[go: up one dir, main page]

JP3739924B2 - Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member - Google Patents

Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member Download PDF

Info

Publication number
JP3739924B2
JP3739924B2 JP03639598A JP3639598A JP3739924B2 JP 3739924 B2 JP3739924 B2 JP 3739924B2 JP 03639598 A JP03639598 A JP 03639598A JP 3639598 A JP3639598 A JP 3639598A JP 3739924 B2 JP3739924 B2 JP 3739924B2
Authority
JP
Japan
Prior art keywords
wear
cast iron
resistant
producing
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03639598A
Other languages
Japanese (ja)
Other versions
JPH11229071A (en
Inventor
昌吾 村上
勇一 関
尚治 猪股
渉 多賀
隆成 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP03639598A priority Critical patent/JP3739924B2/en
Publication of JPH11229071A publication Critical patent/JPH11229071A/en
Application granted granted Critical
Publication of JP3739924B2 publication Critical patent/JP3739924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、破砕機のライナ等の様に摺動摩耗を頻繁に受ける構造部材の素材として有用な耐摩耗高Cr鋳鉄に関し、殊に疲労亀裂進展に起因する脆性破壊が生じない様な、耐疲労亀裂進展性に優れた耐摩耗高Cr鋳鉄、およびこうした耐摩耗高Cr鋳鉄から得られる耐摩耗部材、並びに該部材の製造方法等に関するものである。
【0002】
【従来の技術】
破砕機のライナ等の耐摩耗部材の素材としては、耐摩耗性と靱性を合わせ持つ高Mn鋳鋼がよく使用されてきた。高Mn鋳鋼はマトリックスがオーステナイトで靱性が非常に高く、また摩耗面近傍は衝撃および塑性変形による双晶変形や積層欠陥により、顕著に加工硬化が生じて非常に硬くなることが知られている。即ち、高Mn鋳鋼は表面が硬く内部が靱性に優れるという特性を合わせ有するものであり、こうした特性は破砕機ライナ等の様に摺動摩耗や衝撃を頻繁にうける耐摩耗部材には理想的な素材であると考えられている。しかしながら、破砕物によってはその受ける衝撃が小さくなり、高Mn鋳鋼に期待する加工硬化が生じずに摩耗が著しく大きくなることがある。
【0003】
そこで、そのような場合にはマルテンサイト系鋳鋼や高Cr鋳鉄といた初期硬度(加工硬化前の硬度)の高い材料を使用せざるを得ないが、摩耗部材の寿命、コストおよび鋳造性を考慮すると高Cr鋳鉄が優れていると言われている。しかしながら一般的に高Cr鋳鉄は靱性が低く、引張応力が発生する耐摩耗部材では使用中に脆性破壊が生じ、使用できないという問題があった。
【0004】
高Cr鋳鉄に関してはこれまでに特開昭57−5844号、同57−89453号、特公昭60−51548号、特公平4−56102号、特開平6−240403号、同2−115343号等に開示されているように、各種開発されている。例えば上記特開平2−115343号や特公平4−56102号では、高Cr鋳鉄にTiやVを添加することによって、高Cr鋳鉄で主に析出するM73 型炭化物以外に高硬度のMC型炭化物(即ち、TiCやVC等)を分散させ、これによって耐摩耗性を向上させたものである。また上記特公昭60−51548号には、上記と同様の趣旨からNbとVを複合添加することが開示されている。しかしながら、これまで提案されている高Cr鋳鉄は、そのほとんどは靱性を確保して硬さを最大限向上させ、耐摩耗性を良くする方向に進んできたものであり、上記の様な疲労亀裂進展を防止するという観点からなされたものではなかった。また上記の様な炭化物形成元素を使用することはコスト高を招くことにもなる。
【0005】
【発明が解決しようとする課題】
本発明は、こうした状況の下でなされたものであって、その目的は、従来使用されていた高Mn鋳鋼では十分加工硬化せずに摩耗が激しくなり、且つ繰り返し引張応力の発生する様な環境で使用しても脆性破壊が生じることのない耐摩耗性高Cr鋳鉄、およびこうした耐摩耗性高Cr鋳鉄から得られる耐摩耗部材、並びに該部材の製造方法等を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成し得た本発明の耐摩耗性高Cr鋳鉄とは、C:2.5〜3.5%(質量%の意味、以下同じ)、Cr:14〜22%、Mn:0.8〜1.5%、Mo:1.5〜3.0%、Ni:0.05〜0.8%を夫々含有し、下記(1)式および(2)式を満足し、残部がFeおよび不可避的不純物である点に要旨を有するものである。
5.0≦[Cr]/[C]≦7.2 …(1)
1.8≦[Mn]・[Mo]≦2.5 …(2)
但し、[Cr],[C],[Mn]および[Mo]は、夫々Cr,C,MnおよびMoの含有量(質量%)を示す。
【0007】
また上記目的を達成し得た本発明の耐摩耗部材とは、上記の様な耐摩耗性高Cr鋳鉄から得られたものであり、部材表面より20mm以上内部で得られるビッカース硬さの最大値が、脱炭層を除く部材表面のビッカース硬さより20以上高いものである点に要旨を有するものである。
【0008】
一方、上記の耐摩耗部材を製造するに当たっては、焼入温度:850〜1020℃から焼入れを行う際に、部材表面より20mm以上内部の冷却速度を0.5℃/sec以下に制御して炭化物を析出させることによって内部のMs点を上昇させ、熱処理終了後の部材表面の引張残留応力を低下させる様にすれば良い。
【0009】
【発明の実施の形態】
本発明者らが、上記の脆性破壊が生じる原因について鋭意研究した結果、次の様な知見が得られた。即ち、通常焼入した部材表面には引張残留応力が発生するが、その残留応力が大きい場合に、鋳造欠陥から疲労亀裂が進展し、その亀裂寸法が許容欠陥寸法を超えた場合に脆性破壊が生じることがわかった。
【0010】
そこで本発明者らは、疲労亀裂進展に起因する脆性破壊が生じない様な、耐疲労亀裂進展性に優れた耐摩耗性高Cr鋳鉄を実現するべく、更に検討を重ねた。その結果、Cr,C,MnおよびMoが上記(1)式および(2)式の関係を満足する様にすれば、耐疲労亀裂進展性に優れた耐摩耗高Cr鋳鉄が実現できることを見出し、本発明を完成した。本発明に係る耐摩耗性高Cr鋳鉄は上記の様に構成されるが、その最大の特徴は疲労亀裂進展の原因となる表面の引張残留応力が従来の高Cr鋳鉄よりも非常に小さいことである。本発明が完成された経緯を沿って本発明の作用について説明する。
【0011】
高Cr鋳鉄は通常、鋳造した後に焼入れ・焼戻しを行って使用されるが、この焼入れ時に冷却速度が表面ほど大きいため、表面からマルテンサイト変態が起こる。そしてマルテンサイト変態は体積膨張を伴うため、最後にマルテンサイト変態する内部に圧縮残留応力、その反対に表面には引張残留応力が残る。そこで焼入れした後焼戻しをするが、高Cr鋳鉄の焼戻しは200℃前後の低温で行われるため残留応力が完全に開放されず、表面には引張残留応力が残されたまま使用されることになる。
【0012】
疲労亀裂の進展は使用中に部材のある部分(例えば、コーンクラッシャマントルの取付け面等)に繰り返し発生する引張応力によって生じるのであるが、亀裂が進展するか否かは亀裂生成起点となる欠陥サイズや、使用中に発生する繰り返し引張応力の大きさに依存する。厳密に鋳造条件を管理しても欠陥が生成することを皆無にすることは困難であり、まず第一には上記の引張残留応力の低下が不可欠である。
【0013】
これまで提案されている高Cr鋳鉄は前述の如く、靱性を確保して硬さを最大限向上させ、耐摩耗性を良くする方向に開発が進められてきた。これは摩耗部材の使用寿命を延長するために重要であるが、部材に繰り返し引張応力が発生する状況では上記の疲労亀裂進展に起因する脆性破壊が問題となり、それに対応した材料設計が必要となる。
【0014】
部材表面の引張残留応力を低下させるためには、まず表面のMs点を低く、内部のMs点を高くすることであると考えられた。こうした観点から更に検討したところ、上記の様な要件を満足させれば、焼入れ時に冷却速度が遅くなる部材内部で、冷却中に炭化物が析出して表面よりMs点が高くなることが判明した。こうした作用を発揮させる為には、V,Nb,Ti等の様なCrより炭化物形成能の大きな元素を添加しないことが必要である。例えば、特開平2−115343号、特公平4−56102号および特開平6−240403号に開示されているように、従来ではV,Nb,Ti等を添加すると硬さが向上して耐摩耗性が良くなるとされているが、その一方でマトリックス中のCの活量を低下させ、冷却中の炭化物析出が抑制されてしまうことになる。
【0015】
またV,Nb,Ti等は焼入性向上に有効に作用するが、それらを添加せずとも本発明のように、CとCr濃度のバランスをとり、且つMnとMoの適正な添加によって十分な焼入性が確保される。破砕機ライナ等の耐摩耗部材は、そのほとんどが肉厚が100mmを超える大きな部材であり、必要な焼入性を確保することは高Cr鋳鉄の材料設計として基本である。こうした観点からすれば、例えば特開昭57−89453号に開示されている様にMoの含有量が0.2%以下程度の微量では、十分な焼入性が得られない。
【0016】
本発明では上述の如く、[Cr]/[C]および[Mn]・[Mo]を厳密に制御するものであり、こうした要件を満足させることによって、V,Nb,Ti等を添加したときと違ってマトリックス中のC活量を大きくすることができ、冷却中にマトリックスに微細炭化物が析出してMs点が上昇し、その一方で残留オーステナイト量が減少し、焼入れ時における部材内部の冷却速度相当において、硬さを向上することができる。使用中の部材においては、摩耗面近傍は塑性変形して圧縮応力が発生し、その反対側の取付け面には引張応力が発生する。
【0017】
本発明材では部材内部の硬さが高いので、ある程度摩耗し部材厚さが小さくなって取付け面の引張り応力レベルが高くなったときに、その硬さの高い部分が摩耗面となるため、そこでの塑性変形が小さく、発生する圧縮応力が小さくなる。従って、その反力として取付け面側で発生する引張応力レベルを低下させることができ、使用中に不可避に発生する取付け面側の繰返し引張応力の最大応力値を低くすることができる。また前記した部材表面の引張残留応力の低減と、使用時に発生する取付け面側の引張応力を低下させることによって、本発明材では疲労亀裂発生が抑制されたものとなる。
【0018】
次に、[Cr]/[C]および[Mn]・[Mo]の範囲を上記(1)式または(2)式の様に規定した理由は下記の通りである。まずC含有量とCr含有量は、そのバランスが極めて重要であり、[Cr]/[C]の値が5.0未満になると、マトリックスのC含有量が多くなり且つCr含有量が少なくなり過ぎて焼入性が悪くなり、パーライトまたはベーナイトが生成して硬さが低下する。またこの値が7.2を超えると、マトリックス中のC含有量が低くなって硬さが低下し、必要な耐摩耗性が得られない。
【0019】
一方、[Mn]・[Mo]の値が2.5以下であれば、必要な焼入性は確保されるので、MnやMoのそれ以上の添加は残留オーステナイト過剰による硬さ低下を招く。またこの値が1.8未満であると、必要な焼入れ性が得られない。
【0020】
また[Cr]/[C]≦7.2で且つ1.8≦[Mn]・[Mo]とすることによって、マトリックス中のC活量が大きくなり、焼入れ時にある範囲の冷却速度においてマトリックス中に微細炭化物を析出させて部材内部のMs点を上昇させ、表面引張残留応力の低減および残留オーステナイトの抑制による硬さ向上が可能となる。
【0021】
上記の様な耐摩耗性高Cr鋳鉄用いることによって、疲労亀裂進展に起因する脆性破壊が生じることなく、しかも耐摩耗性にも優れた耐摩耗部材が得られるのであるが、こうした耐摩耗部材部材の好ましい形態としては、部材表面より20mm以上内部で得られるビッカース硬さの最大値が、脱炭層を除く部材表面のビッカース硬さより20以上高いものを挙げることができる。
【0022】
またこうした耐摩耗部材を製造するに当たっては、後記実施例に示す様に、焼入温度:850〜1020℃から焼入れを行う際に、部材表面より20mm以上内部の冷却速度を0.5℃/sec以下に制御して炭化物を析出させることによって内部のMs点を上昇させ、熱処理終了後の部材表面の引張残留応力を低下させる様にすれば良い。
【0023】
ところで一般的に高Cr鋳鉄においては、必要な耐摩耗性を確保するために残留オーステナイト量を多くし過ぎないことが重要なポイントとなる。例えば特開昭57−5844号では、1%以上のNiを含有しており、残留オーステナイト量が増加して硬さが低下し、必要な耐摩耗性が得られないことが予想される。またこうした観点からして、適正な焼入温度にした上で、CおよびCrの含有量を多くし過ぎないこと、およびMnとMoの添加量をある値以下に抑えることも必要である。こうした点をも踏まえ、本発明の高Cr鋳鉄に優れた特性を発揮させる為の好ましい化学成分組成(基本的成分であるC,Mn,CrおよびMoの他、Si,Ni等も含む)は、下記の通りである。
【0024】
C:2.5〜3.5%(質量%の意味、以下同じ)、Cr:14〜22%
C含有量が2.5%未満またはCr含有量が14%未満では、高Cr鋳鉄で主に析出するCr73 (M73 型炭化物)の量が少なくなるため、必要な耐摩耗性が得られない。またC含有量が3.5%、Cr含有量が22%を超えると、逆に炭化物量が多すぎるために靱性が低下して、使用中の脆性破壊および疲労破壊の危険がある。
【0025】
Si:0.3〜1.0%
Siは、鋳造時の溶湯の流動性確保および溶解・製錬時の脱酸に有効な元素であり、こうした効果を発揮させる為には0.3%以上含有させることが好ましいしかしながら、1.0%を超えて含有させると靱性が低下する。
【0026】
Mn:0.8〜1.5%
Mnは高Cr鋳鉄の焼入性を改善し、特にベイナイトの抑制に有効であるが、0.8%未満ではその効果が発揮されず、また1.5%を超えると残留オーステナイトが多量になり、硬さが低下する。
【0027】
Mo:1.5〜3.0%
Moは高Cr鋳鉄の焼入性を向上させ、特にパーライトの抑制に有効であるが、1.5%未満ではその効果が発揮されず、3.0%を超えてもその効果は飽和する。
【0028】
Ni:0.05〜0.8%
Niは焼入性を向上させ、また靱性を高める効果がある。こうした効果を発揮させる為には、0.05%以上含有させることが好ましいが、逆に0.8%を超えて含有させると、残留オーステナイトの増加を招いて耐摩耗性を劣化させる。尚Ni含有量のより好ましい下限は0.01%であり、より好ましい上限は0.60%程度である。
【0029】
以下本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術適範囲に含まれるものである。
【0030】
【実施例】
真空誘導溶解炉にて150kgfの舟形インゴット(幅:30〜120mm×高さ:400mm×長さ:500mm)を溶製した。下記表1に溶製したインゴットの化学組成組成を示す。熱処理は焼入れ焼戻しを行い、焼入れはNo.2〜5,7,8,10,11,13および15については950℃、No.1,6,10,12および14については1000℃、No.9については1050℃で2時間保持後空冷した。
【0031】
【表1】

Figure 0003739924
【0032】
焼入れした後、インゴットからサンプルを採取し、フォーマスタで連続冷却を行って部材表面および部材内部(表面から20mm以上内部)の夫々のMs点を測定した。またその後、部材表面および部材内部の夫々のビッカース硬さの測定を行った。摩耗試験および疲労試験の試験片は鋳造ままで切り出し、上記の焼入れ焼戻し条件で熱処理を行い、夫々の試験に供した。以下に各試験の試験条件を示す。
【0033】
〈フォーマスタ試験〉
サンプル形状:8φ×12L
冷却開始温度:各鋼種の焼入温度に30分保持した後冷却開始
冷却速度:10,0.5℃/sec
Ms点は、膨張収縮曲線から5℃きざみで読みとった。
【0034】
尚この試験は、本発明材では表面と内部でMs点が変わることを示すための模擬実験であり、冷却速度が10℃/secの場合が表面のMs点、0.5℃/secの場合が内部のMs点に相当するものである。
【0035】
〈ビッカース硬さ試験〉
押込荷重:20kgf
*冷却速度が10℃/secのとき(表面)と冷却速度が0.5℃/secのとき(内部)に得られる硬さの最大値を評価した。
【0036】
〈摩耗試験および疲労試験〉
使用岩石:流紋岩(岩石粒度:5〜20mm)
試験開始前に破砕した岩石重量:200kgf
(→バラツキの大きい初期摩耗の影響をなくすため)
試験に使用した岩石重量:2tonf
摩耗試験機:図1(概略説明図)に示したものを使用した。
*摩耗量は重量減少量を摩耗面面積で除して求めた。
*試験材取付面(摩耗面の反対側)の疲労クラックの有無を調査した。
【0037】
その結果を下記表2に示すが、これらの結果から次の様に考察できる。まずNb,Ti,V等を含むかまたはNiを1%以上含む従来材では、いずれも冷却速度:10℃/secで得られる硬さが、冷却速度:0.5℃/secで得られる硬さより大きく、しかもMs点も変化がないことが分かる。
【0038】
それに対して比較材(但し、No.8,10を除く:これらNo.8,10は焼入性不十分のため冷却速度:0.5℃/secでベイナイトが生成)および本発明材は、冷却速度:10℃/secの場合よりも冷却速度:0.5℃/secの場合の方がMs点は高くなっており、これによって部材表面の引張残留応力が低下している。従って、疲労亀裂が発生していない。しかしながら、比較材No.6,7,9では、その組成の一部が本発明範囲を外れていることによって硬さがやや不足し、摩耗量が多くなっている。
【0039】
一方本発明材では、上述の如く冷却速度が10℃/secで得られる硬さが十分に大きいと共に、冷却速度:10℃/secで得られる硬さより冷却速度:0.5℃/secで得られる硬さの方が大きくなっており、その結果本発明材においては疲労亀裂が全く発生せず、かつ摩耗量が0.6(g/岩石1t破砕当たり)以下と従来材と同等以上の耐摩耗性を有していることが分かる。
【0040】
【表2】
Figure 0003739924
【0041】
【発明の効果】
本発明は以上の様に構成されており、従来材の耐摩耗性と同等以上で、しかも疲労亀裂進展の原因である部材表面に発生する引張応力を低減させて、部材の割れを防止できる高Cr鋳鉄が実現できた。また本発明材は高価な炭化物形成元素(Ti、Nb、Vなど)を添加しないため、低コストである。
【0042】
上記の様な特性を発揮する本発明鋼は破砕機用ライナのみではなく、例えば建設機械用部材や耐摩耗構造材として、ドラッグチェーン、バケット、バケットチィース、キャタピラ、レールクロッシング等、高炉用耐摩耗部材として、アーマープレート、ベル等に使用される高Mn鋳鋼の代替材料として適用できる。
【図面の簡単な説明】
【図1】実施例で用いた摩耗試験機の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wear-resistant high Cr cast iron that is useful as a material for structural members that are frequently subjected to sliding wear, such as a liner of a crusher, and is particularly resistant to brittle fracture due to fatigue crack growth. The present invention relates to a wear-resistant high Cr cast iron excellent in fatigue crack propagation, a wear-resistant member obtained from such a wear-resistant high Cr cast iron, a method for producing the member, and the like.
[0002]
[Prior art]
As a material for wear-resistant members such as a liner of a crusher, high Mn cast steel having both wear resistance and toughness has been often used. It is known that high-Mn cast steel has an austenite matrix and very high toughness, and the vicinity of the wear surface is extremely hard due to remarkable work hardening due to twin deformation and stacking faults due to impact and plastic deformation. In other words, high-Mn cast steel has the characteristics that the surface is hard and the inside is excellent in toughness, and such characteristics are ideal for wear-resistant members that are frequently subjected to sliding wear and impact such as crusher liners. It is considered a material. However, depending on the crushed material, the impact received is small, and the work hardening expected for high Mn cast steel does not occur, and the wear may be remarkably increased.
[0003]
Therefore, in such a case, materials with high initial hardness (hardness before work hardening) such as martensitic cast steel and high Cr cast iron must be used, but considering the life, cost and castability of wear parts. Then, it is said that high Cr cast iron is excellent. However, in general, high Cr cast iron has low toughness, and there is a problem that a wear resistant member in which tensile stress is generated cannot be used because brittle fracture occurs during use.
[0004]
As for high Cr cast iron, there have been disclosed in JP-A-57-5844, JP-A-57-89453, JP-B-60-51548, JP-B-4-56102, JP-A-6-240403, JP-A-2-115343, etc. As disclosed, various developments have been made. For example, in JP-A-2-115343 and JP-B-4-56102, by adding Ti or V to high Cr cast iron, MC having high hardness in addition to M 7 C 3 type carbide mainly precipitated in high Cr cast iron. Type carbides (ie, TiC, VC, etc.) are dispersed to improve wear resistance. JP-B-60-51548 discloses that Nb and V are added together for the same purpose as described above. However, most of the high Cr cast irons proposed so far have progressed in the direction of ensuring toughness, improving the hardness to the maximum, and improving wear resistance. It was not made from the standpoint of preventing progress. In addition, the use of the carbide forming element as described above also increases the cost.
[0005]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and its object is to provide an environment in which high-Mn cast steel that has been conventionally used does not sufficiently work and harden, and wears repeatedly and repeatedly generates tensile stress. It is an object of the present invention to provide a wear-resistant high Cr cast iron that does not cause brittle fracture even if it is used in Abrasion, a wear resistant member obtained from such a wear resistant high Cr cast iron, a method for producing the member, and the like.
[0006]
[Means for Solving the Problems]
The wear-resistant high Cr cast iron of the present invention that can achieve the above object is C: 2.5 to 3.5% (meaning of mass%, the same shall apply hereinafter), Cr: 14 to 22%, Mn: 0.00. 8 to 1.5%, Mo: 1.5 to 3.0%, Ni: 0.05 to 0.8%, satisfying the following formulas (1) and (2), the balance being Fe And it has a gist in that it is an inevitable impurity .
5.0 ≦ [Cr] / [C] ≦ 7.2 (1)
1.8 ≦ [Mn] · [Mo] ≦ 2.5 (2)
However, [Cr], [C], [Mn], and [Mo] indicate the contents (mass%) of Cr, C, Mn, and Mo, respectively.
[0007]
Further, the wear-resistant member of the present invention that can achieve the above-mentioned object is obtained from the wear-resistant high Cr cast iron as described above, and the maximum value of Vickers hardness obtained within 20 mm or more from the member surface. However, it has a gist in that it is higher than the Vickers hardness of the member surface excluding the decarburized layer by 20 or more.
[0008]
On the other hand, when manufacturing the above wear-resistant member, when quenching from a quenching temperature of 850 to 1020 ° C., the carbide cooling rate is controlled by controlling the cooling rate of 20 mm or more from the member surface to 0.5 ° C./sec or less. It is sufficient to raise the internal Ms point by precipitating and reduce the tensile residual stress on the member surface after the heat treatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies on the cause of the brittle fracture, the present inventors have obtained the following knowledge. In other words, tensile residual stress is usually generated on the surface of a hardened member, but when the residual stress is large, fatigue cracks develop from the casting defect, and when the crack size exceeds the allowable defect size, brittle fracture occurs. I found it to happen.
[0010]
Therefore, the present inventors have further studied in order to realize a wear-resistant high Cr cast iron excellent in fatigue crack growth resistance that does not cause brittle fracture due to fatigue crack growth. As a result, it was found that if Cr, C, Mn, and Mo satisfy the relationship of the above formulas (1) and (2), a wear-resistant high Cr cast iron excellent in fatigue crack growth resistance can be realized. The present invention has been completed. The wear-resistant high Cr cast iron according to the present invention is configured as described above, but the greatest feature thereof is that the tensile residual stress on the surface causing fatigue crack growth is much smaller than that of conventional high Cr cast iron. is there. The operation of the present invention will be described along the background of the completion of the present invention.
[0011]
High Cr cast iron is usually used after being quenched and tempered after casting, and the martensite transformation occurs from the surface because the cooling rate is higher at the surface during this quenching. And since the martensitic transformation accompanies volume expansion, the compressive residual stress finally remains inside the martensitic transformation, and on the contrary, the tensile residual stress remains on the surface. Therefore, tempering is performed after quenching, but tempering of high Cr cast iron is performed at a low temperature of around 200 ° C., so the residual stress is not completely released, and the surface is used with the residual tensile stress remaining. .
[0012]
The progress of fatigue cracks is caused by the tensile stress that repeatedly occurs in certain parts of the member during use (for example, the mounting surface of the cone crusher mantle). It depends on the magnitude of repeated tensile stress that occurs during use. Even if the casting conditions are strictly controlled, it is difficult to eliminate the generation of defects. First of all, it is essential to reduce the above-described tensile residual stress.
[0013]
As described above, the high Cr cast iron that has been proposed so far has been developed in the direction of ensuring toughness, improving the hardness to the maximum, and improving the wear resistance. This is important for extending the service life of wear parts, but in the situation where tensile stress is repeatedly generated in the members, brittle fracture caused by the above-mentioned fatigue crack growth becomes a problem, and material design corresponding to it is necessary. .
[0014]
In order to reduce the tensile residual stress on the surface of the member, it was considered that the surface Ms point was first lowered and the internal Ms point was raised. Further examination from this point of view revealed that if the above-described requirements were satisfied, carbides precipitated during cooling inside the member where the cooling rate was slow during quenching, and the Ms point was higher than the surface. In order to exert such an action, it is necessary not to add an element having a larger carbide forming ability than Cr, such as V, Nb, and Ti. For example, as disclosed in JP-A-2-115343, JP-B-4-56102 and JP-A-6-240403, conventionally, addition of V, Nb, Ti or the like improves hardness and wear resistance. However, on the other hand, the activity of C in the matrix is reduced, and carbide precipitation during cooling is suppressed.
[0015]
V, Nb, Ti and the like effectively work to improve the hardenability, but without adding them, as in the present invention, it is sufficient to balance C and Cr concentrations and to add Mn and Mo properly. Hardenability is ensured. Most wear-resistant members such as crusher liners are large members having a wall thickness exceeding 100 mm, and ensuring the necessary hardenability is fundamental as a material design for high Cr cast iron. From this point of view, sufficient hardenability cannot be obtained if the Mo content is as small as about 0.2% or less as disclosed in, for example, Japanese Patent Application Laid-Open No. 57-89453.
[0016]
In the present invention, as described above, [Cr] / [C] and [Mn] · [Mo] are strictly controlled. By satisfying these requirements, when V, Nb, Ti, or the like is added, In contrast, the C activity in the matrix can be increased, fine carbides precipitate in the matrix during cooling and the Ms point rises, while the amount of retained austenite decreases, and the cooling rate inside the member during quenching In a considerable amount, the hardness can be improved. In a member in use, the vicinity of the wear surface is plastically deformed to generate a compressive stress, and a tensile stress is generated on the opposite mounting surface.
[0017]
In the material of the present invention, since the internal hardness of the member is high, when the thickness of the member is reduced to a certain extent and the tensile stress level of the mounting surface is increased, the hard part becomes the wear surface. The plastic deformation is small and the generated compressive stress is small. Accordingly, the tensile stress level generated on the mounting surface side as the reaction force can be reduced, and the maximum stress value of the repeated tensile stress on the mounting surface side inevitably generated during use can be lowered. Further, by reducing the above-described tensile residual stress on the surface of the member and lowering the tensile stress on the mounting surface side that occurs during use, the occurrence of fatigue cracks is suppressed in the material of the present invention.
[0018]
Next, the reason why the ranges of [Cr] / [C] and [Mn] · [Mo] are defined as in the above formula (1) or (2) is as follows. First, the balance between the C content and the Cr content is extremely important. When the value of [Cr] / [C] is less than 5.0, the C content of the matrix increases and the Cr content decreases. After that, the hardenability is deteriorated, and pearlite or bainite is generated to reduce the hardness. On the other hand, if this value exceeds 7.2, the C content in the matrix becomes low and the hardness decreases, and the required wear resistance cannot be obtained.
[0019]
On the other hand, if the value of [Mn] · [Mo] is 2.5 or less, the necessary hardenability is ensured, so addition of Mn or Mo beyond that causes a decrease in hardness due to excess retained austenite. If this value is less than 1.8, the necessary hardenability cannot be obtained.
[0020]
Further, by setting [Cr] / [C] ≦ 7.2 and 1.8 ≦ [Mn] · [Mo], the C activity in the matrix is increased, and in the matrix at a certain cooling rate during quenching. It is possible to precipitate fine carbides and raise the Ms point inside the member, thereby reducing the surface tensile residual stress and improving the hardness by suppressing the retained austenite.
[0021]
By using the wear-resistant high Cr cast iron as described above, it is possible to obtain a wear-resistant member excellent in wear resistance without causing brittle fracture due to fatigue crack growth. As a preferable form, the maximum value of Vickers hardness obtained inside 20 mm or more from the member surface is 20 or more higher than the Vickers hardness of the member surface excluding the decarburized layer.
[0022]
In manufacturing such wear-resistant members, as shown in the examples below, when quenching from a quenching temperature of 850 to 1020 ° C., an internal cooling rate of 20 mm or more from the member surface is 0.5 ° C./sec. The internal Ms point is raised by precipitating carbide under the following control, and the tensile residual stress on the surface of the member after the heat treatment is lowered.
[0023]
By the way, in general, in high Cr cast iron, it is an important point that the amount of retained austenite is not excessively increased in order to ensure necessary wear resistance. For example, JP-A-57-5844 contains 1% or more of Ni, and it is expected that the amount of retained austenite increases and the hardness decreases, and the required wear resistance cannot be obtained. From this point of view, it is also necessary to keep the contents of C and Cr not too large and to keep the added amounts of Mn and Mo below a certain value after setting the proper quenching temperature. Based on these points, preferred chemical component composition (including Si, Ni, etc. in addition to basic components C, Mn, Cr and Mo) for exhibiting excellent characteristics in the high Cr cast iron of the present invention is as follows: It is as follows.
[0024]
C: 2.5 to 3.5% (meaning mass%, the same applies hereinafter), Cr: 14 to 22%
If the C content is less than 2.5% or the Cr content is less than 14%, the amount of Cr 7 C 3 (M 7 C 3 type carbide) that mainly precipitates in the high Cr cast iron decreases, so the necessary wear resistance is required. Sex cannot be obtained. On the other hand, if the C content exceeds 3.5% and the Cr content exceeds 22%, on the contrary, the amount of carbide is too much, so that the toughness is lowered and there is a risk of brittle fracture and fatigue fracture during use.
[0025]
Si: 0.3 to 1.0%
Si is an element effective for ensuring fluidity of the molten metal during casting and for deoxidation during melting and smelting. In order to exert such effects, it is preferable to contain 0.3% or more. If the content exceeds 50%, the toughness decreases.
[0026]
Mn: 0.8 to 1.5%
Mn improves the hardenability of high Cr cast iron, and is particularly effective in suppressing bainite. However, if it is less than 0.8%, the effect is not exhibited, and if it exceeds 1.5%, the amount of retained austenite becomes large. , Hardness decreases.
[0027]
Mo: 1.5-3.0%
Mo improves the hardenability of high Cr cast iron, and is particularly effective for suppressing pearlite. However, if it is less than 1.5%, the effect is not exhibited, and if it exceeds 3.0%, the effect is saturated.
[0028]
Ni: 0.05-0.8%
Ni has the effects of improving hardenability and increasing toughness. In order to exert such an effect, it is preferable to contain 0.05% or more, but conversely, if it exceeds 0.8%, the retained austenite is increased and the wear resistance is deteriorated. A more preferable lower limit of the Ni content is 0.01%, and a more preferable upper limit is about 0.60%.
[0029]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limits the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are within the technical scope of the present invention. Is included.
[0030]
【Example】
A 150 kgf boat-shaped ingot (width: 30 to 120 mm × height: 400 mm × length: 500 mm) was melted in a vacuum induction melting furnace. Table 1 below shows the chemical composition of the melted ingot. The heat treatment is quenching and tempering. Nos. 2-5, 7, 8, 10, 11, 13, and 15 are 950 ° C. For Nos. 1, 6, 10, 12 and 14, 1000 ° C., no. No. 9 was air-cooled after being held at 1050 ° C. for 2 hours.
[0031]
[Table 1]
Figure 0003739924
[0032]
After quenching, a sample was taken from the ingot and continuously cooled with a formaster to measure the Ms point on the member surface and inside the member (inside the surface of 20 mm or more). After that, the Vickers hardness of each of the member surface and the inside of the member was measured. Specimens for the wear test and fatigue test were cut out as cast, heat-treated under the above-described quenching and tempering conditions, and subjected to each test. The test conditions for each test are shown below.
[0033]
<Formaster test>
Sample shape: 8φ × 12L
Cooling start temperature: After holding at the quenching temperature of each steel type for 30 minutes, cooling start cooling rate: 10, 0.5 ° C / sec
The Ms point was read from the expansion / contraction curve in increments of 5 ° C.
[0034]
This test is a simulation experiment to show that the Ms point changes between the surface and the interior of the material of the present invention. When the cooling rate is 10 ° C./sec, the surface Ms point is 0.5 ° C./sec. Corresponds to the internal Ms point.
[0035]
<Vickers hardness test>
Indentation load: 20kgf
* The maximum hardness obtained when the cooling rate was 10 ° C / sec (surface) and when the cooling rate was 0.5 ° C / sec (internal) was evaluated.
[0036]
<Abrasion test and fatigue test>
Rock used: Rhyolite (rock particle size: 5-20mm)
Rock weight crushed before the start of the test: 200 kgf
(→ To eliminate the effect of initial wear with large variations)
Rock weight used in the test: 2 tonf
Abrasion tester: The one shown in FIG. 1 (schematic explanatory diagram) was used.
* The amount of wear was obtained by dividing the weight loss by the wear surface area.
* The presence or absence of fatigue cracks on the test material mounting surface (opposite the wear surface) was investigated.
[0037]
The results are shown in Table 2 below, and can be considered as follows from these results. First, in the conventional materials containing Nb, Ti, V or the like or containing 1% or more of Ni, the hardness obtained at a cooling rate of 10 ° C./sec is the hardness obtained at a cooling rate of 0.5 ° C./sec. It can be seen that there is no change in the Ms point.
[0038]
On the other hand, comparative materials (however, except for Nos. 8 and 10: these Nos. 8 and 10 are tempered due to insufficient hardenability so that bainite is generated at a cooling rate of 0.5 ° C./sec) and the present invention materials are The Ms point is higher in the case of the cooling rate: 0.5 ° C./sec than in the case of the cooling rate: 10 ° C./sec, thereby lowering the tensile residual stress on the member surface. Therefore, fatigue cracks are not generated. However, comparative material No. In 6, 7, and 9, some of the compositions are out of the scope of the present invention, so that the hardness is slightly insufficient and the wear amount is increased.
[0039]
On the other hand, in the present invention material, the hardness obtained at a cooling rate of 10 ° C./sec is sufficiently large as described above, and at a cooling rate of 0.5 ° C./sec than the hardness obtained at a cooling rate of 10 ° C./sec. As a result, the material of the present invention has no fatigue cracks, and the wear amount is 0.6 (g / per 1 t crushing of rock) or less, which is equal to or better than the conventional material. It turns out that it has abrasion.
[0040]
[Table 2]
Figure 0003739924
[0041]
【The invention's effect】
The present invention is configured as described above, and is equivalent to or higher than the wear resistance of the conventional material, and can reduce the tensile stress generated on the surface of the member, which is the cause of fatigue crack growth, and can prevent cracking of the member. Cr cast iron was realized. In addition, since the present invention material does not add expensive carbide-forming elements (Ti, Nb, V, etc.), the cost is low.
[0042]
The steel of the present invention that exhibits the above properties is not only a liner for crushers, but also, for example, as a construction machine member or wear-resistant structural material, such as drag chains, buckets, bucket teeth, caterpillars, rail crossings, etc. As a member, it can be applied as an alternative material for high Mn cast steel used for armor plates, bells and the like.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of an abrasion tester used in an example.

Claims (4)

C:2.5〜3.5%(質量%の意味、以下同じ)、
Cr:14〜22%、
Mn:0.8〜1.5%、
Mo:1.5〜3.0%、
Ni:0.05〜0.8%
を夫々含有し、
下記(1)式および(2)式を満足し、
残部がFeおよび不可避的不純物であることを特徴とする耐疲労亀裂進展性に優れた耐摩耗性高Cr鋳鉄。
5.0≦[Cr]/[C]≦7.2 …(1)
1.8≦[Mn]・[Mo]≦2.5 …(2)
但し、[Cr],[C],[Mn]および[Mo]は、夫々Cr,C,MnおよびMoの含有量(質量%)を示す。
C: 2.5 to 3.5% (meaning mass%, the same shall apply hereinafter),
Cr: 14-22%,
Mn: 0.8 to 1.5%
Mo: 1.5-3.0%,
Ni: 0.05-0.8%
Each containing
The following formulas (1) and (2) are satisfied,
A wear-resistant high Cr cast iron excellent in fatigue crack growth resistance, characterized in that the balance is Fe and inevitable impurities .
5.0 ≦ [Cr] / [C] ≦ 7.2 (1)
1.8 ≦ [Mn] · [Mo] ≦ 2.5 (2)
However, [Cr], [C], [Mn] and [Mo] indicate the contents (mass%) of Cr, C, Mn and Mo, respectively.
さらにSi:0.3〜1.0%を含有する請求項1に記載の耐摩耗性高Cr鋳鉄。  The wear-resistant high Cr cast iron according to claim 1, further comprising Si: 0.3 to 1.0%. 請求項1または2に記載の耐摩耗性高Cr鋳鉄から得られたものであり、部材表面より20mm以上内部で得られるビッカース硬さの最大値が、脱炭層を除く部材表面のビッカース硬さより20以上高いものである耐摩耗部材。  It is obtained from the wear-resistant high Cr cast iron according to claim 1 or 2, and the maximum value of Vickers hardness obtained within 20 mm or more from the member surface is 20 from the Vickers hardness of the member surface excluding the decarburized layer. A wear-resistant member that is expensive. 請求項3に記載の耐摩耗部材を製造するに当たり、焼入温度:850〜1020℃から焼入れを行う際に、部材表面より20mm以上内部の冷却速度を0.5℃/sec以下に制御して炭化物を析出させることによって内部のMs点を上昇させ、熱処理終了後の部材表面の引張残留応力を低下させることを特徴とする耐摩耗部材の製造方法。  In producing the wear-resistant member according to claim 3, when quenching from a quenching temperature of 850 to 1020 ° C, the cooling rate inside the member surface of 20 mm or more is controlled to 0.5 ° C / sec or less. A method for producing a wear-resistant member, characterized by increasing the internal Ms point by precipitating carbides and reducing the tensile residual stress on the member surface after the heat treatment.
JP03639598A 1998-02-18 1998-02-18 Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member Expired - Fee Related JP3739924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03639598A JP3739924B2 (en) 1998-02-18 1998-02-18 Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03639598A JP3739924B2 (en) 1998-02-18 1998-02-18 Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member

Publications (2)

Publication Number Publication Date
JPH11229071A JPH11229071A (en) 1999-08-24
JP3739924B2 true JP3739924B2 (en) 2006-01-25

Family

ID=12468677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03639598A Expired - Fee Related JP3739924B2 (en) 1998-02-18 1998-02-18 Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member

Country Status (1)

Country Link
JP (1) JP3739924B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482407B2 (en) * 2004-09-06 2010-06-16 株式会社神戸製鋼所 High Cr cast iron products with excellent heat crack resistance and heat treatment method for high Cr cast iron materials
JP4648094B2 (en) * 2005-05-31 2011-03-09 株式会社神戸製鋼所 High Cr cast iron with excellent fatigue crack resistance and method for producing the same
JP4514056B2 (en) * 2006-06-15 2010-07-28 株式会社神戸製鋼所 Casting method for high Cr cast iron castings

Also Published As

Publication number Publication date
JPH11229071A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
KR101010570B1 (en) Abrasion resistant steel sheet manufacturing method and manufactured steel sheet
CA2886286C (en) Method for producing cast steel having high wear resistance and steel having said characteristics
KR100784020B1 (en) High chromium cast iron having excellent fatigue crack resistance and process for producing the same
JP3545963B2 (en) High toughness super wear resistant cast steel and method for producing the same
JPH1171631A (en) High toughness wear-resistant steel and method for producing the same
JP2005256169A (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3089882B2 (en) Abrasion-resistant steel having excellent surface properties and method for producing the same
TWI744952B (en) Wear-resistant thin steel plate and manufacturing method thereof
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP3739924B2 (en) Abrasion resistant high Cr cast iron with excellent fatigue crack growth resistance, wear resistant member, and method for producing the member
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP4828321B2 (en) Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties
RU2753397C1 (en) Casting of high-strength wear-resistant steel and methods for heat treatment of castings of high-strength wear-resistant steel
JPH1161339A (en) High toughness super wear-resistant steel and its manufacture
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
KR20220094420A (en) Casting steel for ore crushing with excellent strength and its manufacturing methods
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP2578449B2 (en) Manufacturing method of direct hardened high strength steel with excellent delayed cracking resistance
JP3070658B2 (en) High manganese steel with excellent wear resistance and high toughness
Olawale et al. Failure analysis of a crusher jaw
KR100391897B1 (en) Alloy steel casting having high toughness and method of manufacturing it, and duo cast by using it
JP3840329B2 (en) Wear resistant high Cr cast iron
JPH10152759A (en) Maraging steel excellent in toughness
KR20220068519A (en) High hardness graphite steel rolling roll and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees