[go: up one dir, main page]

JP3738614B2 - Emulsifier composition and acidic oil-in-water emulsion using the same - Google Patents

Emulsifier composition and acidic oil-in-water emulsion using the same Download PDF

Info

Publication number
JP3738614B2
JP3738614B2 JP22820999A JP22820999A JP3738614B2 JP 3738614 B2 JP3738614 B2 JP 3738614B2 JP 22820999 A JP22820999 A JP 22820999A JP 22820999 A JP22820999 A JP 22820999A JP 3738614 B2 JP3738614 B2 JP 3738614B2
Authority
JP
Japan
Prior art keywords
polypeptide
water
component
emulsifier composition
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22820999A
Other languages
Japanese (ja)
Other versions
JP2001046851A (en
Inventor
和伸 津村
靖 中村
渉 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP22820999A priority Critical patent/JP3738614B2/en
Publication of JP2001046851A publication Critical patent/JP2001046851A/en
Application granted granted Critical
Publication of JP3738614B2 publication Critical patent/JP3738614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Seasonings (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリペプチド及び水溶性多糖類を含有してなる乳化剤組成物及びこれを用いて得られる水中油型乳化物に関する。
【0002】
【従来の技術】
近年、消費者の合成添加物使用の敬遠にともない、合成乳化剤に代わる天然素材の開発が要望されている。天然素材としての大豆蛋白は、従来から乳化剤として開発検討されており、大豆蛋白を特定の条件で酵素分解する方法(特開昭56−26171号公報、特開昭57−16674号公報、特開平6−197788号公報)や大豆蛋白成分に注目したグリシニン酸性サブユニットを利用する方法(特開昭63−36748号公報)やグリシニン塩基性サブユニットを利用する方法などが知られているがこれらの方法ではまだその乳化力が十分ではない。
【0003】
乳化製剤用に水溶性ヘミセルロースに蛋白質分解物を添加して乳化力を向上させる方法が提案されている(特開平7−97339号公報)。しかし、ここで使用されている蛋白質分解物はアミノ酸数が2〜10個程度の低分子ペプチドあり、中性域の比較的低油分の製剤に適用されるが、酸性域の比較的高油分の水中油型乳化物には適用出来ない。また、比較的低油分の酸性飲料に水溶性大豆多糖類等を使用する方法(特開平5−7458号公報)が開示されているが、酸性飲料の蛋白粒子が凝集、沈殿、相分離を起こすのを防止するのが目的である。更に、水中油型乳化物の製造に際して、サイクロデキストリンを併用する試みも提案されている(特開平10−262560号公報)。
【0004】
【発明が解決しようとする課題】
以上の実情に鑑み、本発明は食品をはじめ化粧品、トイレタリー製品、医薬品更には工業用途などの様々な分野において利用できる乳化剤組成物、特に酸性水中油型乳化物の製造に適した乳化剤組成物を提供することにある。
【0005】
【課題を解決する為の手段】
本発明者らは、上記問題解決について鋭意検討した結果、大豆蛋白を特定の分解方法により得られるポリペプチド及び水溶性多糖類を特定の比率で含有されてなる乳化剤組成物が広範囲のpH域に優れた乳化力を示し、特に酸性域の乳化物調製にとっては好適であることを見い出し本発明を完成するに至った。
すなわち、本発明は水溶性多糖類と以下の諸性質を有するポリペプチドとを含有する乳化剤組成物を提供するものである。
1)メルカプトエタノールを含むSDSポリアクリルアミドゲル電気泳動法による分析で、分子量5,000〜35,000の範囲にあるポリペプチドが主体である。
2)ゲルろ過法による主ピーク分子量が約8,000で、分子量範囲5,000〜30,000が全ピークエリア面積の70%以上であり、分子量5,000未満が全ピークエリア面積の20%以下である。
3)0.22M TCA 可溶率で30〜90%である。
このポリペプチドは大豆蛋白中の7S成分及び11S成分を別途に加水分解して得られるポリペプチドであって、このポリペプチドと水溶性多糖類を含有する乳化剤組成物で、ポリペプチドと水溶性多糖類の合計重量に対する水溶性多糖類の重量比が0.1〜0.9であることを特徴とする乳化剤組成物及びそれを用いた酸性水中油型乳化物を提供するものである。乳化剤組成物中の水溶性多糖類は大豆、柑橘類或いは馬鈴薯由来のものであることが好ましい。更に、本発明の乳化剤組成物を0.01重量%〜10重量%使用して、良好な水中油型乳化物を製造することが可能となる。特に、pH3〜6の酸性水中油型乳化物や油分が5〜80%である比較的高油分の酸性水中油型乳化物を製造出来る。
【0006】
【発明の実施の形態】
本発明の乳化剤組成物に用いるポリペプチドは、以下に述べる特定の分解方法により得られたポリペプチドを用いることが望ましい。
すなわち、大豆蛋白中の主構成成分である7S成分、11S成分を共に含む低変性大豆蛋白質を基質にして2段階の酵素分解反応、即ち第一分解反応によって7S成分、そして第二分解反応によって11S成分を、或いはその逆に第一分解反応によって11S成分、そして第二分解反応によって7S成分をそれぞれ加水分解して得られるポリペプチドが上記問題を解決する上で有効なポリペプチドであり、未分解の分離大豆蛋白や非選択的に加水分解された分解物、低分子のペプチド、アミノ酸では上記問題解決は困難である。
本発明のポリペプチドの主要構成成分の解析は、SDS-PAGEという公知の分析方法により可能であり、標準分子量マーカーの移動度から各ポリペプチドの分子量を、また、デンシトメーターによる定量によりその含量を評価することが可能である。このようにして評価する本発明のポリペプチドの主要構成成分は、分子量約10,000、約20,000、約25,000、約29,000、約32,000等からなる成分を含み、デンシトメーターによる定量から、本発明のポリペプチドの全エリア面積に対する、分子量5,000〜35,000の範囲にあるポリペプチドのエリア面積が約50%以上である。7S成分及び11成分を別途に選択的に加水分解した両画分を全量用いた場合に比べて、例えば、11S成分を選択的に加水分解した画分を多く用いる時は上記のうち分子量約10,000の成分が多くなり他の成分が少なくなる等、両画分の配合割合によっては分子量5,000〜35,000の範囲にあるポリペプチドの組成がある程度変動するものの、全エリア面積に対する5,000〜35,000の範囲のポリペプチドのエリア面積は約50%を下回らない。
【0007】
本発明のポリペプチドのゲルろ過法による分子量評価は、以下の条件で行った。
(条件)カラム;東ソー(株)製、SW3000XL(7.6mm×30cm)、溶出液;1 %SDS 及び0.2MNaCl を含む25mM 燐酸緩衝液(pH 7 )を用い、流速0.8 ml/分で溶出。検出;220nmの吸光度。
分析するサンプルを上記溶出液に0.5 %濃度(0.1 %メルカプトエタノールを含む)で溶解後、2分煮沸溶解させて、分析に供した。尚、分子量既知の標準蛋白質の溶出時間をもとに、分子量評価を行った。
【0008】
加水分解度は、蛋白質の分解率として一般的に用いられる0. 22M TCA (トリクロロ酢酸)可溶率を指標として30〜90%、好ましくは40〜90%が適当である。
【0009】
前記の諸性質を有することにより、本発明のポリペプチドは、乳化性および起泡性に優れる。本発明では乳化力の評価は、乳化活性を測定することで評価した。乳化活性はpH4、pH5.5およびpH7に調整した試料溶液(1重量%)3mlに大豆油1mlを加え、超音波分散機で乳化物を調製し、0. 1%SDS 溶液で1000倍に希釈して溶液濁度(500nmの吸光度)を測定した。評価は、その濁度値が高い程乳化力が高いと判断する。本発明のポリペプチドの乳化力はpH4で0.15以上、好ましくは0.2以上、より好ましくは0.25以上、pH5.5で0.4以上、好ましくは0.5以上、より好ましくは0.6以上、 pH 7で0.8以上、好ましくは1.0以上、より好ましくは1.2以上を満たすことができる。
【0010】
本発明では起泡力の評価は、水系及び油系での起泡容量とその安定性により評価する。ここでは、より評価がシビアな油系での気泡容量とその安定性により評価した。すなわち、5重量%水溶液100mlに大豆油を4ml加え、これをホモヂナイザー(日本精機社製)により10,000rpm で1分間処理し、調製された泡をメスシリンダーに移してその泡容量(ml)を測定した。安定性の評価は、起泡直後、1時間放置後の泡容量(ml)変化から判断した。本発明のポリペプチドの起泡力は250以上、好ましくは300以上、より好ましくは350以上である。
【0011】
大豆蛋白中の7S成分及び11S成分を別途に加水分解する態様としては、大豆蛋白を公知の方法により7Sと11成分に予め分離させてから加水分解することは可能であるが、そのような方法は、一般に工業的に実施するにはシビアなpHや塩分濃度の管理の割りに分離性が悪く、また、所定の加水分解物を得るには未分解の成分の生成量が多くて歩留りが悪い。この点、7S成分及び11S成分を別途に加水分解する方法として、大豆蛋白中の7S成分または11S成分のいずれかをまず選択的に加水分解し、次いで、加水分解された画分と未分解の画分とを分離乃至分離せず、未分解の画分を更に加水分解する方法が優れている。
【0012】
即ち、本発明のポリペプチドは大豆蛋白の主構成成分である7S成分、11S成分を共に含む大豆蛋白質を基質にして2段階の酵素分解反応を行うのがよく、第一分解反応によって7S成分を選択的に、第二分解反応によって11S成分を、或いはその逆に第一分解反応によって11S成分を選択的に、第二分解反応によって7S成分をそれぞれ加水分解物して得るのがよく、上述した性質の新規なポリペプチドを容易に得ることができる。
【0013】
選択的加水分解に用いる大豆蛋白は、未変性あるいは低変性のものが好ましい。丸大豆もしくはヘキサン等の溶剤で脱脂された低変性脱脂大豆または、これらを水抽出した豆乳もしくは脱脂豆乳、更にはこれに酸を用いて等電点沈殿させて沈殿画分を回収する低変性の分離大豆蛋白が例示できる。これらの蛋白質が加熱等により変性を受けているか否かは、蛋白質のDSC(Differential Scanning Calorimetry )分析することにより判別することができる(Nagano et al.,J.Agric.Food Chem.,40,941-944(1992))。この分析方法によれば、例えば未変性の分離大豆蛋白の場合、その主要構成成分である7S成分、11S成分に由来するそれぞれの吸熱ピークが認められるのに対して、過度の変性を受けている分離大豆蛋白の場合では構成成分の吸熱ピークが認められないので、変性の有無を容易に判別できる。
大豆蛋白の中でも特に分離大豆蛋白を基質に用いる場合が最終得られるポリペプチドの風味や乳化性、起泡性の機能の面で好ましい。即ち低変性脱脂大豆(NSI 60以上、好ましくはNSI 80以上)をpH6〜9、好ましくはpH6. 5〜8. 0の範囲で7倍〜15倍加水し、60℃以下、好ましくは50℃以下で抽出し、オカラ成分を除去した脱脂豆乳を等電点沈殿させて沈殿画分を回収したものが好適である。また、これら脱脂大豆、脱脂豆乳、分離大豆蛋白はその調製過程中において乳化性や起泡性にとって好ましくないフィチン酸を分解または除去操作されたものも好適である。
【0014】
11S成分を第一分解反応により選択的加水分解する場合は、上記の大豆蛋白を基質とし、1〜30%蛋白濃度の溶液に対して、蛋白加水分解酵素を基質固形分に対して0. 001〜1%、好ましくは0. 01〜0. 5%の範囲で添加し、45℃以下、好ましくは30〜40℃においてpH3.0以下、好ましくはpH1.8〜2.5で、反応時間4時間以内の短時間、好ましくは10分〜2時間に0.22M TCA 可溶率で10〜50%となるまで反応するのがよい。反応温度が45℃を越えると11S成分以外に7S成分も同時に分解を受け易くなり11S成分の選択的な分解が困難となりまた、11S成分の分解物自体もより低分子化するため乳化性、起泡性が低下する。また、反応時間が長すぎても11S成分の分解物がより低分子化するため、前記同様に物性と風味の低下が起こり好ましくない。
【0015】
ここで用いられる蛋白加水分解酵素はpH3. 0以下で活性を示す蛋白加水分解酵素全般が適当であり、動物由来のペプシン、カセプシンや微生物由来の一連のアスパルチックプロテアーゼ類等の例えば「ニューラーゼF 」、「プロテアーゼM 」(天野製薬株式会社製)、「スミチームLP」(新日本化学株式会社製)等の市販酵素剤を用いることが出来る。中でもペプシンは好適である。
【0016】
7S成分を第一分解反応により選択的加水分解するには、上記の大豆蛋白を基質とし、0. 5%〜20%蛋白濃度の溶液に対して、蛋白加水分解酵素を基質固形分に対して0. 001〜0.5%、好ましくは0. 01〜0. 5%の範囲で添加し、反応温度50℃以上、好ましくは55〜85℃においてpH3.0より高いpH 、好ましくはpH3.5〜8.0で、反応時間2時間以内の短時間、好ましくは10分〜30分程度で、0.22M TCA 可溶率で10〜50%となるまで反応することで実施できる。尚、pH4〜5における大豆蛋白の等電点近傍においても反応可能であるが、基質の分散性が著しく低下する為、酵素反応率が悪くなるので、このpH域で反応するのは得策でない。
【0017】
ここで用いられる蛋白加水分解酵素は50℃を越え90℃未満、とりわけ55〜85℃において蛋白質分解活性を有する酵素剤であることが必要である。これらは植物や動物臓器或いは微生物起源の市販酵素剤等その起源は特に限定されない。
【0018】
第一分解反応の後、加水分解された画分と未分解の画分を分離する場合は、pH分画が簡便で好適であり、11S成分の選択的加水分解物を回収する場合pH3〜5、好ましくはpH3. 5〜4. 5の範囲に調整し、7S成分の選択的加水分解物を回収する場合pH3〜6、好ましくはpH3. 5〜5. 5の範囲に調整し、選択的加水分解物を主体とする上清画分とし、未分解の画分を主体とする沈殿画分を遠心分離やフィルタープレス分離等で各々回収する。
【0019】
第一分解反応の未分解の画分は、第二の分解反応に供する。未分解の画分が上記のように沈殿画分である場合には、加水して、第一分解反応とは異なる条件にて第二分解反応を行う。例えば11S成分を第一分解反応した後であると、45℃より高い反応温度またはpH3より高いpHで7S成分に富んだ画分を第二分解反応する。とりわけpH3以下、温度50℃以上で第二分解反応するのが好適である。7S成分を第一分解反応した後であると、11S成分に富んだ画分を第二分解反応する。この場合特にpH3.0以下、反応温度45℃以下で行うことが好適である。尚、7S成分を第一分解反応し、11S成分に富んだ画分を第二分解反応する場合は、上記pH3.0以下、反応温度45℃以下で行う反応を選択的に行うことができるので、第一分解反応後の分離操作は必ずしも必要ではなく、第一分解反応液をそのまま第二分解反応に移すことも出来る。第二分解反応に用いる蛋白分解酵素は反応pHで活性を持つものであれば良く、前述した酵素が例示される。反応時間は2時間以内の短時間、好ましくは10分〜30分程度で、0.22M TCA 可溶率で10〜50%程度に分解する。
【0020】
このようにして第一分解反応で得られた分解物と第二分解反応で得られた分解物を全量用い、又は一方若しくは両方の分解物に精製を行って任意の割合に例えば9:1〜1:9で混合して、本発明の大豆蛋白に由来するポリペプチドを調整する。また両分解物を含むことによって良好な性質を持つポリペプチドを高収率で得ることができる。このポリペプチドは任意のpHに調整し、必要であれば油脂、乳化剤、糖類、その他蛋白質を殺菌前あるいは後に混合し、そのまま或いは濃縮して液状のまま、或いは乾燥により粉末状の製品とすることができる。また、混合液中に含まれる溶解性の低い蛋白や、大豆由来の微量成分であるフィチン酸は、乳化力(特に酸性域)および起泡力(特に起泡安定性)に悪影響を及ぼし易いので、これらの成分を除去することにより、乳化力および起泡力を一層向上させることができる。更に、これらの微量成分を除去しても70%以上の固形物回収率を確保出来る。
これらの成分の除去は、ポリペプチドの液をそのまま、好ましくはアルカリ土類金属の水酸化物又は塩例えば水酸化Ca、塩化Ca、炭酸Ca、乳酸Ca、硫酸Ca、グリセロリン酸Ca、クエン酸Ca、グルコン酸Ca、リン酸Caのいずれか1種または2種以上のCa塩を混合液の固形分に対して1〜6%添加し、pHを2〜4または5〜9、好ましくはpH5. 5〜7. 5に調整し、生じる不溶物を除去して行うことができる。更には、混合液をフィターゼ(広義にはフィチン酸分解活性を有する酵素)による酵素反応を行い、フィチン酸を加水分解した混合液を得る。そして更にはフィターゼによる分解後の混合液のpHを2〜4または5〜9、好ましくはpH5. 5〜7. 5に調整し、生じる不溶物を除去したフィターゼ処理混合上清画分を得る。これらの方法はポリペプチドの乳化力、起泡力をより高めることが出来る。
以上が、本発明の乳化剤組成物に用いるポリペプチドの特徴的性質を示したものである。
【0021】
本発明の乳化剤組成物に用いる水溶性多糖類は水溶性大豆多糖類、或いはペクチンが挙げられる。水溶性大豆多糖類(以下SSPSと略する)は、ラムノース、フコース、アラビノース、キシロース、ガラクトース、グルコース及びウロン酸からなる水溶性多糖類であって、標準プルラン(昭和電工社製)を標準物質として極限粘度法で求めた平均分子量が100万以下のものである。これは、大豆から大豆蛋白を抽出した抽出粕より製造される。ペクチンは柑橘類の果実皮より抽出したもの(以下Cペクチンと略する)を、また馬鈴薯由来のペクチンは馬鈴薯から澱粉を抽出した抽出粕より製造されたもの(以下Pペクチンと略する)を使用できる。
【0022】
本発明の乳化剤組成物は、上記ポリペプチド及び水溶性多糖類が含まれ、ポリペプチドと水溶性多糖類の合計重量に対する水溶性多糖類の重量比が0.1〜0.9好ましくは0.2〜0.8であることが望ましい。この重量比が0.1よりも小さい場合は、酸性での乳化力が不充分であり、また重量比が0.9を越えると酸性域のみならず弱酸性〜中性域の乳化力も極端に悪くなり、乳化安定性も劣る。特に、pH3〜6付近の乳化力を必要とする場合には、重量比が0.3〜0.7の場合が良好な乳化力を発揮し、更に好ましい。尚、本発明の乳化剤組成物には、ポリペプチド及び水溶性多糖類の主成分以外に、その他蛋白質、糖質、油脂などを含有することは任意である。
【0023】
本発明の乳化剤組成物を用い、水中油型乳化物あたり0.05重量%〜10重量%、好ましくは0.1重量%〜5重量%使用することで良好な水中油型乳化物、特に酸性水中油型乳化物を製造することが可能となる。乳化物あたり0.05重量%未満では、乳化が不安定となり好ましくなく、また10重量%を越えて使用することは、経済的に好ましくない。本発明の酸性水中油型乳化物を具体的に例示すれば、マヨネーズ、サワークリーム、果汁入りクリームなどで、その製品のpHが3〜6、特に3.5〜5.5の範囲にあるものに効果的であり、油分が5〜80%、特に20〜80%の高油分のものにも効果が発揮される。このような酸性水中油型乳化物を製造する際、乳化物調製に用いる機械、製造条件、及び本発明の乳化剤組成物以外に配合される油脂や蛋白質や糖質類、フレーバー類、pH調整剤等は特に限定されず公知の物質を用いることが出来る。
【0024】
【実施例】
以下、実施例により本発明の実施様態を具体的に説明するが、本発明がこれらによってその技術範囲が限定されるものではない。
製造例1(T−1)
不二製油(株)製の低変性脱脂大豆フレーク(NSI 90)に40℃の温水10倍量を加え、これにNaOH溶液を加えてpH7.0に調整した。これを緩やかに撹拌して1時間抽出し、遠心分離機にて不溶画分のオカラと可溶画分の脱脂豆乳とに分離した。
得られた脱脂豆乳に塩酸を加えてpHを4.5に調整し、生じた蛋白質沈殿物を遠心分離機にて回収し分離大豆蛋白カードを得た。次いで、分離大豆蛋白カードに加水し塩酸を加えてpH2.0、分離大豆蛋白10重量%に調整し、この溶液1L に対してペプシン(日本バイオコン製)200mgを加え、37℃で30分間加水分解した(第一反応)。反応液を電気泳動で分析した結果、大豆蛋白中の11S成分は選択的に加水分解され、11Sに相当する移動度のバンドは消失し、11S成分に由来する分解物成分、および分解を受けていない7S成分に相当する移動度のバンドが認められた。反応液は、NaOH溶液を用いてpH4.5に調整し生じてくる沈殿を遠心分離機にて11S成分の分解物を含んだ上清画分と7S成分に富んだ沈殿画分(未分解の画分)とに分離した。なお、第一反応の反応液の0.22M TCA可溶率は、25%、pH分画後の上清画分の最終0.22M TCA可溶率は、72%、pH分画後の上清画分の容量回収率は80%、pH分画後の上清画分の固形分回収率は24%であった。7S成分に富んだ沈殿画分(未分解の画分)は、加水し塩酸を加えてpH2.0、固形分7重量%に調製し、この溶液1L に対してペプシン(日本バイオコン製)100mgを加え、60℃で20分間再度加水分解を行った(第二反応)。なお、ペプシン分解後の反応液の最終0.22M TCA 可溶率は、46%であった。第二反応の反応液は、前記第一反応の上清画分と混合し、NaOH溶液を用いてpH6. 5に調整し、これを噴霧乾燥させてポリペプチド(T−1)を調製した。得られたポリペプチドの組成は、SDS電気泳動分析の結果、分子量5,000〜35,000の範囲に90%以上含まれていた。また、ゲルろ過分析の結果主ピーク分子量が約8,000程度であり、分子量範囲5,000〜30,000の範囲のピークエリア面積が94%で、分子量5,000未満は1%であった。そして一般分析値は、粗蛋白質84%、灰分11%、水分5%であり、0.22M TCA 可溶率は、52%であった。
【0025】
製造例2(T−2)
製造例1での第一反応の上清画分と第二反応の反応液の混合液を用い、その固形分に対して3重量%の水酸化Caを添加し、更にNaOH溶液を用いてpH6. 5に調整し、これを140℃、7秒の高温短時間加熱処理を行った後室温まで冷却し不溶成分を5000Gにて10分間遠心分離にて除去し、混合上清画分を得、これを噴霧乾燥させてポリペプチド(T−2)を調製した。得られたポリペプチドの組成は、SDS電気泳動分析の結果、分子量5,000〜35,000の範囲に80%以上含まれていた。また、ゲルろ過分析の結果主ピーク分子量が約8,000程度であり、分子量範囲5,000〜30,000の範囲のピークエリア面積が89%で、分子量5,000未満は10%以下であった。そして一般分析値は、粗蛋白質76%、灰分15%、水分5%であり、0.22M TCA 可溶率は、70%であった。
【0026】
試験例
上記で調製したポリペプチド(T−1及びT−2),大豆ペプチド(商品名ハイニュ−トD3、平均ペプチド鎖長5、0.22M TCA 可溶率98%、不二製油株式会社製)、水溶性大豆多糖類(SSPS;商品名ソヤファイブDA−100、不二製油株式会社製)、Cペクチン(商品名;SM−478、三栄源FFI株式会社製)を用いた。種々の混合比率(水溶性多糖類/(ポリペプチド+水溶性多糖類))の1重量%溶液を用い、各pHでの乳化活性(本文中の方法による)を測定した結果を表1に示す。
【0027】

Figure 0003738614
表1に示すように、ポリペプチドとSSPS、或いはCペクチンを混合することで、相乗的にpH 4の乳化活性が顕著に上昇することが判る。また、低分子のペプチドでは効果はないことが判る。
【0028】
実施例1
前記製造例1にて作成したポリペプチド(T−1)50重量部とSSPS50重量部を均一に混合し、乳化剤組成物を調製した(以下M−1とする)。配合表の成分のうち、サラダ油以外をケンウッドミキサー(愛工舎製作所社製「プロKM- 230」)にて攪拌混合後、サラダ油を添加しながら乳化した。そして、乳化物をコロイドミル(Fryma社製)にて均質化し、マヨネーズ様乳化物を調製した。
Figure 0003738614
M−1と、比較としてポリペプチド(T−1)のみにて作成したマヨネーズ様乳化物(pH4.2)の平均乳化粒子径及び−30℃で1日凍結し、その後解凍した状態を観察した結果を以下に示す。
Figure 0003738614
M−1はT−1に比べ、良好な乳化物が得られ、また凍結に対しても安定なマヨネーズ様乳化物が調製可能であった。
【0029】
実施例2
前記製造例2にて作成したポリペプチド(T−2)50重量部とPペクチンを50重量部を均一に混合し、乳化剤組成物を調製した(以下M−2とする)。尚、Pペクチンは乾燥馬鈴薯粕を5%濃度となるように水に分散させ、pH を塩酸で4.5に調整し、120℃、30分加熱し、抽出液を得、これを凍結乾燥して製造した。以下の配合の成分を混合し、60℃にて超音波乳化器を用い、コーヒークリーム用乳化物を調製した。尚、比較として、ポリペプチド(T−2)のみを用いたコーヒークリーム用乳化物も調製した。
Figure 0003738614
市販インスタントコーヒー(ネスレ社製)30g、砂糖50gを1L の熱湯で溶解させ、80−85℃に保温した。このコーヒー液100ml(pH5)に、上記コーヒークリーム用乳化物を10mlずつ添加し、状態を観察した。
Figure 0003738614
M−2はT−2に比べ、より良好なコーヒークリーム用乳化物が調製可能であった。
【0030】
【発明の効果】
食品をはじめ化粧品、トイレタリー製品、医薬品更には工業用途などの様々な分野において利用できる乳化剤組成物、特に酸性水中油型乳化物の製造に適した乳化剤組成物を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an emulsifier composition comprising a polypeptide and a water-soluble polysaccharide, and an oil-in-water emulsion obtained using the same.
[0002]
[Prior art]
In recent years, with the avoidance of consumers' use of synthetic additives, development of natural materials to replace synthetic emulsifiers has been demanded. Soy protein as a natural material has been developed and studied as an emulsifier, and a method for enzymatically degrading soy protein under specific conditions (Japanese Patent Laid-Open No. 56-26171, Japanese Patent Laid-Open No. 57-16674, Japanese Patent Laid-Open No. Hei. 6-197788), a method using a glycinin acidic subunit focused on soybean protein components (Japanese Patent Laid-Open No. 63-36748), a method using a glycinin basic subunit, and the like are known. The method still does not have sufficient emulsifying power.
[0003]
A method for improving the emulsifying power by adding a protein degradation product to water-soluble hemicellulose for an emulsified preparation has been proposed (JP-A-7-97339). However, the proteolysate used here is a low molecular weight peptide having about 2 to 10 amino acids and is applied to a preparation having a relatively low oil content in the neutral range. Not applicable to oil-in-water emulsions. In addition, a method of using water-soluble soybean polysaccharide or the like in an acidic beverage with a relatively low oil content (Japanese Patent Laid-Open No. 5-7458) is disclosed, but protein particles in the acidic beverage cause aggregation, precipitation, and phase separation. The purpose is to prevent this. Furthermore, an attempt to use cyclodextrin in combination in the production of an oil-in-water emulsion has also been proposed (Japanese Patent Application Laid-Open No. 10-262560).
[0004]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides an emulsifier composition that can be used in various fields such as foods, cosmetics, toiletries, pharmaceuticals, and industrial applications, particularly an emulsifier composition suitable for the production of acidic oil-in-water emulsions. It is to provide.
[0005]
[Means for solving the problems]
As a result of intensive studies on solving the above problems, the present inventors have found that an emulsifier composition containing a soybean protein obtained by a specific decomposition method and a water-soluble polysaccharide in a specific ratio has a wide pH range. It showed excellent emulsifying power, and was found to be particularly suitable for the preparation of emulsions in the acidic range, thereby completing the present invention.
That is, the present invention provides an emulsifier composition containing a water-soluble polysaccharide and a polypeptide having the following properties.
1) Mainly a polypeptide having a molecular weight in the range of 5,000 to 35,000 as analyzed by SDS polyacrylamide gel electrophoresis containing mercaptoethanol.
2) The main peak molecular weight by gel filtration is about 8,000, the molecular weight range 5,000 to 30,000 is 70% or more of the total peak area, and the molecular weight less than 5,000 is 20% of the total peak area. It is as follows.
3) It is 30-90% by 0.22M TCA solubility rate.
This polypeptide is a polypeptide obtained by separately hydrolyzing 7S component and 11S component in soybean protein, and is an emulsifier composition containing this polypeptide and water-soluble polysaccharide. The present invention provides an emulsifier composition characterized in that the weight ratio of the water-soluble polysaccharide to the total weight of saccharides is 0.1 to 0.9, and an acidic oil-in-water emulsion using the same. The water-soluble polysaccharide in the emulsifier composition is preferably derived from soybean, citrus fruit or potato. Furthermore, it becomes possible to produce a good oil-in-water emulsion using 0.01 to 10% by weight of the emulsifier composition of the present invention. In particular, an acidic oil-in-water emulsion having a pH of 3 to 6 and an acidic oil-in-water emulsion having a relatively high oil content of 5 to 80% can be produced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the polypeptide used in the emulsifier composition of the present invention, it is desirable to use a polypeptide obtained by a specific decomposition method described below.
That is, a low-modified soybean protein containing both 7S component and 11S component, which are main components in soybean protein, is used as a substrate in a two-stage enzymatic degradation reaction, that is, 7S component by the first degradation reaction, and 11S by the second degradation reaction. The polypeptide obtained by hydrolyzing the component, or conversely, the 11S component by the first decomposition reaction and the 7S component by the second decomposition reaction, is an effective polypeptide for solving the above problems, and is not decomposed. It is difficult to solve the above problems with isolated soybean protein, non-selectively hydrolyzed degradation products, low molecular weight peptides, and amino acids.
Analysis of the main components of the polypeptide of the present invention can be performed by a known analytical method called SDS-PAGE. The molecular weight of each polypeptide is determined from the mobility of a standard molecular weight marker, and the content of each polypeptide is determined by quantification using a densitometer. Can be evaluated. The main components of the polypeptide of the present invention to be evaluated in this way include components having a molecular weight of about 10,000, about 20,000, about 25,000, about 29,000, about 32,000, etc. From the quantification by the tometer, the area area of the polypeptide having a molecular weight in the range of 5,000 to 35,000 is about 50% or more with respect to the total area area of the polypeptide of the present invention. Compared with the case where all the fractions obtained by selectively hydrolyzing the 7S component and the 11 component separately are used, for example, when a large amount of the fraction obtained by selectively hydrolyzing the 11S component is used, the molecular weight of about 10 Although the composition of the polypeptide having a molecular weight in the range of 5,000 to 35,000 varies to some extent depending on the blending ratio of both fractions, such as an increase in the components of 1,000 and a decrease in other components, it is 5 for the total area area. The area area of the polypeptide in the range of 3,000 to 35,000 is not less than about 50%.
[0007]
The molecular weight of the polypeptide of the present invention by gel filtration was evaluated under the following conditions.
(Condition) Column: manufactured by Tosoh Corporation, SW3000XL (7.6 mm × 30 cm), eluent: eluted with 25 mM phosphate buffer (pH 7) containing 1% SDS and 0.2 M NaCl, at a flow rate of 0.8 ml / min. . Detection; absorbance at 220 nm.
The sample to be analyzed was dissolved in the eluate at a concentration of 0.5% (including 0.1% mercaptoethanol), and then dissolved by boiling for 2 minutes for analysis. The molecular weight was evaluated based on the elution time of a standard protein with a known molecular weight.
[0008]
The degree of hydrolysis is suitably 30 to 90%, preferably 40 to 90%, based on the solubility of 0.22M TCA (trichloroacetic acid) generally used as the protein degradation rate.
[0009]
By having the above properties, the polypeptide of the present invention is excellent in emulsifying properties and foaming properties. In the present invention, the emulsifying power is evaluated by measuring the emulsifying activity. The emulsification activity was adjusted to pH 4, pH 5.5 and pH 7 by adding 1 ml soybean oil to 3 ml sample solution (1 wt%), preparing an emulsion with an ultrasonic disperser, and diluting 1000 times with a 0.1% SDS solution. Then, the solution turbidity (absorbance at 500 nm) was measured. Evaluation judges that emulsification power is so high that the turbidity value is high. The emulsifying power of the polypeptide of the present invention is 0.15 or more at pH 4, preferably 0.2 or more, more preferably 0.25 or more, 0.4 or more at pH 5.5, preferably 0.5 or more, more preferably It can satisfy 0.6 or more, 0.8 or more at pH 7, preferably 1.0 or more, more preferably 1.2 or more.
[0010]
In the present invention, the foaming power is evaluated based on the foaming capacity and stability in aqueous and oil systems. Here, the evaluation was based on the bubble capacity and its stability in a more severe oil system. That is, 4 ml of soybean oil was added to 100 ml of a 5% by weight aqueous solution, and this was treated with a homogenizer (manufactured by Nippon Seiki Co., Ltd.) at 10,000 rpm for 1 minute. It was measured. The stability evaluation was judged from the change in foam volume (ml) immediately after foaming and after standing for 1 hour. The foaming power of the polypeptide of the present invention is 250 or more, preferably 300 or more, more preferably 350 or more.
[0011]
As a mode of separately hydrolyzing the 7S component and the 11S component in the soybean protein, it is possible to hydrolyze the soybean protein after separating it into 7S and 11 components by a known method. In general, it is poor in separability for severe pH and salinity control for industrial implementation, and in order to obtain a predetermined hydrolyzate, the yield of undecomposed components is large and the yield is poor. . In this regard, as a method of separately hydrolyzing the 7S component and the 11S component, either the 7S component or the 11S component in the soybean protein is first selectively hydrolyzed, and then the hydrolyzed fraction and the undegraded fraction. A method of further hydrolyzing the undecomposed fraction without separating or separating the fraction is excellent.
[0012]
That is, the polypeptide of the present invention is preferably subjected to a two-stage enzymatic degradation reaction using soybean protein containing both 7S component and 11S component, which are main components of soybean protein, as a substrate. Alternatively, the 11S component may be selectively hydrolyzed by the second decomposition reaction, or the 11S component by the first decomposition reaction, and the 7S component by the second decomposition reaction. A novel polypeptide of the nature can be easily obtained.
[0013]
The soy protein used for selective hydrolysis is preferably unmodified or low-denatured. Low-denatured defatted soybeans defatted with a solvent such as whole soybeans or hexane, or soy milk or defatted soy milk obtained by water extraction of these, and low-denatures that collect an isoelectric point precipitation using acid. An example is isolated soybean protein. Whether or not these proteins are denatured by heating or the like can be determined by DSC (Differential Scanning Calorimetry) analysis of the proteins (Nagano et al., J. Agric. Food Chem., 40, 941-944). (1992)). According to this analysis method, for example, in the case of undenatured isolated soybean protein, endothermic peaks derived from the 7S component and 11S component, which are the main constituent components, are observed, but excessively denatured. In the case of isolated soy protein, the endothermic peak of the constituent component is not recognized, and therefore the presence or absence of modification can be easily determined.
Among the soy proteins, the case where isolated soy protein is used as a substrate is particularly preferable in terms of functions of flavor, emulsifiability and foamability of the finally obtained polypeptide. That is, low-denatured defatted soybeans (NSI 60 or more, preferably NSI 80 or more) are added 7 to 15 times in the range of pH 6 to 9, preferably pH 6.5 to 8.0, and 60 ° C. or less, preferably 50 ° C. or less. It is preferable that the defatted soymilk extracted with the above method and subjected to removal of the okara component is subjected to isoelectric point precipitation to recover the precipitate fraction. In addition, these defatted soybeans, defatted soymilk, and separated soybean protein are preferably those obtained by decomposing or removing phytic acid, which is undesirable for emulsifiability and foamability, during the preparation process.
[0014]
In the case where the 11S component is selectively hydrolyzed by the first decomposition reaction, the above-mentioned soybean protein is used as a substrate, and the protein hydrolase is added to the substrate solid content in a solution of 1 to 30% protein concentration to 0.001. -1%, preferably 0.01-0.5%, and added at 45 ° C or lower, preferably 30-40 ° C, pH 3.0 or lower, preferably pH 1.8-2.5, reaction time 4 The reaction should be carried out within a short period of time, preferably 10 minutes to 2 hours, until the 0.22 M TCA solubility is 10 to 50%. When the reaction temperature exceeds 45 ° C., the 7S component is easily decomposed in addition to the 11S component, making it difficult to selectively decompose the 11S component, and the decomposed product of the 11S component itself also has a lower molecular weight. Foam properties are reduced. In addition, even if the reaction time is too long, the decomposition product of the 11S component has a lower molecular weight, which is not preferable because the physical properties and flavor are lowered as described above.
[0015]
The protein hydrolase used here is generally any protein hydrolase that exhibits an activity at pH of 3.0 or lower, such as animal-derived pepsin, cathepsin, and a series of microorganism-derived aspartic proteases such as “Neurase F”. Commercially available enzyme agents such as “Protease M” (manufactured by Amano Pharmaceutical Co., Ltd.) and “Sumiteam LP” (manufactured by Shin Nippon Chemical Co., Ltd.) can be used. Of these, pepsin is preferred.
[0016]
In order to selectively hydrolyze the 7S component by the first decomposition reaction, the above-mentioned soybean protein is used as a substrate, and a protein hydrolase is applied to a substrate solid content in a solution having a protein concentration of 0.5% to 20%. It is added in the range of 0.001 to 0.5%, preferably 0.01 to 0.5%, and has a pH higher than pH 3.0 at a reaction temperature of 50 ° C. or higher, preferably 55 to 85 ° C., preferably pH 3.5. It can be carried out by reacting at a reaction time of ˜8.0 for a short time within 2 hours, preferably about 10 to 30 minutes, until the 0.22 M TCA solubility is 10 to 50%. Although the reaction is possible in the vicinity of the isoelectric point of soybean protein at pH 4 to 5, since the dispersibility of the substrate is remarkably lowered and the enzyme reaction rate is deteriorated, it is not a good idea to react in this pH range.
[0017]
The proteolytic enzyme used here needs to be an enzyme agent having a proteolytic activity at more than 50 ° C. and less than 90 ° C., particularly 55 to 85 ° C. The origin of these is not particularly limited, such as commercially available enzyme preparations of plant or animal organs or microorganisms.
[0018]
When the hydrolyzed fraction and the undegraded fraction are separated after the first decomposition reaction, the pH fractionation is convenient and suitable, and when recovering the selective hydrolyzate of the 11S component, the pH is 3-5. In the case of recovering the selective hydrolyzate of the 7S component, preferably in the range of pH 3.5 to 4.5, the pH is adjusted to 3 to 6, preferably in the range of pH 3.5 to 5.5. The supernatant fraction mainly composed of the decomposed product is collected, and the precipitate fraction mainly composed of the undegraded fraction is collected by centrifugation, filter press separation or the like.
[0019]
The undecomposed fraction of the first decomposition reaction is subjected to the second decomposition reaction. When the undecomposed fraction is a precipitate fraction as described above, it is hydrated and the second decomposition reaction is performed under conditions different from the first decomposition reaction. For example, after the first decomposition reaction of the 11S component, the fraction rich in the 7S component is subjected to the second decomposition reaction at a reaction temperature higher than 45 ° C. or a pH higher than pH 3. In particular, the second decomposition reaction is preferred at a pH of 3 or less and a temperature of 50 ° C. or more. After the first decomposition reaction of the 7S component, the fraction rich in the 11S component is subjected to the second decomposition reaction. In this case, it is particularly preferable to carry out at a pH of 3.0 or less and a reaction temperature of 45 ° C. or less. When the 7S component is subjected to the first decomposition reaction and the fraction rich in the 11S component is subjected to the second decomposition reaction, the reaction performed at the pH of 3.0 or less and the reaction temperature of 45 ° C. or less can be selectively performed. The separation operation after the first decomposition reaction is not always necessary, and the first decomposition reaction liquid can be transferred to the second decomposition reaction as it is. The proteolytic enzyme used in the second degradation reaction may be any enzyme that has activity at the reaction pH, and examples include the enzymes described above. The reaction time is a short time within 2 hours, preferably about 10 to 30 minutes, and decomposes to about 10 to 50% with a 0.22 M TCA solubility.
[0020]
In this way, the decomposition product obtained in the first decomposition reaction and the decomposition product obtained in the second decomposition reaction are used in their entirety, or one or both of the decomposition products are purified to an arbitrary ratio, for example, 9: 1 to Mixing 1: 9 to prepare a polypeptide derived from the soy protein of the present invention. Moreover, a polypeptide having good properties can be obtained in a high yield by including both degradation products. This polypeptide should be adjusted to any pH, and if necessary, fats and oils, emulsifiers, saccharides and other proteins should be mixed before or after sterilization and left as it is or concentrated to be in liquid form or dried into a powdered product. Can do. In addition, low-solubility protein contained in the mixture and phytic acid, which is a trace component derived from soybean, tend to adversely affect emulsifying power (especially in the acidic range) and foaming power (particularly foaming stability). By removing these components, emulsifying power and foaming power can be further improved. Furthermore, even if these trace components are removed, a solid recovery rate of 70% or more can be secured.
For removal of these components, the polypeptide solution is used as it is, preferably an alkaline earth metal hydroxide or salt such as Ca hydroxide, Ca chloride, Ca carbonate, Ca lactate, Ca sulfate, Ca glycerophosphate, Ca citrate. In addition, 1 or 6% of Ca salt of gluconate Ca or Ca phosphate or 2 or more kinds of Ca salt is added to the solid content of the mixed solution, and the pH is 2 to 4 or 5 to 9, preferably pH 5. It can adjust to 5-7.5 and can remove the insoluble matter which arises. Furthermore, the mixed solution is subjected to an enzymatic reaction with phytase (an enzyme having phytic acid decomposing activity in a broad sense) to obtain a mixed solution obtained by hydrolyzing phytic acid. Further, the pH of the mixed solution after decomposition by phytase is adjusted to 2 to 4 or 5 to 9, preferably pH 5.5 to 7.5, and a phytase-treated mixed supernatant fraction from which the insoluble matter produced is removed is obtained. These methods can further increase the emulsifying power and foaming power of the polypeptide.
The above shows the characteristic properties of the polypeptide used in the emulsifier composition of the present invention.
[0021]
Examples of the water-soluble polysaccharide used in the emulsifier composition of the present invention include water-soluble soybean polysaccharide and pectin. Water-soluble soybean polysaccharide (hereinafter abbreviated as SSPS) is a water-soluble polysaccharide composed of rhamnose, fucose, arabinose, xylose, galactose, glucose and uronic acid, and standard pullulan (manufactured by Showa Denko KK) as a standard substance. The average molecular weight determined by the intrinsic viscosity method is 1,000,000 or less. This is produced from an extract koji from soybean protein extracted from soybeans. Pectin can be extracted from citrus fruit peel (hereinafter abbreviated as C pectin), and potato-derived pectin can be produced from an extract from starch extracted from potato (hereinafter abbreviated as P pectin). .
[0022]
The emulsifier composition of the present invention contains the polypeptide and the water-soluble polysaccharide, and the weight ratio of the water-soluble polysaccharide to the total weight of the polypeptide and the water-soluble polysaccharide is 0.1 to 0.9, preferably 0.8. It is desirable that it is 2-0.8. When this weight ratio is less than 0.1, the emulsifying power in acidity is insufficient, and when the weight ratio exceeds 0.9, the emulsifying power of not only the acidic range but also weakly acidic to neutral range is extremely high. It becomes worse and the emulsion stability is also poor. In particular, when emulsifying power in the vicinity of pH 3 to 6 is required, it is more preferable that the weight ratio is 0.3 to 0.7 because it exhibits good emulsifying power. The emulsifier composition of the present invention optionally contains other proteins, carbohydrates, fats and oils in addition to the main components of the polypeptide and the water-soluble polysaccharide.
[0023]
Using the emulsifier composition of the present invention, 0.05 wt% to 10 wt%, preferably 0.1 wt% to 5 wt% per oil-in-water emulsion is preferable. An oil-in-water emulsion can be produced. If it is less than 0.05% by weight per emulsion, the emulsification becomes unstable, which is not preferable, and it is not economically preferable to use more than 10% by weight. Specific examples of the acidic oil-in-water emulsion of the present invention include mayonnaise, sour cream, cream with fruit juice, etc., and the product has a pH of 3 to 6, particularly 3.5 to 5.5. It is effective, and the effect is exhibited even when the oil content is 5 to 80%, particularly 20 to 80%. When manufacturing such acidic oil-in-water emulsions, oils, proteins, carbohydrates, flavors, pH adjusters to be blended in addition to the machine used for preparing the emulsion, manufacturing conditions, and the emulsifier composition of the present invention Etc. are not particularly limited, and known substances can be used.
[0024]
【Example】
Hereinafter, the embodiments of the present invention will be specifically described by way of examples. However, the technical scope of the present invention is not limited by these examples.
Production Example 1 (T-1)
Ten times the amount of hot water at 40 ° C. was added to low-denatured defatted soybean flakes (NSI 90) manufactured by Fuji Oil Co., Ltd., and a NaOH solution was added thereto to adjust the pH to 7.0. This was gently stirred and extracted for 1 hour, and then separated into okara of an insoluble fraction and defatted soy milk of a soluble fraction by a centrifuge.
Hydrochloric acid was added to the obtained defatted soymilk to adjust the pH to 4.5, and the resulting protein precipitate was collected by a centrifuge to obtain a separated soybean protein curd. Next, water is added to the separated soy protein curd and hydrochloric acid is added to adjust the pH to 2.0 and the separated soy protein is 10% by weight. 200 mg of pepsin (manufactured by Nippon Biocon) is added to 1 L of this solution and hydrolyzed at 37 ° C. for 30 minutes. (First reaction). As a result of analyzing the reaction solution by electrophoresis, the 11S component in the soybean protein was selectively hydrolyzed, the mobility band corresponding to 11S disappeared, and the degradation product component derived from the 11S component and the decomposition were received. A mobility band corresponding to no 7S component was observed. The reaction solution was adjusted to pH 4.5 using NaOH solution, and the resulting precipitate was centrifuged with a supernatant fraction containing 11S component degradation product and a precipitate fraction rich in 7S component (undecomposed fraction). Fractions). In addition, the 0.22 M TCA solubility of the reaction solution of the first reaction is 25%, and the final 0.22 M TCA solubility of the supernatant fraction after pH fractionation is 72%, that after the pH fractionation. The volume recovery of the clear fraction was 80%, and the solid recovery of the supernatant fraction after pH fractionation was 24%. Precipitate fraction rich in 7S component (undegraded fraction) is prepared by adding hydrochloric acid and adding hydrochloric acid to adjust the pH to 2.0 and solid content of 7% by weight. To 1 L of this solution, 100 mg of pepsin (manufactured by Nippon Biocon) is added. In addition, hydrolysis was performed again at 60 ° C. for 20 minutes (second reaction). The final 0.22 M TCA solubility of the reaction solution after pepsin decomposition was 46%. The reaction solution of the second reaction was mixed with the supernatant fraction of the first reaction, adjusted to pH 6.5 using NaOH solution, and spray-dried to prepare polypeptide (T-1). As a result of SDS electrophoretic analysis, 90% or more of the composition of the obtained polypeptide was included in the molecular weight range of 5,000 to 35,000. As a result of gel filtration analysis, the main peak molecular weight was about 8,000, the peak area in the molecular weight range of 5,000 to 30,000 was 94%, and the molecular weight less than 5,000 was 1%. . The general analysis values were 84% crude protein, 11% ash, and 5% moisture, and the 0.22M TCA solubility was 52%.
[0025]
Production Example 2 (T-2)
Using the mixed solution of the supernatant fraction of the first reaction and the reaction mixture of the second reaction in Production Example 1, 3% by weight of Ca hydroxide was added to the solid content, and pH was adjusted to 6 using NaOH solution. 5 was heated at 140 ° C. for 7 seconds and then cooled to room temperature, and insoluble components were removed by centrifugation at 5000 G for 10 minutes to obtain a mixed supernatant fraction. This was spray-dried to prepare a polypeptide (T-2). The composition of the obtained polypeptide was found to be 80% or more in the molecular weight range of 5,000 to 35,000 as a result of SDS electrophoresis analysis. As a result of gel filtration analysis, the main peak molecular weight is about 8,000, the peak area in the molecular weight range of 5,000 to 30,000 is 89%, and the molecular weight less than 5,000 is 10% or less. It was. The general analysis values were 76% crude protein, 15% ash, and 5% moisture, and the 0.22M TCA solubility was 70%.
[0026]
Test Example Polypeptides (T-1 and T-2) prepared above, soybean peptide (trade name High Nut D3, average peptide chain length 5, 0.22 M TCA solubility 98%, manufactured by Fuji Oil Co., Ltd. ), Water-soluble soybean polysaccharide (SSPS; trade name Soya Five DA-100, manufactured by Fuji Oil Co., Ltd.), C pectin (trade name; SM-478, manufactured by Saneigen FFI Co., Ltd.). Table 1 shows the results of measuring the emulsification activity (by the method in the text) at various pHs using various mixing ratios (water-soluble polysaccharide / (polypeptide + water-soluble polysaccharide)) of 1 wt% solution. .
[0027]
Figure 0003738614
As shown in Table 1, it can be seen that the emulsifying activity of pH 4 is significantly increased synergistically by mixing the polypeptide and SSPS or C-pectin. Moreover, it turns out that there is no effect in a low molecular weight peptide.
[0028]
Example 1
50 parts by weight of the polypeptide (T-1) prepared in Production Example 1 and 50 parts by weight of SSPS were uniformly mixed to prepare an emulsifier composition (hereinafter referred to as M-1). Of the ingredients in the recipe, other than salad oil was stirred and mixed with a Kenwood mixer (“Pro KM-230” manufactured by Aikosha Seisakusho Co., Ltd.), and then emulsified while adding salad oil. Then, the emulsion was homogenized with a colloid mill (manufactured by Flyma) to prepare a mayonnaise-like emulsion.
Figure 0003738614
An average emulsion particle size of a mayonnaise-like emulsion (pH 4.2) prepared only with polypeptide (T-1) as a comparison with M-1 and a frozen state at −30 ° C. for one day, and then a thawed state was observed. The results are shown below.
Figure 0003738614
M-1 had a better emulsion than T-1, and could prepare a mayonnaise-like emulsion that was stable against freezing.
[0029]
Example 2
50 parts by weight of the polypeptide (T-2) prepared in Production Example 2 and 50 parts by weight of P-pectin were uniformly mixed to prepare an emulsifier composition (hereinafter referred to as M-2). For P-pectin, dry potato is dispersed in water to a concentration of 5%, pH is adjusted to 4.5 with hydrochloric acid, heated at 120 ° C. for 30 minutes to obtain an extract, which is freeze-dried. Manufactured. Components of the following composition were mixed, and an emulsion for coffee cream was prepared using an ultrasonic emulsifier at 60 ° C. For comparison, an emulsion for coffee cream using only the polypeptide (T-2) was also prepared.
Figure 0003738614
30 g of commercial instant coffee (manufactured by Nestlé) and 50 g of sugar were dissolved in 1 L of hot water and kept at 80-85 ° C. To 100 ml of this coffee liquid (pH 5), 10 ml of the above emulsion for coffee cream was added and the state was observed.
Figure 0003738614
M-2 could prepare a better emulsion for coffee cream than T-2.
[0030]
【The invention's effect】
It has become possible to provide an emulsifier composition that can be used in various fields such as foods, cosmetics, toiletries, pharmaceuticals, and industrial applications, and particularly suitable for the production of acidic oil-in-water emulsions.

Claims (7)

水溶性多糖類と以下の諸性質を有するポリペプチドとを含有する乳化剤組成物。
1)メルカプトエタノールを含むSDSポリアクリルアミドゲル電気泳動法による分析で、分子量5,000〜35,000の範囲にあるポリペプチドが主体である。
2)ゲルろ過法による主ピーク分子量が約8,000で、分子量範囲5,000〜30,000が全ピークエリア面積の70%以上であり、分子量5,000未満が全ピークエリア面積の20%以下である。
3)0.22M TCA 可溶率で30〜90%である。
An emulsifier composition containing a water-soluble polysaccharide and a polypeptide having the following properties.
1) Mainly a polypeptide having a molecular weight in the range of 5,000 to 35,000 as analyzed by SDS polyacrylamide gel electrophoresis containing mercaptoethanol.
2) The main peak molecular weight by gel filtration is about 8,000, the molecular weight range 5,000 to 30,000 is 70% or more of the total peak area, and the molecular weight less than 5,000 is 20% of the total peak area. It is as follows.
3) It is 30-90% by 0.22M TCA solubility rate.
ポリペプチドが大豆蛋白中の7S成分及び11S成分を別途に加水分解して得られるポリペプチドである請求項1記載の乳化剤組成物。The emulsifier composition according to claim 1, wherein the polypeptide is a polypeptide obtained by separately hydrolyzing the 7S component and the 11S component in soybean protein. ポリペプチドと水溶性多糖類の合計重量に対する水溶性多糖類の重量比が0.1〜0.9である請求項1記載の乳化剤組成物。The emulsifier composition according to claim 1, wherein the weight ratio of the water-soluble polysaccharide to the total weight of the polypeptide and the water-soluble polysaccharide is 0.1 to 0.9. 乳化剤組成物中の水溶性多糖類が大豆、柑橘類或いは馬鈴薯由来である請求項1記載の乳化剤組成物。The emulsifier composition according to claim 1, wherein the water-soluble polysaccharide in the emulsifier composition is derived from soybean, citrus fruit or potato. 請求項1〜4記載の乳化剤組成物を0.01重量%〜10重量%使用して得られる水中油型乳化物。An oil-in-water emulsion obtained by using 0.01 to 10% by weight of the emulsifier composition according to claim 1. pH3〜6である請求項5記載の酸性水中油型乳化物。The acidic oil-in-water emulsion according to claim 5, which has a pH of 3 to 6. 油分が5〜80%である請求項6記載の酸性水中油型乳化物。The acidic oil-in-water emulsion according to claim 6, having an oil content of 5 to 80%.
JP22820999A 1999-08-12 1999-08-12 Emulsifier composition and acidic oil-in-water emulsion using the same Expired - Fee Related JP3738614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22820999A JP3738614B2 (en) 1999-08-12 1999-08-12 Emulsifier composition and acidic oil-in-water emulsion using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22820999A JP3738614B2 (en) 1999-08-12 1999-08-12 Emulsifier composition and acidic oil-in-water emulsion using the same

Publications (2)

Publication Number Publication Date
JP2001046851A JP2001046851A (en) 2001-02-20
JP3738614B2 true JP3738614B2 (en) 2006-01-25

Family

ID=16872909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22820999A Expired - Fee Related JP3738614B2 (en) 1999-08-12 1999-08-12 Emulsifier composition and acidic oil-in-water emulsion using the same

Country Status (1)

Country Link
JP (1) JP3738614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105723A (en) * 2014-10-10 2017-08-29 不二制油集团控股株式会社 Acidic protein beverage
CN109453716A (en) * 2018-11-29 2019-03-12 山东禹王生态食业有限公司 A kind of preparation method and application of protein surface active agent intermixture

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058272A1 (en) * 2000-02-08 2001-08-16 Fuji Oil Company, Limited Emulsified foods with high oil content and low moisture content and process for producing the same
WO2004078334A1 (en) * 2003-03-04 2004-09-16 Fuji Oil Company, Limited Emulsifier contianing polysaccharide-protein complex as the active ingredient, process for producing the same and emulsified composition
EP1665937B1 (en) * 2003-09-16 2008-02-20 Fuji Oil Company, Ltd. Oil-in-water emulsified composition
WO2005063039A1 (en) * 2003-12-26 2005-07-14 Fuji Oil Company, Limited Creams, whipped products thereof, dry powders thereof and process for producing the same
WO2006006521A1 (en) 2004-07-13 2006-01-19 Fuji Oil Company, Limited Composite of polysaccharide with protein and emulsifying agent and emulsion each containing the same
JP5605524B1 (en) * 2012-12-06 2014-10-15 不二製油株式会社 Pizza dough and its manufacturing method
JP6955216B2 (en) * 2016-03-30 2021-10-27 不二製油株式会社 Foaming seasoning
CN115025230B (en) * 2022-05-10 2024-07-19 仙乐健康科技股份有限公司 Emulsifier composition and application thereof in emulsion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105723A (en) * 2014-10-10 2017-08-29 不二制油集团控股株式会社 Acidic protein beverage
CN109453716A (en) * 2018-11-29 2019-03-12 山东禹王生态食业有限公司 A kind of preparation method and application of protein surface active agent intermixture
CN109453716B (en) * 2018-11-29 2020-10-02 山东禹王生态食业有限公司 Preparation method and application of protein surfactant mixture

Also Published As

Publication number Publication date
JP2001046851A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US6303178B1 (en) Soybean protein hydrolysates, their production and use
Phongthai et al. Preparation, properties and application of rice bran protein: A review.
EP1364585B1 (en) Soybean protein, process for manufacture thereof and acidic protein foods thereof
JP5125514B2 (en) Method for producing soy peptide mixture
US20100087629A1 (en) Method of producing a cidic-soluble soybean protein
CA1198072A (en) Process for the preparation of protein hydrolysates
JP3738614B2 (en) Emulsifier composition and acidic oil-in-water emulsion using the same
WO2013089025A1 (en) Concentrated soya bean protein material
JP2765497B2 (en) Manufacturing method of soy protein material
JP4985023B2 (en) Soy protein hydrolyzate and method for producing the same
Tsumura Improvement of the physicochemical properties of soybean proteins by enzymatic hydrolysis
JP3417350B2 (en) Soybean protein hydrolyzate, method for producing the same, and product using the same
JP3067990B2 (en) Method for producing soy protein
Zhao et al. Limited hydrolysis of soybean protein concentrate and isolate with two proteases and the impact on emulsifying activity index of hydrolysates, imag
JP2003250460A (en) Method for modifying functionality of milk protein
JP3456451B2 (en) Foaming agent for cake and its use food
WO2008041572A1 (en) Method for producing soybean protein composition
JP5183006B2 (en) Method for producing soy protein hydrolyzate
JP2002101837A (en) Emulsifying agent for whipped cream and whipped cream comprising the same
JPWO2005120244A1 (en) Method for producing soy protein hydrolyzate
JPS6234379B2 (en)
JP3387386B2 (en) Method for producing proteinaceous emulsifier
JPH0362382B2 (en)
JPH07227217A (en) Highly water-soluble soybean protein
Goertzen The enzymatic modification of a chickpea protein isolate for improved nutritional and functional properties

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

LAPS Cancellation because of no payment of annual fees
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350