[go: up one dir, main page]

JP3739347B2 - ベアリングレスモータ - Google Patents

ベアリングレスモータ Download PDF

Info

Publication number
JP3739347B2
JP3739347B2 JP2002280264A JP2002280264A JP3739347B2 JP 3739347 B2 JP3739347 B2 JP 3739347B2 JP 2002280264 A JP2002280264 A JP 2002280264A JP 2002280264 A JP2002280264 A JP 2002280264A JP 3739347 B2 JP3739347 B2 JP 3739347B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
bearingless motor
position control
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002280264A
Other languages
English (en)
Other versions
JP2004120886A (ja
Inventor
真紹 竹本
明 千葉
正 深尾
Original Assignee
財団法人理工学振興会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人理工学振興会 filed Critical 財団法人理工学振興会
Priority to JP2002280264A priority Critical patent/JP3739347B2/ja
Publication of JP2004120886A publication Critical patent/JP2004120886A/ja
Application granted granted Critical
Publication of JP3739347B2 publication Critical patent/JP3739347B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転子を回転駆動する作用と、回転子の半径方向位置を制御する磁気軸受作用とを兼ね備えたベアリングレスモータに関する。より詳細には、回転子にその回転子の固定子対峙面から深く永久磁石を埋め込み、回転子を回転駆動する作用と、回転子の半径方向位置を制御する磁気軸受作用とを兼ね備えたベアリングレスモータに関する。
【0002】
【従来の技術】
短時間に精密な加工を行うためには工作機械のスピンドルを高速回転させたり、また加速器や半導体製造装置で高真空を得るためには真空ポンプのタービンを毎分数万回転から数十万回転という超高速で回転させる必要がある。このような超高速回転モータを実現するには、モータ自体の構造や制御装置の改良はもとより、超高速回転に耐えられる軸受が不可欠である。
このような用途に適合するものとして、古くから磁気軸受がある。さらに、改良が加えられたものとして、モータと磁気軸受の磁気回路を一体化して、回転子を回転駆動する作用と、回転子の半径方向位置を制御する磁気軸受作用とを兼ね備えたベアリングレスモータがある。ベアリングレスモータでは、回転子を回転駆動する磁界を磁気軸受の励磁磁界として利用することで、モータの小型化を図ることができる。そして、このようなベアリングレスモータは、非接触、無潤滑、メンテナンスフリー、小型化という特徴があり、キャンドポンプや人工心臓への適用、ポンプやモータ一体型ポンプへの応用に開発研究が進んでいる。
【0003】
一般的に、このようなベアリングレスモータは、互いに対峙する内側の回転子及び外側の固定子を備えている。回転子と固定子との間は、非接触を保つようにギャップが形成されている。
しかし、キャンドポンプや人工心臓のような小型のポンプに用いられるベアリングレスモータでは、回転子が回転しても、例えば、流体がギャップへ流れこめるように、2〜3mm以上のギャップが必要である。大容量のモータであれば、2〜3mmのギャップ長があっても性能に影響が出ることは少ないが、1kw以下の小容量のモータでは、2〜3mmのギャップ長は、非常に大きな値である。誘導機型やリラクタンス型のベアリングレスモータは、ギャップ長に反比例して磁束が減少することから、ギャップ長の二乗に反比例して半径方向力が減少する。このため、相対的に大きなギャップ長では、回転子主軸を磁気支持するのに必要な半径方向力を十分に発生させることは難しい。そのため、誘導機型やリラクタンス型ではなく、一般的には、永久磁石型のベアリングレスモータが採用されている(特許文献1及び特許文献2参照)。
【0004】
【特許文献1】
特開平10−150755号公報
【特許文献2】
特開2001−339979号公報
【0005】
永久磁石型のベアリングレスモータは、例えば、特許文献2(特開2001−339979号公報)に記載されている。図25及び図26を参照すると、ベアリングレスモータ410は、互いに対峙する内側の回転子412と外側の固定子414と、回転子412の軸方向に設けられたスラスト軸受416とを備えている。回転子412は、対峙面に沿って張り付けられた断面円弧状の分割された永久磁石422を備え、固定子414は、回転子412を回転駆動する電動機巻線と回転子412の半径方向位置を制御する位置制御巻線とを備えている。このようなベアリングレスモータ410はSPM型と称されている。
また、他の永久磁石型のベアリングレスモータとして、永久磁石の極間に突極を形成したInset型、永久磁石を回転子表面に浅く埋め込んだ埋込永久磁石型(shallowly-Buried Permanent Magnet Type)がある。
また、いずれのタイプのベアリングレスモータにおいても、外側に回転子を備え、内側に固定子を備えたものもある。
【0006】
図26に示される従来のベアリングレスモータは、4極電動機・2極位置制御構造、すなわち、n極電動機・n−2極位置制御構造である。このように構成されているのは、電動機の効率を重視するためである。他に、6極電動機・4極位置制御構造のベアリングレスモータも一般的である。
図26のベアリングレスモータにおいて無負荷時におけるx軸正方向に半径方向力を発生原理を説明すると、位置制御巻線Nxに電流Ixを流すと、2極の位置制御磁束Ψxが発生する。この位置制御磁束Ψxと4極の永久磁石が発生する界磁磁束Ψmによりx軸正方向では互いに磁束は強め合い、x軸負方向では互いに磁束は弱め合う。この磁束の強弱が生じることで、磁束が強め合うx軸正方向に半径方向力Fxが発生する。
【0007】
【発明が解決しようとする課題】
しかし、上記のようなn極電動機・n−2極位置制御構造のベアリングレスモータ410では、永久磁石422が回転子412の対峙面に沿って設けられているので、位置制御磁束は真空と同じ透磁率で磁気抵抗の大きな永久磁石422を貫通しなければならない。このため、位置制御巻線の起磁力に対して有効に位置制御磁束を発生させることができず、半径方向力を十分に発生させることができない。
1つの方法として、磁石の厚みを増加させることで界磁磁束を強くすることはできる。しかし、磁石厚の増加に伴い、永久磁石の磁気抵抗が大きくなるため、位置制御磁束が界磁磁束の増加以上に減少し、半径方向力は逆に小さくなるという問題がある。
【0008】
本発明の目的は、回転子の位置制御磁束が永久磁石を通過しないように構成することで、半径方向力を大きく発生させることができるベアリングレスモータを提供することにある。
本発明の他の目的は、位置制御磁束が永久磁石の磁束を有効に利用して、一層大きな半径方向力を得ることができるベアリングレスモータを提供することにある。
【0009】
【課題を解決するための手段】
そこで、本発明は、回転子と固定子とがギャップを介して対峙するベアリングレスモータにおいて、回転子が固定子との対峙面から離間して埋設されたn極の永久磁石、固定子がn極の電動機巻線とn+2極の位置制御巻線と、を備え、位置制御巻線による位置制御磁束が永久磁石より対峙面側の部分を通るように、回転子の永久磁石が固定子との対峙面より深く没入していることを特徴とする、ベアリングレスモータにより前記課題を解決した。
【0010】
また、本発明は、回転子が、隣合う異極の永久磁石の間に極間磁石を備えているベアリングレスモータを提供する。極間磁石は、永久磁石より回転子側に突出していることが好ましい。
【0011】
電動機巻線の極数より位置制御巻線の極数を多くすること、すなわち、n極の電動機巻線とn+2極の位置制御巻線を備えることにより、位置制御磁束がn極電動機の磁束より小さな範囲で閉じる。ここで、「n」は、2の倍数の正数である。すなわち、位置制御磁束は電動機の磁束より小さな範囲で閉じる。
さらに、回転子の永久磁石が、固定子との対峙面より深く没入するように埋設されているので、位置制御磁束は、永久磁石より対峙面側の部分を通ることができるようになる。すなわち、回転子の対峙面側部分の磁性体を位置制御磁束の通り道(ヨーク)として利用することができる。これにより、位置制御磁束が磁気抵抗の大きな永久磁石を通らないように構成され、大きな半径方向力が発生する。
位置制御磁束の通る領域が永久磁石の対峙面側に確保されているので、磁石厚を増加させても、位置制御磁束が減少することなく、したがって、大きな回転トルクを出力することができる。
【0012】
隣合う異極の永久磁石の間に、永久磁石より対峙面に突出する極間磁石を設けることにより、半径方向力は一層大きくなる。すなわち、隣合う異極の永久磁石は、永久磁石同士で閉磁路を形成することがなくなり、永久磁石の磁束が回転子の対峙面側を通るので、その部分を通る位置制御磁束との間で大きな半径方向力が発生する。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明による実施形態を説明する。図1は、コンプレッサ、ブロア、ファン、ポンプ、浄水用遠心ポンプとの組合せで用いられているベアリングレスモータ10の一実施形態を概略的に示している。その他、ベアリングレスモータは、ディスクドライブユニット、粉化機、キャンドポンプ、人工心臓用ポンプ、ガス移送機、半導体製造装置、フライホイール、モニター装置用の回転ステージ、スピンドル、多段発電機、遠心分離機との組合せで用いられる。
【0014】
また、図1のベアリングレスモータは、内側に回転子を配し、外側に固定子を配した構造であるが、内側に固定子を配し、外側に回転子を配した構造もあり、後者の構造については後述する。
【0015】
図1に示されるように、ベアリングレスモータ10は、ギャップを介して対峙する内側の回転子12,12及び外側の固定子14,14と、回転子12及び固定子14の軸方向に離間して設けられたスラスト軸受16とを備えている。回転子12,12及びスラスト軸受16は、1つの軸上に設けられており、その軸はポンプ18のインペラー20に接続されている。本実施形態の回転子及び固定子はユニット1及びユニット2を備えたタンデム構造であるが、ユニットが1つ又はユニットが3つ以上の組合せでもよい。
【0016】
図2は、回転子12と固定子14の断面図を示している。本実施形態のベアリングレスモータ10は、n極電動機、n+2極位置制御構造の一形態として、2極電動機、4極位置制御構造である。ここで、「n」は2の倍数の正数である。「n」が他の偶数であるベアリングレスモータについては、後述する。
【0017】
回転子12は2極の永久磁石22を備えており、固定子14は2極の電動機巻線Nd,Nqと4極の位置制御巻線Nx,Nx,Ny,Nyを備えている。また、回転子12は、永久磁石の極間部に極間磁石24を備えている。
【0018】
永久磁石22は、回転子12の対峙面から離間して回転子12に深く埋設されている。永久磁石22は、180°の位相で設けられ、図中左側の表面S極の円弧状永久磁石22a,22aと、図中右側の表面N極の円弧状永久磁石22b,22bよりなる。それぞれの永久磁石22a,22a,22b,22bが同心円上に環状の永久磁石を形成する。回転子12自体は磁性体からなり、極間磁石24で区画された永久磁石22の対峙面側は磁束が通るヨークとして機能する。極間磁石24は、隣合う異極の永久磁石22a,22bの間で界磁磁束が閉磁路を形成することを防止する。これによって、界磁磁束は、回転子12の永久磁石22の対峙面側を通るようになる。
【0019】
次に、図3乃至図6を参照して、上記ベアリングレスモータ10の動作原理を説明する。
図3は、無負荷時におけるx軸方向の半径方向力の発生原理を示している。4極の位置制御巻線Nxに図示の方向に位置制御電流を流すことによって位置制御磁束Ψxが発生する。2極の永久磁石が発生する界磁磁束Ψmによって、x軸正方向では磁束は互い強め合い、x軸負方向では磁束は互いに弱め合う。このように、磁束の強弱によってx軸正方向に半径方向力Fxが発生する。x軸負方向の半径方向力は、逆の方向に位置制御電流を流すことにより発生する。
【0020】
図4は、無負荷時におけるy軸方向の半径方向力の発生原理を示している。4極の位置制御巻線Nyに図示の方向に位置制御電流を流すことによって位置制御磁束Ψyが発生する。2極の永久磁石が発生する界磁磁束Ψmによって、y軸正方向では磁束は互い強め合い、y軸負方向では磁束は互いに弱め合う。このように、磁束の強弱によってy軸正方向に半径方向力Fyが発生する。x軸負方向の半径方向力は、逆の方向に位置制御電流を流すことにより発生する。
【0021】
図5は、電動機巻線Nqにトルク電流を流した際に、トルク磁束Ψqと位置制御電流によるΨxの干渉によって発生する半径方向力を示している。y軸正方向ではそれぞれの磁束は弱め合い、y軸負方向ではそれぞれの磁束は強め合う。その結果、y軸負方向に半径方向力Fyが発生する。
【0022】
図6は、電動機巻線Nqにトルク電流を流した際に、トルク磁束Ψqと位置制御電流によるΨyの干渉によって発生する半径方向力を示している。x軸正方向ではそれぞれの磁束は強め合い、x軸負方向ではそれぞれの磁束は弱め合う。その結果、x軸正方向に半径方向力Fxが発生する。
【0023】
本発明のベアリングレスモータ10では、電動機巻線の極数より位置制御構巻線の極数が多く、回転子12の永久磁石22が対峙面から没入するように深く埋設されている。回転子12において、永久磁石22より対峙面側の部分は、磁束が通るヨークとして機能する。図3乃至図6に示したように、それぞれの磁束が永久磁石より対峙面側を通る。これによって、少なくとも位置制御磁束Ψx,Ψyは、磁気抵抗の大きい永久磁石を貫くことがなく、これらの磁束は大きな半径方向力を発生させる。
また、このようにして発生する半径方向力は、永久磁石の厚みに関係がないので、ベアリングレスモータに求められる半径方向力に応じて永久磁石を厚くすることにも本発明のベアリングレスモータは対応することができる。
【0024】
また、本実施形態では、異極の永久磁石22a,22bの間に極間磁石24が設けられている。この極間磁石24は、永久磁石22の表面よりも回転子12と固定子14の対峙面の近くまで法線方向に延びている。このように構成することにより、永久磁石の界磁磁束が隣合う異極の永久磁石と閉じることがなくなり、それに伴って、永久磁石22の表面側を通る位置制御磁束Ψx,Ψyやトルク磁束Ψqと協働して半径方向力及び回転トルクも大きくなる。
特に、キャンドポンプや人工心臓用ポンプのように、ギャップ長が大きいベアリングレスモータの場合、異極の永久磁石の間に極間磁石を挿入することが好ましい。その理由は、上記のように、回転子から固定子へ流れる界磁磁束を増大させることができ、永久磁石の磁束を半径方向力や回転トルクの発生に有効に活用できるようになるからである。
【0025】
図7は、2極電動機、4極位置制御構造のベアリングレスモータにおける回転子の他の形態を示している。同図に示された回転子30は、2極の永久磁石32を備えている。固定子(図示せず)は、図2に示された固定子と実質的に同じである。また、回転子30は、永久磁石の極間部に極間磁石34を備えている。
【0026】
永久磁石32は、回転子30の固定子対峙面から離間して回転子30に深く埋設されている。永久磁石32は、180°の位相で設けられ、図中左側の表面S極の平板状永久磁石32a,32aと、図中右側の表面N極の平板状永久磁石32b,32bよりなる。
それぞれの永久磁石32a,32a,32b,32bは、回転子30を長手方向に貫通する溝に挿入されている。また、極間磁石34も回転子30を長手方向に貫通する溝に挿入されている。
それぞれの平板状永久磁石32は、断面で見てシャフト又はシャフト挿入用の孔を取り囲むように多角形構造をなしており、その磁束は実質的に回転子30の法線方向に生じる。極間磁石34は、隣合う異極の永久磁石32a,32bの間で界磁磁束が閉磁路を形成することを防止する。これによって、界磁磁束は、回転子30の永久磁石32の対峙面側を通るようになる。
溝は、永久磁石32より幅広であり、永久磁石と永久磁石の間、及び、永久磁石と極間磁石との間には、空隙が形成される。この空隙によって、回転子30に残存する磁性体部分が狭くなり、それぞれの永久磁石自身で閉磁路を形成することを避けることができ、さらに、永久磁石32を回転子30に挿入することも容易となる。
【0027】
図8は、2極電動機、4極位置制御構造のベアリングレスモータにおける回転子のさらに他の形態を示している。同図に示された回転子40は、2極の永久磁石42を備えている。固定子(図示せず)は、図2に示された固定子と実質的に同じである。また、回転子40は、永久磁石の極間部に極間磁石44を備えている。
【0028】
図8に示された回転子40は、図中左側における3つの表面S極の平板状永久磁石42a,42aと、図中右側における3つの表面N極の平板状永久磁石42b,42bを備えている。
それぞれの永久磁石42は、回転子40を長手方向に貫通する溝に挿入されている。極間磁石44も回転子40を長手方向に貫通する溝に挿入されている。それぞれの平板状永久磁石42は、断面で見てシャフト又はシャフト挿入用の孔を取り囲むように多角形構造をなし、永久磁石と永久磁石の間、及び、永久磁石と極間磁石との間には、空隙が形成される。
図8に示される回転子40も、図7に示される回転子30と同様に、ヨークとして機能する回転子の残存部分を狭くすることで、界磁磁束が回転子40から固定子に向って形成される。
【0029】
図9及び図10は、本発明によるベアリングレスモータの他の実施形態を示している。このベアリングレスモータ110は、例えば、ディスクドライブユニットに用いられ、内側に固定子114を配し、外側に回転子112を配した構造をしている。
【0030】
図10に詳細に示されるように、ベアリングレスモータ110は、ギャップを介して対峙する外側の回転子112,112と内側の固定子114,114とを備えている。図10では、固定子114の巻線を省略しているが、本実施形態のベアリングレスモータ110も、2極電動機、4極位置制御構造である。
【0031】
回転子112は、固定子114との対峙面から没入して埋設された2極の永久磁石122を備えている。また。回転子112は、永久磁石122の極間部に極間磁石124を備えている。回転子112自体は磁性体からなり、極間磁石124で区画された永久磁石122の対峙面側は磁束が通るヨークとして機能する。
極間磁石124は、隣合う異極の永久磁石の間で界磁磁束が閉磁路を形成することを防止する。そのため、極間磁石124は、永久磁石122よりも対峙面近くまで延びている。これによって、界磁磁束は、回転子112の永久磁石122の対峙面側を通るようになる。
【0032】
図11は、n極電動機、n+2極位置制御構造において、n=4の場合の実施形態を示している。
本実施形態のベアリングレスモータ210は、ギャップを介して対峙する内側の回転子212と外側の固定子214とを備えている。回転子212は4極の永久磁石222を備えており、固定子214は4極の電動機巻線Nd,Nqと6極の位置制御巻線Nx,Nx,Nx,Ny,Ny,Nyを備えている。また、回転子212は、永久磁石の極間部に極間磁石224を備えている。
【0033】
永久磁石222は、回転子212の対峙面から離間して回転子212に深く埋設されている。永久磁石222は、90°の位相で設けられ、それぞれの永久磁石が環状に配されている。回転子212自体は磁性体からなり、極間磁石224で区画された永久磁石222の対峙面側は磁束が通るヨークとして機能する。極間磁石224は、隣合う異極の永久磁石222の間で界磁磁束が閉磁路を形成することを防止する。これによって、界磁磁束は、回転子212の永久磁石222の対峙面側を通るようになる。
【0034】
図12乃至図20は、本発明によるベアリングレスモータの適用例、すなわち、用途を示す。
図12は、ポンプ、埋込形人工心臓、ファン、コンプレッサ、危険ガス移送機等の用途へのベアリングレスモータ301の適用例を示している。ポンプ300は、隔壁302内に羽根車303を備え、吸入口304から吐出口305に流体を圧送する。ベアリングレスモータ300の回転子306は、羽根車302に取り付けられ、固定子307は隔壁302の外側に取り付けられている。隔壁302は、回転子306と固定子307の間のギャップを延びており、このようなベアリングレスモータ301は気密に保たれた環境で流体を圧送するのに好適である。
【0035】
図13は、粉化機の用途へのベアリングレスモータ311の適用例を示している。粉化機310は、ハウジング312内を回転自在な移送管313を備えている。移送管313の先端は、ハウジング312内で放射状に延びる複数の放出管に分岐している。タンデム型ベアリングレスモータ311のそれぞれの回転子316は移送管313に取り付けられ、それぞれの固定子317はハウジング312の内壁に取り付けられている。ベアリングレスモータ311を起動すると、回転子316とともに移送管313が回転し、放出管の開口から液体が噴出して粉化し、ハウジング312の下方開口から粉が放下する。
【0036】
図14は、半導体製造装置の用途へのベアリングレスモータ321の適用例を示している。半導体製造装置320は、ケース322内に半導体ウエハーを載置可能な又は取り付け可能なプレート323を備えている。ベアリングレスモータ321の回転子326は、プレート323に取り付けられ、固定子327はケース322の外側に取り付けられている。ケース322は、回転子326と固定子327の間のギャップを延びており、このようなベアリングレスモータ321は極めて高いクリーン度が要求される環境で被加工物を取り扱うのに好適である。
【0037】
図15は、フライホイール330の用途へのベアリングレスモータ331の適用例を示している。タンデム型ベアリングレスモータ331のそれぞれの固定子337に対峙して回転子336がフライホイール310のリム332の中空状円筒状内壁に取り付けられている。ベース333とリム332の間にはスラストベアリング334が配置され、フライホール330は浮動状態で支持されている。ベアリングレスモータ331を起動すると、回転子336とともにリム332が回転する。
【0038】
図16は、ギャップの対峙構成に他の形態を採用したフライホールへの適用例を示している。回転子346はフライホイール340に取り付けられ、固定子337はベース343に取り付けられている。タンデム型のベアリングレスモータ341は、それぞれの回転子346が軸方向外側に向って拡開するテーパ状であり、一対の固定子347が回転子346の形状に倣ったV字状をしている。
回転子及び固定子は逆の関係で構成されていてもよく、それぞれの回転子及び固定子は鏡像対称な階段状に構成されていてもよい。図16に示された例では、スラストベアリングがなくても、フライホイールは浮動状態で回転する。
【0039】
図17は、モニター装置350の用途へのベアリングレスモータ351の適用例を示している。タンデム型ベアリングレスモータ351のそれぞれの固定子357に対峙して回転子356がモニター装置350を支持するキャップ状ハウジング352の円筒状内壁に取り付けられている。ベース353から突出する軸355の先端とハウジング352の間にはスラストベアリング354が配置され、ハウジング352は浮動状態で支持されている。ベアリングレスモータ351を起動すると、回転子356とともにハウジング352が回転し、モニター装置350の視野を制御する。
【0040】
図18は、スピンドルユニット360の用途へのベアリングレスモータ361の適用例を示している。タンデム型ベアリングレスモータ361のそれぞれの回転子366はスピンドル363に取り付けられ、それぞれの固定子367はハウジング362の内壁に取り付けられている。スピンドル363の一端にはチャック365が取り付けられ、リーマー等の切削具や研削具が着脱自在となっている。スピンドル362の他端にはスラストベアリング364が備えられている。なお、ユニット1又はユニット2の一方にのみ、本発明のベアリングレスモータを採用してもよい。
【0041】
図19は、遠心分離機370の用途へのベアリングレスモータ371の適用例を示している。タンデム型ベアリングレスモータ371のそれぞれの回転子376はスピンドル軸373に取り付けられ、それぞれの固定子377が回転子376を取り囲んでいる。スピンドル軸373の一端には遠心分離する対象物を収容するための受け具374が備えられている。必要に応じて、スラストベアリングが備えられる。
【0042】
次に、本発明によるベアリングレスモータの有効性を確認するために、有限要素法による静止磁場解析を行い、従来のベアリングレスモータと比較試験を行った。また、比較例を製作し、その比較例を比較試験の対象とした。
解析モデルとして、(1)図26に示された従来品、(2)比較品、(3)図2に示された発明品を用いた。比較品は、図示されていないが、2極電動機・4極位置制御構造を持ち、永久磁石を対峙面から浅く埋設したベアリングレスモータである。条件を等しくするため、従来品についても、異極の永久磁石の間に極間磁石を挿入した。
【0043】
図20及び図21は、従来品、比較品及び発明品のそれぞれの諸元を示している。図20の下テーブルは、回転子のパラメータを示している。従来品、比較品及び発明品において、永久磁石の埋め込み深さdと磁石厚tは無制限に大きくすることができないので、d+t≦11として試験を行った。
【0044】
比較試験では、位置制御巻線Nx,Nyにそれぞれ定格電流8Aの半分、すなわち、位置制御巻線Nxに4Aの位置制御電流を流し、位置制御巻線Nyに4Aの位置制御電流を流した。
図22は、そのときの磁石厚tと半径方向力の変化を示している。また、図23は、トルク電流に定格値8Aを流したときの磁石厚tとトルクの変化を示している。図22及び図23において、A,A’,A”は、d+t=11となる回転子構造上の限界である。
【0045】
図22に示すように、従来品の半径方向力はB点において最大となり、比較品の半径方向力はC点において最大となった。比較品では、磁石厚を増加させることによる半径方向力の減少が従来品に比べ小さい。その理由として、比較品では、一部の位置制御磁束が厚さd=1mmの回転子ヨークを通ることができるのに対し、従来品では、総ての位置制御磁束が極間部分の磁気飽和のため回転子ヨークを通ることができず、永久磁石を直接通らなければならないためと考えられる。したがって、従来品では、磁石厚tを増加させると位置制御磁束が減少し、急激に半径方向力が減少することになり、実用に耐えない。
【0046】
発明品は、永久磁石が対峙面から深く埋設されているので、比較品と比較しても十分な回転子ヨーク幅が確保されている。これによって、ほぼ総ての位置制御磁束は回転子ヨークを通り、磁石厚tが増加すれば、それにともなって半径方向力が増加する。そして、永久磁石の厚みを埋め込み深さとほぼ同じ5mmとした構造の限界であるA点で半径方向力は最大になる。
【0047】
しかし、図23では、半径方向力とは逆に同じ磁石厚の場合、従来品、比較品、発明品の順に徐々に回転トルクが減少することが認められる。図23からは、いずれのベアリングレスモータがより有効に半径方向力を発生できるかを判断することはできない。
そこで、図20の上テーブルに示すように磁場解析を行う際、電動機巻線と位置制御巻線は同じ断面積を持ち、それぞれの巻数をNm=20ターン、Ns=10ターンとし、合せて1スロット当りNm+Ns=30ターンとし、その上で、従来品、比較品及び発明品のそれぞれのトルク解析結果がともに1ニュートンメータとなるように、電動機巻線の巻数Nmを換算した。そして、位置制御巻線の巻数をNs=30−Nmとし、1スロット当りの合計が常に30ターンとなるように変化させた。
【0048】
図24は、巻数を変化させ、トルクの大きさを1ニュートンメータで等しくしたときに発生する半径方向力を示している。磁石厚t=1.3mm以下ではNm=30ターンとしても1ニュートンメータのトルクを発生させることができないので、半径方向力の換算を行うことはできない。
従来品、比較品及び発明品を比較すると、発明品は、A点で半径方向力は52.5Nと最大になる。従来品はD点で最大となり、比較品はE点で最大となる。発明品の半径方向力は、従来品に対して87.6%増加し、比較品に対して25.4%増加している。
以上の比較試験からもわかるように、n極電動機・n+2位置制御構造を備え、永久磁石を深く埋設した構造のベアリングレスモータでは、位置制御磁束が永久磁石の対峙面を通ることによって、極めて有効に半径方向力を発生し、大きな回転トルクを得ることができるのである。
【0049】
【発明の効果】
本発明のベアリングレスモータは、回転子の永久磁石が、固定子との対峙面より深く没入するように埋設されているので、位置制御磁束は、永久磁石より対峙面側の部分を通る。回転子の対峙面側部分の磁性体が位置制御磁束の通り道になるので、位置制御磁束が磁気抵抗の大きな永久磁石を通ることがなく、大きな半径方向力が発生する。
【図面の簡単な説明】
【図1】 本発明によるベアリングレスモータの利用例を示す概略図。
【図2】 本発明によるベアリングレスモータの一実施形態の断面図。
【図3】 本発明によるベアリングレスモータにおいて無負荷時にx方向の半径方向力が作用する原理を説明する断面図。
【図4】 本発明によるベアリングレスモータにおいて無負荷時にy方向の半径方向力が作用する原理を説明する断面図。
【図5】 本発明によるベアリングレスモータにおいてトルク電流と位置制御電流により半径方向力が作用する原理を説明する断面図。
【図6】 本発明によるベアリングレスモータにおいてトルク電流と位置制御電流により半径方向力が作用する原理を説明する断面図。
【図7】 図2のベアリングレスモータにおける回転子の他の形態の断面図。
【図8】 図2のベアリングレスモータにおける回転子のさらに他の形態の断面図。
【図9】 本発明によるベアリングレスモータの他の利用例を示す概略図。
【図10】 本発明によるベアリングレスモータの他の実施形態の断面図。
【図11】 本発明によるベアリングレスモータのさらに他の実施形態の断面図。
【図12】 本発明によるベアリングレスモータのポンプへの適用例を示す概略図。
【図13】 本発明によるベアリングレスモータの粉化機への適用例を示す概略図。
【図14】 本発明によるベアリングレスモータの半導体製造装置への適用例を示す概略図。
【図15】 本発明によるベアリングレスモータのフライホイ−ルへの適用例を示す概略図。
【図16】 本発明によるベアリングレスモータのフライホイールへの他の適用例を示す概略図。
【図17】 本発明によるベアリングレスモータのモニター装置への適用例を示す概略図。
【図18】 本発明によるベアリングレスモータのスピンドルユニットへの適用例を示す概略図。
【図19】 本発明によるベアリングレスモータの遠心分離機への適用例を示す概略図。
【図20】 比較試験の諸元テーブルを示す。
【図21】 比較試験の条件を示す断面図。
【図22】 比較試験の半径方向力を示すグラフ。
【図23】 比較試験のトルクを示すグラフ。
【図24】 トルクを1ニュートンメータに換算した際の半径方向力を示すグラフ。
【図25】 一般的なベアリングレスモータの全体を示す斜視図。
【図26】 従来のベアリングレスモータの永久磁石、電動機巻線及び位置制御巻線の配置及び作用を示す断面図。
【符号の説明】
10,110,210 ベアリングレスモータ
12,112,212 回転子
14,114,214 固定子
16 スラスト軸受 18 ポンプ
20 インペラー
22,212,222 永久磁石
24,124,224 極間磁石

Claims (3)

  1. 回転子と固定子とがギャップを介して対峙するベアリングレスモータにおいて、
    回転子が固定子との対峙面から離間して埋設されたn極の永久磁石
    固定子がn極の電動機巻線とn+2極の位置制御巻線と、を備え、
    位置制御巻線による位置制御磁束が永久磁石より対峙面側の部分を通るように、回転子の永久磁石が固定子との対峙面より深く没入していることを特徴とする、ベアリングレスモータ。
  2. 請求項1に記載のベアリングレスモータにおいて、
    前記回転子は、合う異極の永久磁石の間に極間磁石を備えていることを特徴とする、ベアリングレスモータ。
  3. 請求項2に記載のベアリングレスモータにおいて、
    前記極間磁石は、永久磁石より固定子に向って突出していることを特徴とする、ベアリングレスモータ。
JP2002280264A 2002-09-26 2002-09-26 ベアリングレスモータ Expired - Fee Related JP3739347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280264A JP3739347B2 (ja) 2002-09-26 2002-09-26 ベアリングレスモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280264A JP3739347B2 (ja) 2002-09-26 2002-09-26 ベアリングレスモータ

Publications (2)

Publication Number Publication Date
JP2004120886A JP2004120886A (ja) 2004-04-15
JP3739347B2 true JP3739347B2 (ja) 2006-01-25

Family

ID=32275007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280264A Expired - Fee Related JP3739347B2 (ja) 2002-09-26 2002-09-26 ベアリングレスモータ

Country Status (1)

Country Link
JP (1) JP3739347B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124923B2 (ja) * 2005-08-25 2013-01-23 ダイキン工業株式会社 界磁子、電動機及びその駆動方法
JP4758215B2 (ja) * 2005-11-07 2011-08-24 アスモ株式会社 埋込磁石型モータ
JP5208088B2 (ja) * 2009-10-30 2013-06-12 三菱電機株式会社 永久磁石埋込型電動機及び送風機
JP5747385B2 (ja) * 2011-10-21 2015-07-15 国立大学法人北海道大学 Ipm型ベアリングレスモータ
JP6083640B2 (ja) * 2012-11-20 2017-02-22 国立大学法人茨城大学 永久磁石埋込型モータ
JP6447662B2 (ja) * 2017-05-09 2019-01-09 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
CN108612658B (zh) * 2018-04-22 2019-10-22 大连理工大学 一种用于屏蔽泵的故障检测预警装置
CN111209639B (zh) * 2020-02-17 2024-05-03 合肥工业大学 一种叶轮-轴承-转子系统的高效定量建模方法
CN112152363B (zh) * 2020-10-20 2022-01-07 华中科技大学 一种单定子励磁的盘式全自由度无轴承电机及其控制方法
JP7572645B2 (ja) 2023-03-31 2024-10-24 ダイキン工業株式会社 ベアリングレスモータシステム、圧縮機及び冷凍装置

Also Published As

Publication number Publication date
JP2004120886A (ja) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4644832B2 (ja) 回転電気機械
EP3490122B1 (en) Rotation drive device and centrifugal pump device
US9366261B2 (en) Centrifugal pump device
US7474029B2 (en) Rotor magnet placement in interior permanent magnet machines
JP2009273214A (ja) ベアリングレスモータ及び該ベアリングレスモータを搭載した人工心臓、血液ポンプ、人工心肺、ポンプ、ファン、ブロワ、コンプレッサ、アクチュエータ、リアクションホイール、フライホイール、揺動ステージ
WO2011102176A1 (ja) 遠心式ポンプ装置
JP6327887B2 (ja) 電動機および電動機システム
JP3739347B2 (ja) ベアリングレスモータ
US20100123364A1 (en) Substantially parallel flux uncluttered rotor machines
JP5590520B2 (ja) アキシャル型磁気浮上モータおよびアキシャル型磁気浮上モータを備えたアキシャル型磁気浮上遠心ポンプ
JP2010279230A5 (ja)
CN108712043A (zh) 一种定子永磁偏置五自由度无轴承异步电机
Sugimoto et al. Design of SPM and IPM rotors in novel one-axis actively positioned single-drive bearingless motor
WO2016158173A1 (ja) 遠心式ポンプ装置
JP3854998B2 (ja) ベアリングレスモータならびにその回転子位置制御回路および回転子位置制御方法
Miyoshi et al. Axial vibration suppression by field flux regulation in two-axis actively positioned permanent magnet bearingless motors with axial position estimation
JP6377543B2 (ja) 磁石埋込型回転電機
JP3063451U (ja) 密閉型冷凍機の電動機
JP3930834B2 (ja) アキシャル型磁気浮上回転機器及び遠心ポンプ
JP2013126267A (ja) 回転電気機械および圧縮機
CN102593970B (zh) 永磁体机器的磁轭
JP2017158333A (ja) 電動機
Sugimoto et al. Design consideration for performance improvement in one-axis actively positioned single-drive bearingless motor
JP6452518B2 (ja) 遠心式ポンプ装置
Sugimoto et al. Parameter identifications of current-force factor and torque constant in single-drive bearingless motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees