】
図7のように、中空糸膜束の端部で中空糸膜相互間を接着固定し、接着固定端部で切断して中空糸膜内部を開口して、そこに図8に示したような集水キャップ4を接続することにより、中空糸膜内部から出る膜透過水を集める集水部を形成して使用することができる。集水キャップの形状は接着固定部の空隙を保持し得るような形状であれば特に限定するものではない。集水キャップの接続方法については、接着により接続しても良いし、Oリング、ガスケット等を介し、ねじ、フランジ等により接続されるのも良い。脱着が容易で、シール性がよいものが好ましいが特に限定するところではない。集水キャップには1個以上の連結手段5が配備されていることが好ましい。これにより複数の中空糸膜モジュール8のユニット化を容易にする。連結手段はユニオン、フランジなど連結を容易にするものが良いが、単にネジがついているものであっても構わず特に限定するところではない。また、支持パイプにより透過水を逆端に移送する場合は集水キャップに連結手段を設けなくても良い。その際には支持パイプに連結手段が装着されている必要がある。モジュールの逆端で接続可能なものであれば特に限定するところではない。
【0023】
図7、図8に示す集水キャップ4は中空糸膜端部を接着固定する際に同時に接続できるもの、或いは接着固定部と集水キャップが一体となったものであればより好ましい。
【0024】
本発明の中空糸膜モジュール8は各端部に貫通部3を有し、その貫通部部分が大きいという構造の特性上、モジュール容積当たりの膜面積は同容積の膜モジュールと比較しても小さくなるため、膜モジュールの全長を長くすること或いは、複数の中空糸膜モジュール8を連結した分離ユニット9を形成して、処理量増加に対応することが好ましい。膜モジュールの全長を長くする場合は、中空糸膜1の長さにより中空糸膜内部を透過する液体の圧損を考慮する必要がある。好ましい中空糸膜の長さは膜両端を固定する場合は2m以内、U字状に使用する場合は4m以内である。より好ましくはそれぞれ1.3m、と2.6m以内、最も好ましくはそれぞれ0.8mと1.6m以内である。
【0025】
次に連結手段5を介して複数の中空糸膜モジュール8を複数結合した分離ユニット9の例とそれぞれに装置化された際のフローを図10、図12、及び図14に示す。図9及び図10は両側の接着固定部に貫通部を有する場合の一例で、両端の集水キャップの連結手段を所定数の中空糸膜モジュール8を接続可能な導水塔10に接続してある。この場合、導水塔10の連結手段間の長さを変動可能にしておくことが好ましいが、構造的に強度を満たし、集水能力のあるものであれば特に限定するものではない。図11及び図12は下端に位置する集水キャップから上端に透過水を移送した際の一例で、複数のモジュールを装填したユニット板11に集水ヘッド12を設けることで、下方の開口端からも支持パイプを通して上方に移液でき好ましい。このようにするとモジュールの交換が水槽上方から行え作業性がよい。このユニットの場合はU字状に曲げられた中空糸膜間を通過した水流がよどまないように、ユニット盤を液面よりも高く配するのも良い。中空糸膜の両端から集水すれば片端に比べ、膜内を透過水が通る際の流動抵抗が軽減され、全長の長い中空糸膜を使用する際には好ましい。図13〜図15は集水キャップの連結手段を介してユニット化した一例である。また、これらの分離ユニットを装置化した際の例を挙げている水槽としては、実質的に大気圧力に開放された水槽13のようなものであれば大きな水流を付与できる。例として各ユニットを単数用いた場合を示したが、複数を並列につなぐのも良い。また導水等などを直列につなぐとユニットの専有敷地面積を小さくできより好ましい。
【0026】
使用の際に生物処理槽に浸漬して固液分離を行い、透過水を得ることも良いし、凝集処理槽、沈殿槽での固液分離に用いても良い。好気性生物処理槽のように水槽内に水流のあるもの場合は、そのまま浸漬して使用しても良い。槽内に水流のない場合は、新たに水槽内に撹拌翼や気体噴出手段14など配備し、気体供給手段15より空気に代表されるような各種気体を供給し、分離ユニットの膜面に付着した汚れを剥離可能な水流を起こすことが好ましい。より好ましくは、分離ユニットの各中空糸膜モジュールの下に気体噴出手段を設けることである。これにより膜面に効果的に気体噴出による水流を当て汚れを剥離することができ、既存の水槽内の水流により汚れの剥離除去が困難である場合も、この気体噴出手段によりさらに水流を増すことで対応可能である。さらに好ましくは槽内に水流に加えて各中空糸膜モジュールの貫通部内側にも気体噴出手段を付設することで汚泥の剥離に効果がある。内側から気体を噴出させるとモジュール全長全域で気泡がモジュール内に捕捉され、剥離の効果が促進される。気体の噴出量を増やせば膜間から外側へもあふれるように気泡が抜け出て更に効果を増す。最も好ましくは貫通部の内側に加えて膜モジュールの外周にも気体噴出手段を有することである。気体噴出手段はモジュールと別途に設けられていても効果は同じであるが、一体化させるとより的確に気泡を接触させることができる。取付方法については特に限定するものではない。
【0027】
分離に使用する際の透過側の吸引手段16はポンプが一般的であるが、水槽内の水位と透過水取り出し口の水位差により分離し弁により取得流量を調節することもできる。透過側を負圧にできればその方法は特に限定するものではない。ポンプと水位差を併用して使用することは運転が安定する上動力コストも低くなり好ましい。
【0028】
本発明の中空糸膜モジュールに使用する中空糸膜は、限外濾過膜、精密濾過膜、が適当であり、運転動力の低い逆浸透膜でも良い。外圧型多孔質中空糸膜を使用してあれば、それ以上の形式は特に問わない。また、膜構造においても対称膜、非対称膜等を限定するものではない。
【0029】
中空糸膜素材としては、中空糸が形成されるものであれば特に限定はしないが、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、ポリテトラフルオロエチレン等を用いることが可能である。この中で好ましい素材としては、アクリロニトリルを少なくとも一成分とする重合体またはオレフィン系重合体が挙げられ、特に好ましくは、アクリロニトリルを50モル%以上、更に好ましくは60モル%以上と該アクリロニトリルに対して共重合性を有するビニル化合物一種または二種以上からなるアクリロニトリル共重合体である。また、これらアクリロニトリル共重合体二種以上、さらに重合体との混合物でも良い。上記ビニル化合物としては、アクリロニトリルに対して共重合性を有する公知の化合物であれば良く、特に限定されないが、アクリル酸、イタコン酸、アクリル酸メチル、メタクリル酸メチル、酢酸ビニル、アクリルスルホン酸ソーダ、p−スチレンスルホン酸ソーダ等が挙げられる。また、次に好ましい中空糸膜素材としては、エチレン、プロピレン、4メチルペンテン等の一種またはに種以上のオレフィン系共重合体からなるものが適当である。
【0030】
また、モジュールの構造部材は使用用途が排水である場合は、その成分に応じて適宜変えることがよい。原水の成分に侵される材料でなければ、特に限定はしないが、塩ビ等のように強く、安価であることが好ましい。また、分離ユニット構成部材はステンレスのように永年的に使える素材により、交換の予想される中空糸膜モジュール部分については安価なものを選ぶのもより好ましい。中空糸膜モジュール部分についても永年的の使用可能な部分と、交換の予想される部分において、使用素材を変えるのもさらに好ましい。
【0031】
【実施例】
実施例1
孔径0.01μmのポリアクリロニトリル中空糸膜を750本を平面上に規則正しく配列した中空糸膜束を4束使用し、モジュール中空糸膜有効長を全束800mm、有効膜面積5m2、全長920mm、支持パイプを有し、かつ両端に環状の接着固定部を持ち、貫通部占有率約56%中空糸膜モジュールを3個からなる導水塔に接続した分離ユニットを製作し、活性汚泥処理の曝気槽(排水成分:し尿、MLSS約10000ppm)中に浸漬して透過側を水位差30cm(3kPa)で吸引して透過水を得た。連続的に分離を実施した。約3ヶ月した後、取得流量が200→150cc/minとなったところで分離ユニットを取り出したが、接着固定部付近に汚泥は堆積しておらず、膜の破損も見られなかった。
【0032】
実施例2
実施例1と同じポリアクリロニトリル中空糸膜を750本を平面上に規則正しく配列した中空糸膜束を2束使用し、U字状に曲げて、モジュール中空糸膜有効長を各束それぞれ1500、1600mmとし、有効膜面積4.8m2、全長920mm、片端のみを環状容器内で接着固定し、開口端に集水キャップを装着し、貫通部占有率約56%、U字曲げ部分を支持パイプにより支持すると共に支持パイプにより上方に移液可能でモジュール下部の貫通部内部と外部に気体噴出手段を有する中空糸膜モジュールを3個を集水ヘッドに装填してなる分離ユニットを製作し、凝集処理槽(鉄系凝集剤使用)に浸漬し、気体噴出手段に空気を50L/minの割合で供給し、透過側をポンプで7kPaで吸引して透過水を得た。連続的に分離を実施した。約3ヶ月した後、取得水量が380から300cc/minに変化したところで分離ユニットの集水ヘッドを開き、中空糸膜モジュールを一つずつ取り出したが、各モジュール共に接着固定部付近に汚泥は堆積しておらず、膜の破損も見られなかった。
【0033】
比較例1
接着固定部に貫通部を有さない実施例2と同じ膜面積のモジュールを集水ヘッドに装填してなる分離膜ユニットを用いて実施例2と同じ条件で分離を実施した。3週間で取得水量が低下したため(100cc/minへ低下)各モジュールを取り出すと、モジュールの中央部分の膜束に大量の汚れが堆積していた。
【0034】
比較例2
接着固定部に貫通部を有さないかわりに、そこの部分に中空糸膜を充填しモジュール当たりの膜面積を8.6m2とした以外は実施例2と同形状である中空糸膜モジュールを用いて、実施例2と同条件で分離を実施した。約3ヶ月した後、取得水量が600から310cc/min低下したところで分離ユニットの集水ヘッドを開き、中空糸膜モジュールを一つずつ取り出した。各モジュール共に接着固定部内側の中空糸膜間に大量の汚泥が堆積していた。
【0035】
【発明の効果】
本発明により、排水処理に代表される高濃度の原水の固液分離を行う中空糸膜モジュールにおいて、中空糸膜モジュールの接着固定部に貫通部を有することで膜モジュール内部にも水流を与え、分離に伴い膜面に堆積する汚れを剥離除去でき、有効膜面性を保持し、モジュール内の中空糸膜を効率的に使用できる。またこの中空糸膜モジュールを連結可能とすることで、大量処理化に対応でき、長期にわたり安定した運転を可能にする。
【図面の簡単な説明】
【図1】 本発明の両端に接着固定部を持ち両側に貫通部を有する中空糸膜モジュールの一例。
【図2】 本発明の片側に接着固定部を持ち貫通部を有する中空糸膜モジュールの一例。
【図3】 本発明の片側に接着固定部を持ち貫通部を有する中空糸膜モジュールで上部に連結手段を有する一例。
【図4】 本発明の中空糸膜を平面上に規則正しく配列させた中空糸膜モジュールの一例。
【図5】 本発明の中空糸膜を平面上に規則正しく配列させた中空糸膜モジュールで上部に連結手段を有する一例。
【図6】 本発明の中空糸膜を平面上に規則正しく配列させた中空糸膜モジュールの膜束を支持パイプ付近でU字状に曲げた一例の拡大図。
【図7】 本発明の中空糸膜モジュールに用いる集水キャップで集水部を封止したの一例。
【図8】 本発明の中空糸膜モジュールに用いる集水キャップの一例。
【図9】 本発明の中空糸膜モジュールを複数連結した分離ユニットの一例。
【図10】 本発明の中空糸膜モジュールを複数連結した分離ユニットの運転フローの一例。
【図11】 本発明の中空糸膜モジュールを複数連結した分離ユニットの一例。
【図12】 本発明の中空糸膜モジュールを複数連結した分離ユニットの運転フローの一例。
【図13】 本発明の中空糸膜モジュールを複数連結した分離ユニットの一例。
【図14】 本発明の中空糸膜モジュールを複数連結した分離ユニットの運転フローの一例。
【図15】 本発明の中空糸膜モジュールを複数連結した分離ユニット連結状態を示した一例。
【符号の説明】
1:中空糸膜
2:接着固定部
3:貫通部
4:集水キャップ
5:連結手段
6:支持パイプ
7:平面的に規則正しく配列させた中空糸膜を数層重ねた中空糸膜束
8:中空糸膜モジュール
9:分離ユニット
10:導水塔
11:ユニット板
12:集水ヘッド
13:水槽
14:気体噴出手段
15:気体供給手段
16:吸引手段
[0001]
BACKGROUND OF THE INVENTION
  Hollow fiber membrane module used for wastewater treatment etc.And its method of use, separation unit, water treatment deviceAbout.
[0002]
[Prior art]
Liquid separation technology using membranes has attracted attention, and separation membranes for various applications have been developed, one of which is a hollow fiber membrane. Hollow fiber membranes are advantageous in that a large membrane area per unit volume can be obtained when they are made into membrane modules, and hollow fiber membrane modules are being developed for various purposes.
[0003]
One of the uses expected for the hollow fiber membrane module is wastewater treatment. Wastewater treatment requires a technology that can perform large-scale treatment related to membrane separation, is resistant to fluctuations in the load of influent wastewater, and can operate stably over a long period of time. However, when membrane separation is used, when separating a high-concentration liquid as in wastewater treatment, the membrane surface is heavily soiled and the membrane separation performance tends to deteriorate. Since hollow fiber membranes used in this field are heavily deposited on the membrane surface during separation, an external pressure type hollow fiber membrane that performs separation from the outer surface to the inner surface of the hollow fiber membrane is suitable. is there. In the external pressure type hollow fiber membrane, the inside of the hollow fiber membrane is not clogged by dirt like the internal pressure type, and the hollow fiber membrane is swung by a water flow such as bubbles, or backwashing in which liquid is injected from the inside of the membrane. The dirt accumulated by can be easily peeled off. There are a hollow fiber membrane module in which a plurality of external pressure type hollow fiber membranes are used and a membrane bundle is accommodated in a case, or a plurality of hollow fiber membrane modules that are suspended in a sealable tank. In both cases, the transmembrane pressure difference required for the separation is obtained by pressurizing and supplying the raw water into the sealed container. However, in the case of wastewater treatment in which the raw water has a high concentration or sometimes high viscosity, it is difficult to supply liquid into the container, and it is difficult to discharge the dirt peeled off from the membrane surface to the outside of the container. Can be mentioned. Therefore, recently, as disclosed in JP-A-5-23549, the membrane module is immersed in a water tank having a water flow by gas ejection or stirring, and the permeate is obtained by sucking the inside of the hollow fiber membrane. There are immersion type hollow fiber membrane modules. If this module is used by being immersed in a wastewater treatment tank, separation can be performed by sucking the permeate side while peeling and removing deposits on the outer surface of the membrane by the water flow in the tank.
[0004]
[Problems to be solved by the invention]
However, in the case of having an adhesive fixing part having a circular cross section, a water flow hardly spreads to the membrane bundle in the vicinity of the central part of the adhesive fixing part when the both ends of the hollow fiber membrane are adhesively fixed. On the other hand, even when using a module such as JP-A-5-23549 in which only one end is bonded and fixed, the water flow coming from below is still below the hollow fiber membrane near the center of the adhesive fixing portion at the base of the lower membrane bundle. Is hard to get around. In such a shape, filth deposits on the membrane surface where the water flow does not spread and the space between the hollow fiber membranes is blocked. As a result, the effective membrane area is reduced and the separation ability is lowered. Such a structure is not suitable for a hollow fiber membrane having a high separation function.
[0005]
On the other hand, when the raw water is pressurized and supplied to the container, a through hole is formed in the portion corresponding to the lower part of the module as in Japanese Utility Model Laid-Open No. 61-106307, Japanese Patent Laid-Open No. 61-291007, and Japanese Patent Publication No. 1-30524. It has a shape that allows raw water to enter the inner membrane bundle and also discharges dirt removed by backwashing from the inner side. However, in the method of immersing in the water tank and sucking the inside of the hollow fiber membrane, unlike the case of supplying raw water under pressure to the container, the small through-hole provided in the adhesive fixing part has air bubbles in the tank. Or the water flow by stirring does not reach the center of the adhesive fixing part. Further, in the through hole only at one end, the water flow is stagnated near the opposite end, and the effect of peeling and removing is excluded. In addition, even if the hollow fiber membrane bundle on the inner side from the central through hole is covered with a porous inner cylinder or a protective cylinder, the effect of peeling and removing membrane surface deposits by water flow is excluded, and the outer side of the membrane bundle is covered with an outer cylinder The case is the same.
[0006]
Even if a water flow hits the surface of the hollow fiber membrane bundle, if there is a thickness from the outside to the inside of the adhesive fixing part or from the inside to the outside, the water flow is structurally distributed to the hollow fiber membrane inside the hollow fiber membrane bundle. It becomes difficult to deposit dirt in the vicinity of the adhesive fixing portion.
[0007]
The hollow fiber membrane module used in this application required a new structure in which the water flow easily spreads inside the adhesive fixing part, and the dirt due to separation is difficult to accumulate.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention basically has the following configuration.
[0009]
  (1)A plurality of hollow fiber membranes having a fixed end fixed at the end;TheStructure to collect water by opening the inside of the hollow fiber membrane at the fixed endAnd is configured without being covered with an outer cylinder.Hollow fiber membrane module, the hollow fiber membrane moduleIsAt least one endPenetrates the fixed end ofHave tsubeWhen the hollow fiber membrane module is used by being immersed in a tank in which the stock solution is substantially open to atmospheric pressure, the hollow fiber membrane module is used with a through-hole provided at the fixed end of the at least one end disposed below. With featuresHollow fiber membrane module.
  (2)A means for collecting the permeate generated from the hollow fiber membrane is further provided adjacent to the fixed end.,the aboveHollow fiber membrane module.
  (3)There are two fixed ends that support the hollow fiber membrane.the aboveHollow fiber membrane module.
  (4)Both ends of the hollow fiber membrane are supported by one fixed endthe aboveHollow fiber membrane module.
  (5) AboveHollow fiber membrane moduleThe stock solution is immersed and installed above the gas ejection means installed in a tank that is substantially open to atmospheric pressure,Hollow fiberMembraneThe permeate is obtained from the stock solution through the hollow fiber membrane, with the stock solution flowing outside and the inside of the hollow fiber membrane set to a pressure lower than the pressure of the stock solution.InsideHow to use the empty fiber membrane moduleIn the above, the gas jetting means is used to jet gas into the stock solution.How to use the hollow fiber membrane module.
  (6) AboveEmpty fiber membrane moduleTheMultiplePlaceNaMinuteRelease unit.
  (7) The aboveMultiple hollow fiber membrane modules are connected to each hollow fiber membrane module.ProvidedPermeateFor collectingConnected through meansAboveSeparation unit.
  (8) The hollow fiber membrane module according to any one of (1) to (4) is a water treatment apparatus in which a stock solution is immersed and installed in a tank opened to atmospheric pressure, A water treatment apparatus in which a yarn membrane module is installed above a gas ejection means installed in the tank.
  (9) The separation unit according to (6) or (7) is a water treatment apparatus in which a stock solution is immersed in a tank that is substantially open to atmospheric pressure, and the separation unit is disposed in the tank. The water treatment apparatus installed above the gas ejection means installed in the.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
The penetrating portion in the hollow fiber membrane module of the present invention is a structure that penetrates from the surface of the fixed portion of the hollow fiber membrane to the opposite surface, and the direction is the long axis direction of the module or the hollow fiber membrane is linear. It is substantially parallel to the direction of travel (that is, not the curved portion of the U-shaped hollow fiber membrane). Since this is intended to allow the treatment liquid to flow without stagnation, it has a structure that is separated from and not connected to the inside of the hollow fiber and the water collecting part.
[0015]
Hereinafter, the details of the present invention will be described with reference to the drawings, but the present invention is not particularly limited by these drawings.
[0016]
FIG. 1 is an example of a hollow fiber membrane module according to the present invention. After the hollow fiber membrane 1 is bonded and fixed at both ends, the inside of the hollow fiber membrane is opened at the bonded fixed end portion so that permeated water can be taken out. Water collecting caps 4 are attached to the adhesive fixing portions 2 at both ends to form water collecting portions for collecting permeated water. A penetration part 3 is provided in the water collecting part at the end of the module. The penetrating part 3 may be provided in a hollow fiber membrane module in which both ends of the hollow fiber membrane 1 are bonded and fixed at one end of a bent piece as shown in FIG. A plurality of penetrating portions 3 may be arranged uniformly, but preferably a single unit is provided at the center. The shape may be a polygonal cross section as long as the water flow can pass through the inside of the through portion, and is not particularly limited. It is more preferable if it is a circle which is a simple structure in terms of manufacture.
[0017]
In FIG. 1, the other end is provided with a fixed end portion having a penetrating portion, whereby a water flow path that exits from the membrane bundle region without traversing the projection region between adjacent membranes of the fixed end portion can be provided. . That is, the water flow is almost parallel to the hollow fiber membrane and flows so as to penetrate the module. Such a mechanism can be realized even with a U-shaped module configuration as shown in FIGS. 2 and 3, but most preferably, the penetration flow is provided in both adhesive fixing portions as shown in FIG. It becomes easier to pass. In addition, when it has a U-shaped module structure as shown in FIG. 3 and has a connecting means at the top, when the connecting means has no through portion, the hollow fiber membrane bent portion is in the liquid and the connecting means is outside the liquid. Preferably, when both are in the liquid, it is preferable that the distance between the two is about 5 to 30% of the total length of the module. The penetrating part 3 can hold the water flow that has entered the larger the cross-sectional area of the predetermined adhesive fixing part, can circulate a large amount of water, and the sludge is structurally reduced by making the adhesive fixing part 2 thin and thin. Becomes difficult to deposit. Therefore, water spreads in the vicinity of the adhesive fixing portion, and an effect appears in terms of deposit removal. However, if it is too large, the adhesive fixing part will be small, the number of hollow fiber membranes to be loaded will be reduced, and the processing capacity per module will be low. Considering these points, the size of the penetrating portion is preferably 5 to 93%, more preferably 10 to 72%, and still more preferably 30 to 68 in the area of the opening of the penetrating portion in the module end section. %. Here, the end cross section refers to a cross section when cut along a plane perpendicular to the long axis direction of the module or the direction in which the hollow fiber membranes run in parallel. Of course, the area of the through portion does not include the cross-sectional area of the hole in the hollow fiber membrane.
[0018]
The manufacturing method of the penetration part 3 may be provided by machining after arranging and fixing the hollow fiber membrane in a circular container so as to have a penetration part inside, or by bending the rectangular adhesion fixing part to make an annular shape You may make it deformed. Further, it is also possible to form an annular adhesive fixing portion by joining together those that are adhesively fixed with a container having a shape forming a part of an arc. It is also possible to simply connect and enclose with a rectangular adhesive fixing part and have a polygonal through part inside. It is preferably bonded and fixed in a container having a penetrating portion inside, and most preferably bonded and fixed in an annular container having a penetrating portion in the central portion.
[0019]
The penetrating portion here is one in which a water flow can enter the inside of the adhesive fixing portion, and covering the inside of the penetrating portion with an inner cylinder or the like is not preferable because it reduces the contact of the water flow with the membrane surface. Rather, it is preferable that the hollow fiber membranes on the inner and outer surfaces of the module are not covered. If it is necessary to cover in consideration of damage to the membrane bundle, it is preferable that the effect of peeling and removing by water flow is not impaired as much as possible.
[0020]
If the number of hollow fiber membranes is loaded into the adhesive fixing part having a penetrating part with a high filling rate, it is preferable to increase the processing capacity per module. May be prevented. It is more preferable that the hollow fiber membranes are arranged in a cylindrical shape so as to surround the penetrating part so that the water flow can be easily distributed. The arrangement method is preferably arranged evenly one by one, but it is also possible to manufacture a small number of film bundles and distribute them uniformly in units of film bundles. More preferably, by producing a plurality of membrane bundles in which several layers of hollow fiber membranes regularly arranged in advance in a plane are stacked, if this membrane bundle is used, a water flow circulates in the membrane bundle, A module having a high processing capacity can be manufactured, which can be uniformly disposed at a thin filling fixing portion with a high filling rate. Even in the case of being bonded and fixed at one end as shown in FIGS. 4 and 5, it can be manufactured by using a membrane bundle 7 in which several layers of hollow fiber membranes regularly arranged in a plane are stacked. In such a case, it is also preferable that the membrane bundle is easily supported by the support pipe 6. It is preferable to support so that the membrane bundle 7 which several layers of the hollow fiber membrane regularly arranged planarly like FIG. 6 cross | intersects. When modularizing, if both ends of the hollow fiber are fixed, the fluctuation of the film due to the water flow is reduced, but the disturbance of the film can be prevented. On the other hand, it is possible to obtain a large swing in a shape that is bent into a U shape at one end. However, it must be used with care that a water flow can pass between the hollow fiber membranes in the bent portion, and that damage is caused by large shaking. It is also possible to change the module shape according to the use environment.
[0021]
It is preferable to have a support pipe 6 for connecting the two adhesive fixing portions 2 to the one that fixes both ends. Thereby, the structure of the module is maintained, and bending of the hollow fiber membrane 1 can be prevented. In addition, the one with one end bonded and fixed also preferably has a support pipe in order to prevent the membrane from falling or disturbing. The support pipe 6 may be bonded to the outside of the adhesive fixing portion 2. It is more preferable to embed the adhesive fixing part 2 in the module structure or the support strength of the membrane bundle. When embedding, it is better to choose as thin as possible in order to minimize the reduction in film area. Although there is no particular limitation on the number, it is preferable that the number is evenly distributed in the adhesive fixing portion. Moreover, it is more preferable to open the support pipe at the hollow fiber opening end because the permeated water can be transferred to the opposite end. When using a support pipe for permeate transfer, it is also possible to use a pipe having a large inner diameter so that the pressure loss of the permeate is as small as possible.
[0022]
As shown in FIG. 7, the hollow fiber membrane bundles are bonded and fixed at the ends of the hollow fiber membrane bundle, cut at the bonded fixed ends to open the inside of the hollow fiber membrane, and as shown in FIG. By connecting the water collecting cap 4, it is possible to form and use a water collecting portion that collects the permeated water from the hollow fiber membrane. The shape of the water collecting cap is not particularly limited as long as it can hold the gap of the adhesive fixing portion. About the connection method of a water collection cap, you may connect by adhesion | attachment, and may connect with a screw, a flange, etc. via an O-ring, a gasket, etc. A material that is easy to desorb and has good sealing properties is preferred, but is not particularly limited. The water collecting cap is preferably provided with one or more connecting means 5. This facilitates unitization of the plurality of hollow fiber membrane modules 8. The connecting means may be a union, a flange or the like that facilitates the connection, but it may be simply a screwed one and is not particularly limited. Further, when the permeated water is transferred to the opposite end by the support pipe, the connecting means may not be provided in the water collecting cap. In that case, it is necessary to attach the connecting means to the support pipe. There is no particular limitation as long as it can be connected at the opposite end of the module.
[0023]
The water collecting cap 4 shown in FIGS. 7 and 8 is more preferably one that can be connected at the same time when the end portions of the hollow fiber membranes are bonded and fixed, or one that is integrated with the bonding and fixing portion and the water collecting cap.
[0024]
  The hollow fiber membrane module 8 of the present invention has a penetration part 3 at each end, and the characteristic of the structure that the penetration part is large, the membrane area per module volume is small compared to a membrane module of the same volume. Therefore, it is preferable to increase the throughput by increasing the total length of the membrane module or forming a separation unit 9 in which a plurality of hollow fiber membrane modules 8 are connected. When increasing the overall length of the membrane module, the length of the hollow fiber membrane 1SoonIt is necessary to consider the pressure loss of the liquid that passes through the hollow fiber membrane. A preferable length of the hollow fiber membrane is 2 m or less when both ends of the membrane are fixed, and 4 m or less when used in a U-shape. More preferably, they are within 1.3 m and 2.6 m, respectively, and most preferably within 0.8 m and 1.6 m, respectively.
[0025]
  Next, an example of a separation unit 9 in which a plurality of hollow fiber membrane modules 8 are coupled via a connecting means 5 and a flow when the separation unit 9 is made into an apparatus are shown in FIG. 10, FIG. 12, and FIG. FIGS. 9 and 10 show an example in which the adhesive fixing portions on both sides have through portions, and the connecting means of the water collecting caps on both ends are connected to a water guide tower 10 to which a predetermined number of hollow fiber membrane modules 8 can be connected. . In this case, it is preferable to make the length between the connecting means of the water guide towers 10 variable. However, the length is not particularly limited as long as the structure satisfies the strength and has a water collecting ability. FIG. 11 and FIG. 12 are examples when the permeate is transferred from the water collection cap located at the lower end to the upper end. By providing the water collection head 12 on the unit plate 11 loaded with a plurality of modules, Can also be transferred upward through the support pipe. If it does in this way, exchange of a module can be performed from a water tank upper part, and workability | operativity is good. In the case of this unit, the unit board may be arranged higher than the liquid level so that the water flow that passes between the hollow fiber membranes bent in a U-shape does not stagnate. If water is collected from both ends of the hollow fiber membrane, the flow resistance when permeated water passes through the membrane is reduced compared to one end, which is preferable when a hollow fiber membrane having a long overall length is used. FIGS. 13-15 is an example unitized through the connection means of the water collection cap. Moreover, the example at the time of making these separation units into an apparatus is given..As an aquariumReleased to atmospheric pressure, substantiallyIf it is like the water tank 13, a big water flow can be provided. The case where a single unit is used is shown as an example, but it is also possible to connect a plurality of units in parallel. In addition, it is more preferable to connect water guides or the like in series because the area occupied by the unit can be reduced.
[0026]
In use, it may be immersed in a biological treatment tank for solid-liquid separation to obtain permeated water, or may be used for solid-liquid separation in an agglomeration treatment tank or a precipitation tank. When there is a water flow in the water tank, such as an aerobic biological treatment tank, the water tank may be immersed and used as it is. When there is no water flow in the tank, a new stirring blade, gas ejection means 14 and the like are newly provided in the water tank, and various gases typified by air are supplied from the gas supply means 15 and adhered to the membrane surface of the separation unit. It is preferable to generate a water flow that can peel off the soil. More preferably, gas jetting means is provided under each hollow fiber membrane module of the separation unit. As a result, it is possible to effectively remove the dirt by applying the water flow from the gas jet to the membrane surface, and even if it is difficult to remove and remove the dirt due to the water flow in the existing aquarium, this gas jet means can further increase the water flow. It is possible to cope with. More preferably, in addition to the water flow in the tank, the gas jetting means is also provided inside the through portion of each hollow fiber membrane module, which is effective in removing sludge. When gas is ejected from the inside, bubbles are trapped in the module over the entire length of the module, and the peeling effect is promoted. If the amount of gas ejection is increased, the bubbles will flow out so as to overflow from between the membranes to the outside, further increasing the effect. Most preferably, in addition to the inside of the penetrating portion, gas ejection means is also provided on the outer periphery of the membrane module. Even if the gas jetting means is provided separately from the module, the effect is the same. However, when the gas jetting means is integrated, the bubbles can be brought into contact more accurately. The attachment method is not particularly limited.
[0027]
The suction means 16 on the permeate side when used for separation is generally a pump, but it can also be separated by the difference in water level between the water level in the water tank and the permeate take-out port and the obtained flow rate can be adjusted by a valve. The method is not particularly limited as long as the transmission side can be set to a negative pressure. It is preferable to use a pump and a water level in combination because the operation is stabilized and the power cost is reduced.
[0028]
The hollow fiber membrane used in the hollow fiber membrane module of the present invention is suitably an ultrafiltration membrane or a microfiltration membrane, and may be a reverse osmosis membrane with low operating power. As long as an external pressure type porous hollow fiber membrane is used, the type beyond that is not particularly limited. Also, the symmetric film and the asymmetric film are not limited in the film structure.
[0029]
The hollow fiber membrane material is not particularly limited as long as a hollow fiber can be formed, but polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, polytetrafluoroethylene, etc. are used. Is possible. Among these, preferred materials include polymers having at least one component of acrylonitrile or olefin-based polymers, and particularly preferably 50 mol% or more, more preferably 60 mol% or more of acrylonitrile with respect to the acrylonitrile. It is an acrylonitrile copolymer composed of one or more vinyl compounds having copolymerizability. Further, two or more of these acrylonitrile copolymers, and a mixture with a polymer may be used. The vinyl compound is not particularly limited as long as it is a known compound having copolymerizability with acrylonitrile, but is not limited to acrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, vinyl acetate, acrylic sulfonic acid soda, Examples include p-styrene sulfonic acid soda. Further, as the next preferred hollow fiber membrane material, one made of one or more olefin copolymers such as ethylene, propylene, and 4 methylpentene is suitable.
[0030]
Moreover, the structural member of a module is good to change suitably according to the component, when a use application is a waste_water | drain. The material is not particularly limited as long as it is not affected by raw water components, but it is preferably strong and inexpensive like PVC. In addition, it is more preferable to select an inexpensive unit for the hollow fiber membrane module that is expected to be replaced by a material that can be used for many years, such as stainless steel. As for the hollow fiber membrane module part, it is further preferable to change the material used in the part that can be used for many years and the part that is expected to be replaced.
[0031]
【Example】
Example 1
Four bundles of hollow fiber membranes in which 750 polyacrylonitrile hollow fiber membranes having a pore diameter of 0.01 μm are regularly arranged on a plane are used, the effective length of the module hollow fiber membrane is 800 mm, and the effective membrane area is 5 m.2, With a total length of 920 mm, support pipes, annular adhesive fixing parts at both ends, and through-hole occupancy ratio of about 56%. It was immersed in a treatment aeration tank (drainage component: human waste, MLSS of about 10,000 ppm) and the permeate side was sucked with a water level difference of 30 cm (3 kPa) to obtain permeate. Separation was carried out continuously. After about 3 months, the separation unit was taken out when the obtained flow rate became 200 → 150 cc / min. However, no sludge was deposited near the adhesive fixing part, and no damage to the membrane was observed.
[0032]
Example 2
Two hollow fiber membrane bundles in which 750 polyacrylonitrile hollow fiber membranes, which are the same as in Example 1, are regularly arranged on a plane are used, bent into a U shape, and the effective length of the module hollow fiber membrane is 1500, 1600 mm, respectively. Effective membrane area 4.8m2, 920mm in total length, only one end is bonded and fixed in the annular container, a water collecting cap is attached to the open end, the penetration portion occupancy is about 56%, the U-shaped bent portion is supported by the support pipe and moved upward by the support pipe Produced a separation unit consisting of three hollow fiber membrane modules that can be liquid and have gas jetting means inside and outside the penetration part at the bottom of the module. Immersion was performed, air was supplied to the gas ejection means at a rate of 50 L / min, and the permeate side was sucked with a pump at 7 kPa to obtain permeate. Separation was carried out continuously. After about 3 months, when the amount of water acquired changed from 380 to 300 cc / min, the water collection head of the separation unit was opened, and the hollow fiber membrane modules were taken out one by one. The membrane was not damaged.
[0033]
Comparative Example 1
Separation was performed under the same conditions as in Example 2 using a separation membrane unit in which a module having the same membrane area as that in Example 2 having no through-hole in the adhesive fixing part was loaded into a water collection head. Since the amount of water acquired decreased in 3 weeks (decrease to 100 cc / min), when each module was taken out, a large amount of dirt was deposited on the membrane bundle at the center of the module.
[0034]
Comparative Example 2
Instead of having a penetration part in the adhesive fixing part, the part is filled with a hollow fiber membrane, and the membrane area per module is 8.6 m.2Separation was carried out under the same conditions as in Example 2 except that the hollow fiber membrane module having the same shape as in Example 2 was used. After about 3 months, when the amount of acquired water decreased from 600 to 310 cc / min, the water collection head of the separation unit was opened, and the hollow fiber membrane modules were taken out one by one. In each module, a large amount of sludge was accumulated between the hollow fiber membranes inside the adhesive fixing part.
[0035]
【The invention's effect】
According to the present invention, in a hollow fiber membrane module that performs solid-liquid separation of high-concentration raw water typified by wastewater treatment, a water flow is also given to the inside of the membrane module by having a through part in the adhesive fixing part of the hollow fiber membrane module, The dirt accumulated on the membrane surface along with the separation can be peeled and removed, the effective membrane surface property is maintained, and the hollow fiber membrane in the module can be used efficiently. Further, by making this hollow fiber membrane module connectable, it is possible to cope with a large amount of processing and to enable stable operation over a long period of time.
[Brief description of the drawings]
FIG. 1 shows an example of a hollow fiber membrane module having adhesive fixing portions at both ends of the present invention and penetrating portions on both sides.
FIG. 2 is an example of a hollow fiber membrane module having an adhesive fixing part on one side and having a through part according to the present invention.
FIG. 3 is an example of a hollow fiber membrane module having an adhesive fixing part on one side and having a through part according to the present invention and having a connecting means on the upper part.
FIG. 4 shows an example of a hollow fiber membrane module in which the hollow fiber membranes of the present invention are regularly arranged on a plane.
FIG. 5 shows an example of a hollow fiber membrane module in which the hollow fiber membranes of the present invention are regularly arranged on a plane and having a connecting means at the top.
FIG. 6 is an enlarged view of an example in which a membrane bundle of a hollow fiber membrane module in which the hollow fiber membranes of the present invention are regularly arranged on a plane is bent in a U shape in the vicinity of a support pipe.
FIG. 7 shows an example in which a water collection portion is sealed with a water collection cap used in the hollow fiber membrane module of the present invention.
FIG. 8 shows an example of a water collection cap used in the hollow fiber membrane module of the present invention.
FIG. 9 shows an example of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 10 shows an example of an operation flow of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 11 shows an example of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 12 shows an example of an operation flow of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 13 shows an example of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 14 shows an example of an operation flow of a separation unit in which a plurality of hollow fiber membrane modules of the present invention are connected.
FIG. 15 shows an example of a separation unit connection state in which a plurality of hollow fiber membrane modules of the present invention are connected.
[Explanation of symbols]
1: Hollow fiber membrane
2: Adhesive fixing part
3: Penetration part
4: Catch cap
5: Connection means
6: Support pipe
7: Hollow fiber membrane bundle in which several layers of hollow fiber membranes regularly arranged in a plane are stacked
8: Hollow fiber membrane module
9: Separation unit
10: Water guide tower
11: Unit plate
12: Water collection head
13: Aquarium
14: Gas ejection means
15: Gas supply means
16: Suction means

Claims (9)

複数の中空糸膜が端部で固定された固定端部を有し、固定端部で中空糸膜内部を開口して集水する構造であるとともに、外筒で覆われることなく構成された中空糸膜モジュールであって、該中空糸膜モジュールは、少なくとも一端の固定端部に貫通部を有し、該中空糸膜モジュールが、原液が実質的に大気圧力に開放された槽内に浸漬設置して用いられるに際し、前記少なくとも一端の固定端部に有する貫通部を下方に配置して用いられることを特徴とする中空糸膜モジュール。A plurality of hollow fiber membranes have a fixed end portion fixed at the end portion, and are structured to collect water by opening the hollow fiber membrane inside at the fixed end portion, and are configured without being covered with an outer cylinder a hollow fiber membrane module, the hollow fiber membrane module, have a penetrations portion to the fixed end of the at least one end, the hollow fiber membrane module, in the tank of the stock solution is open to substantially atmospheric pressure A hollow fiber membrane module characterized in that, when used by being immersed and installed, a penetrating portion provided at the fixed end portion of at least one end is disposed below . 固定端部に隣接して、中空糸膜から生じた透過液を集めるための手段をさらに具備している請求項1に記載の中空糸膜モジュール。The hollow fiber membrane module according to claim 1 , further comprising means for collecting permeate generated from the hollow fiber membrane adjacent to the fixed end. 中空糸膜を支持する固定端部が2つである請求項1または2に記載の中空糸膜モジュール。The hollow fiber membrane module according to claim 1 or 2 , wherein there are two fixed ends that support the hollow fiber membrane. 中空糸膜の両端が一つの固定端部に支持されているものである請求項1または2に記載の中空糸膜モジュール。The hollow fiber membrane module according to claim 1 or 2, wherein both ends of the hollow fiber membrane are supported by one fixed end. 請求項1〜4のいずれかに記載の中空糸膜モジュールを、原液が実質的に大気圧力に開放された槽内に設置された気体噴出手段の上方に浸漬設置し、前記中空糸膜の外側に原液を流通させ、中空糸膜の内側を原液の圧力より低い圧力として、原液から中空糸膜を通じて透過液を得る中空糸膜モジュールの使用方法において、前記気体噴出手段を用いて原液中に気体を噴出させる操作を有する中空糸膜モジュールの使用方法。The hollow fiber membrane module according to any one of claims 1-4, stock substantially immersed installed above the installed gas ejection means in a bath that is open to the atmosphere pressure, outside the hollow fiber membrane in was circulated stock, as a pressure lower than the pressure inside the stock of the hollow fiber membrane, in use of Soraitomaku module in which Ru obtain a permeate through the hollow fiber membranes from the stock solution, stock solution using the gas ejection means A method of using a hollow fiber membrane module having an operation of injecting gas into a tube . 請求項1〜いずれかに記載の中空糸膜モジュール複数配置してる分離ユニット。 Separation unit ing by arranging a plurality of Soraitomaku module in according to any one of claims 1-4. 前記複数の中空糸膜モジュール同士が、各中空糸膜モジュールに備えられた前記透過液を集めるための手段を介して連結されている請求項6に記載の分離ユニット。 Wherein the plurality of hollow fiber membrane modules with each other, the separation unit according to Motomeko 6 that are connected via a means for collecting the permeate provided in the hollow fiber membrane module. 請求項1〜4のいずれかに記載の中空糸膜モジュールが、原液が実質的に大気圧力に開放された槽内に浸漬設置されてなる水処理装置であって、前記中空糸膜モジュールが該槽内に設置された気体噴出手段の上方に設置されている水処理装置。The hollow fiber membrane module according to any one of claims 1 to 4, wherein the hollow fiber membrane module is a water treatment apparatus in which a stock solution is immersed and installed in a tank opened to atmospheric pressure. The water treatment apparatus installed above the gas ejection means installed in the tank. 請求項6または7に記載の分離ユニットが、原液が実質的に大気圧力に開放された槽内に浸漬設置されてなる水処理装置であって、前記分離ユニットが該槽内に設置された気体噴出手段の上方に設置されている水処理装置。The separation unit according to claim 6 or 7, wherein the separation unit is a water treatment apparatus in which a stock solution is immersed in a tank that is substantially open to atmospheric pressure, and the gas in which the separation unit is installed in the tank. A water treatment device installed above the ejection means.
JP23073697A 1996-08-29 1997-08-27 Hollow fiber membrane module and method of use thereof, separation unit, water treatment device Expired - Fee Related JP3744140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23073697A JP3744140B2 (en) 1996-08-29 1997-08-27 Hollow fiber membrane module and method of use thereof, separation unit, water treatment device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22902196 1996-08-29
JP8-229021 1996-08-29
JP23073697A JP3744140B2 (en) 1996-08-29 1997-08-27 Hollow fiber membrane module and method of use thereof, separation unit, water treatment device

Publications (2)

Publication Number Publication Date
JPH10118466A JPH10118466A (en) 1998-05-12
JP3744140B2 true JP3744140B2 (en) 2006-02-08

Family

ID=26528593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23073697A Expired - Fee Related JP3744140B2 (en) 1996-08-29 1997-08-27 Hollow fiber membrane module and method of use thereof, separation unit, water treatment device

Country Status (1)

Country Link
JP (1) JP3744140B2 (en)

Also Published As

Publication number Publication date
JPH10118466A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
US7972510B2 (en) Filtration apparatus
US6511602B1 (en) Apparatus and method for treating water
JP2006116495A (en) Filter device
WO1993015827A1 (en) Hollow yarn membrane module
JPH11128692A (en) Hollow fiber membrane module
KR20060113429A (en) Filtration device
KR101958154B1 (en) Integral type immersed hollow fiber membrane module equipment for air scouring
JP5359872B2 (en) Immersion type hollow fiber membrane module
CA2591194C (en) Hollow fiber membrane cartridge
JP3744140B2 (en) Hollow fiber membrane module and method of use thereof, separation unit, water treatment device
JP2013027803A (en) Membrane module and immersion membrane unit
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JPH0910561A (en) Hollow fiber membrane element and its use method and filter
JP4431682B2 (en) Activated sludge treatment equipment
JP4183160B2 (en) Hollow fiber membrane module
JP3918304B2 (en) Hollow fiber membrane processing equipment
KR20020039383A (en) Free-end hollow fiber membrane module for water treatment
WO2012133068A1 (en) Hollow fiber membrane module
JP4192248B2 (en) Separation membrane module
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
JPH08215548A (en) Membrane module
JP2006142303A5 (en)
CN221999465U (en) Antibacterial filtering membrane component
JP2006142303A (en) Hollow fiber membrane treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees