JP3738559B2 - Liquid crystal composition and liquid crystal display element - Google Patents
Liquid crystal composition and liquid crystal display element Download PDFInfo
- Publication number
- JP3738559B2 JP3738559B2 JP10980198A JP10980198A JP3738559B2 JP 3738559 B2 JP3738559 B2 JP 3738559B2 JP 10980198 A JP10980198 A JP 10980198A JP 10980198 A JP10980198 A JP 10980198A JP 3738559 B2 JP3738559 B2 JP 3738559B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal composition
- structural formula
- crystal display
- chemical structural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims 8
- 239000000126 substance Substances 0.000 claims 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 4
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 claims 4
- 229910052799 carbon Inorganic materials 0.000 claims 4
- 230000003098 cholesteric effect Effects 0.000 claims 4
- 150000001875 compounds Chemical class 0.000 claims 4
- 239000000758 substrate Substances 0.000 claims 1
Images
Landscapes
- Liquid Crystal Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液晶組成物及び液晶表示素子、詳しくは、室温でコレステリック相を示す液晶を使用した双安定/反射型の液晶表示素子に関する。
【0002】
【従来の技術と課題】
近年、ネマティック液晶にカイラル材を添加することにより、室温においてコレステリック相を示すようにしたカイラルネマティック液晶を用いた反射型の液晶表示素子が種々研究されている。この素子では電圧のオン、オフによって液晶をプレーナ状態とフォーカルコニック状態に切り換えて表示を行う。
【0003】
しかしながら、今日までカイラルネマティック液晶を使用した反射型の液晶表示素子では、カイラル材の配合が難しく、プレーナ状態とフォーカルコニック状態とで十分なコントラストを得ることができず、駆動電圧が低く、色純度(刺激純度)等の特性を十分に満足したものは存在していなかった。
【0004】
そこで、本発明の目的は、反射率や色純度等の特性が良好でコントラストが高く、かつ、駆動電圧を低く設定できるカイラルネマティック液晶組成物及び液晶表示素子を提供することにある。
【0005】
【発明の構成、作用及び効果】
以上の目的を達成するため、本発明に係る液晶組成物及び液晶表示素子は、ネマティック液晶成分に加えて、カイラル材として不斉炭素を有する化合物を複数種類含み、そのうちの1種類が以下の化学構造式(A)を有している。そして、以下の化学構造式(B),(C),(D),(E)を有するものの少なくとも一つが前記式(A)の化合物と組み合わされている。
【0006】
【化7】
【0007】
【化5】
【0008】
カイラル材はネマティック液晶に室温でコレステリック相を示させるために添加され、添加量によって選択反射波長を調整可能である。添加量が増加すると通常駆動電圧が高くなる。本発明では、カイラル材として少なくとも2種類の化合物を組み合わせて添加することで、カイラル材が少なくて済み、駆動電圧が低下するばかりか、反射率や色純度が向上し、コントラストも向上する。
【0009】
【発明の実施の形態】
以下、本発明に係る液晶組成物及び液晶表示素子の実施形態について添付図面を参照して説明する。
【0010】
(第1実施形態の構成と表示動作)
図1に本発明の第1実施形態である液晶表示素子の断面構造を示す。(A)は高電圧パルスを印加したときのプレーナ状態(RGB着色状態)を示し、(B)は低電圧パルスを印加したときのフォーカルコニック状態(透明/黒色表示状態)を示す。なお、この液晶表示素子はメモリー性を有しており、プレーナ状態及びフォーカルコニック状態はパルス電圧印加後も維持される。
【0011】
図1において、11,12は透明基板で、それぞれの表面には透明電極13,14がマトリクス状に形成されている。電極13上には絶縁性薄膜15がコーティングされていることが好ましい。また、基板12の裏面には、表示の必要性に応じて、可視光吸収層16が設けられる。
20はスペース保持部材としての柱状構造物、21は室温でコレステリック相を示す液晶組成物であり、これらの材料やその組合わせについては以下の実験例によって具体的に説明する。22は液晶組成物を液晶表示素子内部に封じ込めるためのシールである。25はパルス電源であり、前記電極13,14にパルス状の所定電圧を印加する。
【0012】
以上の構成からなる液晶表示素子においては、電源25から電極13,14にパルス電圧を印加することで表示が行われる。即ち、液晶組成物がコレステリック相を示すものを用いている場合、比較的高いパルス電圧を印加することで、液晶がプレーナ状態となり、コレステリックピッチと屈折率に基づいて決まる波長の光を選択的に反射する。比較的低いパルス電圧を印加することで、液晶がフォーカルコニック状態となり、透明状態となる。なお、図1に示したように、可視光吸収層16を設けると、フォーカルコニック状態では黒色を表示することになる。
【0013】
本液晶表示素子ではマトリクス状の電極13,14が交差する領域が表示画素となる。本明細書では、液晶によって光変調が行われる領域を表示領域と称し、その周辺は光変調が行われない表示領域外となる。
【0014】
(基板)
基板11,12は少なくとも一方が透明であることが必要である。透明な基板としては、ガラス以外に、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレート等のフレキシブル基板等が使用可能である。
【0015】
(電極)
電極13,14としては、ITO(Indium Tin Oxide)に代表される透明導電性膜、アルミニウム、シリコン等の金属電極、あるいはアモルファスシリコン、BSO(Bismuth Silicon Oxide)等の光導電性膜が使用可能である。電極13,14をマトリクス状に形成するには、例えば、基板11,12上にITO膜をスパッタリング法等で形成した後、フォトリソグラフィ法でパターニングすればよい。
【0016】
(絶縁膜、配向膜)
絶縁性薄膜15は酸化シリコン等の無機膜あるいはポリイミド樹脂、エポキシ樹脂等の有機膜であり、電極13,14間の短絡を防止したり、ガスバリア層として液晶の信頼性を向上させる機能を有する。また、電極13,14上には、ポリイミド樹脂に代表される配向膜を必要に応じて配してもよい。さらに、柱状構造物20に用いる高分子体と同じ材料を絶縁膜や配向膜として使用してもよい。
【0017】
(スペーサ)
図1には図示されないが、基板11,12間にスペーサを挿入してもよい。このスペーサは樹脂製又は無機酸化物製の球体であり、基板11,12間のギャップを均一に保持する。また、柱状構造物20に代えて、球状スペーサのみをスペース保持部材として使用してもよい。
【0018】
(液晶組成物)
液晶組成物はネマティック液晶を主成分とするものが使用され、以下に説明するカイラル材を適量添加することによって室温でコレステリック相を示すものが得られる。また、カイラル材の添加量の大小で選択反射波長が調整可能である。ネマティック液晶としては、液晶性トラン化合物、液晶性ピリミジン化合物、液晶性エステル化合物、又は液晶性シアノビフェニル化合物等、正の誘電率異方性を有する液晶化合物を主成分とするものが好ましい。さらに、色素を添加してもよい。
【0019】
添付されるカイラル材としては、本実施形態では不斉炭素を有する複数種類の化合物を使用する。そのうちの1種類が前記一般構造式(A)で示される化合物である。これに加えて、不斉炭素を有する化合物であって、前記式(A)とは異なる種類のものが添加される。好適には、前記一般構造式(B)〜(F)で示される化合物の少なくとも一つが添加される。使用可能なカイラル材の具体例を以下に示す。以下に示す構造式(A1)〜(A10),(B1)〜(B10),(C1)〜(C10),(D1)〜(D10),(E1)〜(E10),(F1)〜(F9)は、それぞれ前記一般式(A),(B),(C),(D),(E),(F)の具体例を示している。
【0020】
【化9】
【0021】
【化10】
【0022】
【化11】
【0023】
【化12】
【0024】
【化13】
【0025】
【化14】
【0026】
【化15】
【0027】
【化16】
【0028】
【化17】
【0029】
【化18】
【0030】
【化19】
【0031】
【化20】
【0032】
添加される色素としては、アゾ化合物、キノン化合物、アントラキノン化合物等あるいは2色性色素等、従来知られている各種の色素が使用可能であり、これらを複数種用いてもよい。添加量は、液晶成分とカイラル材の合計量に対して合計3wt%以下が好ましい。
【0033】
(柱状構造物)
柱状構造物20に関しては、まず、構造面について説明する。
柱状構造物20は、例えば、格子配列等の所定のパターンに一定の間隔で配列された、円柱状体、四角柱状体、楕円柱状体である。所定間隔で配置されたストライプ状のものでもよい。この柱状構造物20はランダムな配列ではなく、等間隔な配列、間隔が徐々に変化する配列、所定の配置パターンが一定の周期で繰り返される配列等、基板11,12の間隙を適切に保持でき、かつ、画像表示を妨げないように考慮された配列であることが好ましい。
【0034】
柱状構造物は従来公知の各種の方法により形成すればよく、例えば、光硬化性樹脂材料を基板に塗布した後、所望のパターンの開口が形成されたマスクを介して所定波長の光を照射することにより光硬化性樹脂を重合させ、不要部分を取り除く方法、液晶組成物と光硬化性樹脂材料との混合物を一方の基板に塗布した後、他方の基板を重ねて、所望のパターンの開口が形成されたマスクを介して所定波長の光を照射することにより光硬化性樹脂を重合させ、前記混合物から相分離することにより、樹脂構造物を形成する方法などが挙げられる。
液晶表示素子とするには、柱状構造物を挟持した基板間に液晶組成物を真空注入法等によって注入すればよい。
【0035】
(第2実施形態の構成)
図2に本発明の第2実施形態である液晶表示素子の断面構造(高電圧パルス印加時、プレーナ状態)を示す。この液晶表示素子は、図1に示した前記第1実施形態と基本的に同じものであり、表示領域内に柱状構造物を設けないようにしたものである。図2において、図1と同じ部材には同じ符号が付されている。
【0036】
(第3実施形態の構成)
図3に本発明の第3実施形態である液晶表示素子の断面構造(高電圧パルス印加時、プレーナ状態)を示す。この液晶表示素子は、図2に示した前記第2実施形態のものに、基板11,12の間隙の中間部まで延びた小柱状構造物20’を形成したものである。図3において、図2と同じ部材には同じ符号が付されている。
【0037】
(実験例1)
液晶性トラン化合物32wt%を主成分とするネマティック液晶82重量部に対して、前記化学構造式(A4)で示されるカイラル材4重量部及び前記化学構造式(B8)で示されるカイラル材14重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0038】
このような液晶表示素子にあっては、電極間に80Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は11.79、色純度は18.98%を示した。さらに、50Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.04を示し、コントラストは2.34であった。
なお、Y値(視感反射率)、色純度(刺激純度)の測定は、白色光源を有する分光測色計CM−3700d(ミノルタ社製)を用いて行った。以下の実験例、比較例でも同様である。
【0039】
(実験例2)
液晶性トラン化合物32wt%を主成分とするネマティック液晶84重量部に対して、前記化学構造式(A5)で示されるカイラル材4重量部及び前記化学構造式(C9)で示されるカイラル材12重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0040】
このような液晶表示素子にあっては、電極間に80Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は12.10、色純度は21.02%を示した。さらに、40Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.10を示し、コントラストは2.37であった。
【0041】
(実験例3)
液晶性トラン化合物32wt%を主成分とするネマティック液晶86重量部に対して、前記化学構造式(A9)で示されるカイラル材4重量部及び前記化学構造式(D4)で示されるカイラル材10重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0042】
このような液晶表示素子にあっては、電極間に60Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は12.31、色純度は19.64%を示した。さらに、30Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は4.98を示し、コントラストは2.47であった。
【0043】
(実験例4)
液晶性トラン化合物32wt%を主成分とするネマティック液晶86重量部に対して、前記化学構造式(A3)で示されるカイラル材4重量部及び前記化学構造式(E9)で示されるカイラル材10重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0044】
このような液晶表示素子にあっては、電極間に70Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は11.52、色純度は22.52%を示した。さらに、40Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は4.87を示し、コントラストは2.37であった。
【0045】
(実験例5)
液晶性トラン化合物32wt%を主成分とするネマティック液晶82重量部に対して、前記化学構造式(A6)で示されるカイラル材5重量部及び前記化学構造式(F1)で示されるカイラル材13重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0046】
このような液晶表示素子にあっては、電極間に80Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は11.02、色純度は20.12%を示した。さらに、50Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.12を示し、コントラストは2.15であった。
【0047】
(実験例6)
液晶性ピリミジン化合物42wt%を主成分とするネマティック液晶80重量部に対して、前記化学構造式(A9)で示されるカイラル材8重量部及び前記化学構造式(C8)で示されるカイラル材12重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が90℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0048】
このような液晶表示素子にあっては、電極間に90Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は12.05、色純度は19.05%を示した。さらに、60Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.04を示し、コントラストは2.39であった。
【0049】
(実験例7)
液晶性エステル化合物57wt%を主成分とするネマティック液晶82重量部に対して、前記化学構造式(A5)で示されるカイラル材8重量部、前記化学構造式(C9)で示されるカイラル材7重量部及び前記化学構造式(D4)で示されるカイラル材3重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.179、誘電率異方性が30、等方相への相転移温度が100℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0050】
このような液晶表示素子にあっては、電極間に90Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は12.34、色純度は21.22%を示した。さらに、60Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.09を示し、コントラストは2.42であった。
【0051】
(実験例8)
液晶性エステル化合物57wt%を主成分とするネマティック液晶80重量部に対して、前記化学構造式(A4)で示されるカイラル材10重量部、前記化学構造式(C4)で示されるカイラル材8重量部及び前記化学構造式(F1)で示されるカイラル材2重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.179、誘電率異方性が30、等方相への相転移温度が100℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0052】
このような液晶表示素子にあっては、電極間に90Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は12.26、色純度は22.30%を示した。さらに、60Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は4.85を示し、コントラストは2.53であった。
【0053】
(比較例)
液晶性トラン化合物32wt%を主成分とするネマティック液晶76重量部に対して、前記化学構造式(B8)で示されるカイラル材16重量部及び前記化学構造式(C9)で示されるカイラル材8重量部を添加し、選択反射波長が680nmを示す液晶組成物を調製した。前記ネマティック液晶は屈折率異方性が0.221、誘電率異方性が8.23、等方相への相転移温度が75℃である。このように調製された液晶組成物を2枚のガラス基板間に真空封入して、図2に示す構成の液晶表示素子を作製した。10μmのスペーサ粒子を最初に塗布しておくことにより、ガラス基板の間隔を10μmに調整した。
【0054】
このような液晶表示素子にあっては、電極間に110Vのパルス電圧を5msec印加すると、プレーナ状態(赤色状態)を示し、Y値は9.94、色純度は17.17%を示した。さらに、70Vのパルス電圧を5msec印加すると、フォーカルコニック状態(透明状態)を示し、Y値は5.68を示し、コントラストは1.75であった。
【0055】
なお、本発明に係る液晶組成物及び液晶表示素子の構成は、前記実施形態、実験例に限定されるものではなく、その要旨の範囲内で種々に変更可能である。特に、前記実験例では赤色を選択反射する赤色表示素子について示したが、これに限られるものではなく、他の選択反射波長、例えば、緑色表示、青色表示に関しても同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る液晶表示素子の第1実施形態を示す断面図、(A)はプレーナ状態を示し、(B)はフォーカルコニック状態を示す。
【図2】本発明に係る液晶表示素子の第2実施形態を示す断面図。
【図3】本発明に係る液晶表示素子の第3実施形態を示す断面図。
【符号の説明】
11,12…基板
13,14…電極
20,20’…柱状構造物
21…液晶組成物
25…電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal composition and a liquid crystal display device, and more particularly to a bistable / reflective liquid crystal display device using a liquid crystal exhibiting a cholesteric phase at room temperature.
[0002]
[Prior art and issues]
In recent years, various studies have been conducted on reflective liquid crystal display elements using chiral nematic liquid crystal that exhibits a cholesteric phase at room temperature by adding a chiral material to nematic liquid crystal. In this element, display is performed by switching the liquid crystal between a planar state and a focal conic state by turning on and off the voltage.
[0003]
However, reflective liquid crystal display elements using chiral nematic liquid crystals have been difficult to formulate with chiral materials to date, and sufficient contrast between the planar state and the focal conic state cannot be obtained, driving voltage is low, and color purity. None of the materials sufficiently satisfied the properties such as (stimulus purity).
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a chiral nematic liquid crystal composition and a liquid crystal display element that have good characteristics such as reflectance and color purity, high contrast, and a low driving voltage.
[0005]
Configuration, operation and effect of the invention
In order to achieve the above object, the liquid crystal composition and the liquid crystal display device according to the present invention include a plurality of compounds having asymmetric carbon as a chiral material in addition to the nematic liquid crystal component, and one of them includes the following chemical compounds: It has the structural formula (A). The following chemical structural formula (B), it is combined with the compounds of (C), (D), at least one of the formula although having a (E) (A).
[0006]
[Chemical 7]
[0007]
[Chemical formula 5]
[0008]
The chiral material is added to cause nematic liquid crystal to exhibit a cholesteric phase at room temperature, and the selective reflection wavelength can be adjusted by the addition amount. When the addition amount increases, the normal driving voltage increases. In the present invention, by adding a combination of at least two kinds of compounds as the chiral material, the chiral material can be reduced, the drive voltage is reduced, the reflectance and color purity are improved, and the contrast is improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a liquid crystal composition and a liquid crystal display device according to the present invention will be described with reference to the accompanying drawings.
[0010]
(Configuration and display operation of the first embodiment)
FIG. 1 shows a cross-sectional structure of a liquid crystal display device according to the first embodiment of the present invention. (A) shows a planar state (RGB coloring state) when a high voltage pulse is applied, and (B) shows a focal conic state (transparent / black display state) when a low voltage pulse is applied. The liquid crystal display element has a memory property, and the planar state and the focal conic state are maintained even after the pulse voltage is applied.
[0011]
In FIG. 1, 11 and 12 are transparent substrates, and
[0012]
In the liquid crystal display element having the above configuration, display is performed by applying a pulse voltage from the
[0013]
In the present liquid crystal display element, a region where the
[0014]
(substrate)
At least one of the
[0015]
(electrode)
As the
[0016]
(Insulating film, alignment film)
The insulating
[0017]
(Spacer)
Although not shown in FIG. 1, a spacer may be inserted between the
[0018]
(Liquid crystal composition)
A liquid crystal composition containing a nematic liquid crystal as a main component is used, and a liquid crystal composition exhibiting a cholesteric phase at room temperature can be obtained by adding an appropriate amount of a chiral material described below. In addition, the selective reflection wavelength can be adjusted by the amount of the chiral material added. As the nematic liquid crystal, a liquid crystal compound having a positive dielectric anisotropy such as a liquid crystalline tolan compound, a liquid crystalline pyrimidine compound, a liquid crystalline ester compound, or a liquid crystalline cyanobiphenyl compound is preferable. Furthermore, you may add a pigment | dye.
[0019]
As the attached chiral material, a plurality of types of compounds having asymmetric carbon are used in the present embodiment. One of them is a compound represented by the general structural formula (A). In addition to this, a compound having an asymmetric carbon which is different from the formula (A) is added. Preferably, at least one of the compounds represented by the general structural formulas (B) to (F) is added. Specific examples of usable chiral materials are shown below. Shown below structural formula (A 1) ~ (A 10 ), (B 1) ~ (B 10), (C 1) ~ (C 10), (D 1) ~ (D 10), (E 1) ~ (E 10 ), (F 1 ) to (F 9 ) represent specific examples of the general formulas (A), (B), (C), (D), (E), and (F), respectively. .
[0020]
[Chemical 9]
[0021]
[Chemical Formula 10]
[0022]
Embedded image
[0023]
Embedded image
[0024]
Embedded image
[0025]
Embedded image
[0026]
Embedded image
[0027]
Embedded image
[0028]
Embedded image
[0029]
Embedded image
[0030]
Embedded image
[0031]
Embedded image
[0032]
As the added dye, various conventionally known dyes such as an azo compound, a quinone compound, an anthraquinone compound, or a dichroic dye can be used, and a plurality of these may be used. The addition amount is preferably 3 wt% or less in total with respect to the total amount of the liquid crystal component and the chiral material.
[0033]
(Columnar structure)
Regarding the
The
[0034]
The columnar structure may be formed by various conventionally known methods. For example, after a photocurable resin material is applied to a substrate, light having a predetermined wavelength is irradiated through a mask in which openings having a desired pattern are formed. A method of polymerizing a photocurable resin to remove unnecessary portions, a mixture of a liquid crystal composition and a photocurable resin material is applied to one substrate, and the other substrate is stacked to form a desired pattern opening. Examples include a method of polymerizing a photocurable resin by irradiating light of a predetermined wavelength through the formed mask and forming a resin structure by phase separation from the mixture.
In order to obtain a liquid crystal display element, a liquid crystal composition may be injected between the substrates sandwiching the columnar structures by a vacuum injection method or the like.
[0035]
(Configuration of Second Embodiment)
FIG. 2 shows a cross-sectional structure of a liquid crystal display device according to the second embodiment of the present invention (planar state when a high voltage pulse is applied). This liquid crystal display element is basically the same as that of the first embodiment shown in FIG. 1, and does not include a columnar structure in the display area. 2, the same members as those in FIG. 1 are denoted by the same reference numerals.
[0036]
(Configuration of Third Embodiment)
FIG. 3 shows a cross-sectional structure (planar state when a high voltage pulse is applied) of a liquid crystal display device according to a third embodiment of the present invention. This liquid crystal display element is obtained by forming a
[0037]
(Experimental example 1)
4 parts by weight of the chiral material represented by the chemical structural formula (A 4 ) and the chiral material represented by the chemical structural formula (B 8 ) with respect to 82 parts by weight of the nematic liquid crystal having 32 wt% of the liquid crystalline tolan compound as a main component. 14 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0038]
In such a liquid crystal display element, when a pulse voltage of 80 V was applied between the electrodes for 5 msec, the planar state (red state) was exhibited, the Y value was 11.79, and the color purity was 18.98%. Further, when a 50 V pulse voltage was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.04, and the contrast was 2.34.
The Y value (luminous reflectance) and color purity (stimulus purity) were measured using a spectrocolorimeter CM-3700d (manufactured by Minolta) having a white light source. The same applies to the following experimental examples and comparative examples.
[0039]
(Experimental example 2)
4 parts by weight of the chiral material represented by the chemical structural formula (A 5 ) and the chiral material represented by the chemical structural formula (C 9 ) with respect to 84 parts by weight of the nematic liquid crystal having 32 wt% of the liquid crystalline tolan compound as a main component. 12 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0040]
In such a liquid crystal display element, when a pulse voltage of 80 V was applied between the electrodes for 5 msec, the planar state (red state) was exhibited, the Y value was 12.10, and the color purity was 21.02%. Furthermore, when a pulse voltage of 40 V was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.10, and the contrast was 2.37.
[0041]
(Experimental example 3)
4 parts by weight of the chiral material represented by the chemical structural formula (A 9 ) and the chiral material represented by the chemical structural formula (D 4 ) with respect to 86 parts by weight of the nematic liquid crystal containing 32 wt% of the liquid crystalline tolan compound as a main component. 10 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0042]
In such a liquid crystal display element, when a 60 V pulse voltage was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 12.31, and the color purity was 19.64%. Further, when a pulse voltage of 30 V was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 4.98, and the contrast was 2.47.
[0043]
(Experimental example 4)
4 parts by weight of the chiral material represented by the chemical structural formula (A 3 ) and the chiral material represented by the chemical structural formula (E 9 ) with respect to 86 parts by weight of the nematic liquid crystal containing 32 wt% of the liquid crystalline tolan compound as a main component. 10 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0044]
In such a liquid crystal display element, when a 70 V pulse voltage was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 11.52, and the color purity was 22.52%. Furthermore, when a pulse voltage of 40 V was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 4.87, and the contrast was 2.37.
[0045]
(Experimental example 5)
5 parts by weight of the chiral material represented by the chemical structural formula (A 6 ) and the chiral material represented by the chemical structural formula (F 1 ) with respect to 82 parts by weight of the nematic liquid crystal having 32 wt% of the liquid crystalline tolan compound as a main component. 13 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0046]
In such a liquid crystal display element, when a pulse voltage of 80 V was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 11.02, and the color purity was 20.12%. Further, when a 50 V pulse voltage was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.12, and the contrast was 2.15.
[0047]
(Experimental example 6)
8 parts by weight of the chiral material represented by the chemical structural formula (A 9 ) and the chiral material represented by the chemical structural formula (C 8 ) with respect to 80 parts by weight of the nematic liquid crystal mainly composed of 42% by weight of the liquid crystalline pyrimidine compound. 12 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to an isotropic phase of 90 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0048]
In such a liquid crystal display element, when a 90 V pulse voltage was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 12.05, and the color purity was 19.05%. Furthermore, when a 60 V pulse voltage was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.04, and the contrast was 2.39.
[0049]
(Experimental example 7)
8 parts by weight of the chiral material represented by the chemical structural formula (A 5 ) and 82% by weight of the nematic liquid crystal having 57% by weight of the liquid crystalline ester compound as a main component and the chiral material represented by the chemical structural formula (C 9 ) 7 parts by weight and 3 parts by weight of the chiral material represented by the chemical structural formula (D 4 ) were added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.179, a dielectric anisotropy of 30, and a phase transition temperature to an isotropic phase of 100 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0050]
In such a liquid crystal display element, when a 90 V pulse voltage was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 12.34, and the color purity was 21.22%. Furthermore, when a 60 V pulse voltage was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.09, and the contrast was 2.42.
[0051]
(Experimental example 8)
10 parts by weight of the chiral material represented by the chemical structural formula (A 4 ) and 80% by weight of the nematic liquid crystal mainly composed of 57% by weight of the liquid crystalline ester compound and the chiral material represented by the chemical structural formula (C 4 ) 8 parts by weight and 2 parts by weight of the chiral material represented by the chemical structural formula (F 1 ) were added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.179, a dielectric anisotropy of 30, and a phase transition temperature to an isotropic phase of 100 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0052]
In such a liquid crystal display element, when a 90 V pulse voltage was applied between the electrodes for 5 msec, a planar state (red state) was exhibited, the Y value was 12.26, and the color purity was 22.30%. Further, when a pulse voltage of 60 V was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 4.85, and the contrast was 2.53.
[0053]
(Comparative example)
16 parts by weight of the chiral material represented by the chemical structural formula (B 8 ) and the chiral material represented by the chemical structural formula (C 9 ) with respect to 76 parts by weight of the nematic liquid crystal having 32 wt% of the liquid crystalline tolan compound as a main component. 8 parts by weight was added to prepare a liquid crystal composition having a selective reflection wavelength of 680 nm. The nematic liquid crystal has a refractive index anisotropy of 0.221, a dielectric anisotropy of 8.23, and a phase transition temperature to isotropic phase of 75 ° C. The liquid crystal composition thus prepared was vacuum-sealed between two glass substrates to produce a liquid crystal display device having the configuration shown in FIG. The space | interval of a glass substrate was adjusted to 10 micrometers by apply | coating a 10 micrometers spacer particle | grain first.
[0054]
In such a liquid crystal display element, when a pulse voltage of 110 V was applied between the electrodes for 5 msec, the planar state (red state) was exhibited, the Y value was 9.94, and the color purity was 17.17%. Further, when a pulse voltage of 70 V was applied for 5 msec, a focal conic state (transparent state) was exhibited, the Y value was 5.68, and the contrast was 1.75.
[0055]
The configurations of the liquid crystal composition and the liquid crystal display element according to the present invention are not limited to the above-described embodiments and experimental examples, and can be variously changed within the scope of the gist. In particular, in the experimental example, a red display element that selectively reflects red is shown. However, the present invention is not limited to this, and the same effect can be obtained with respect to other selective reflection wavelengths such as green display and blue display.
[Brief description of the drawings]
1A and 1B are cross-sectional views showing a first embodiment of a liquid crystal display element according to the present invention, FIG. 1A shows a planar state, and FIG. 1B shows a focal conic state.
FIG. 2 is a cross-sectional view showing a second embodiment of a liquid crystal display element according to the present invention.
FIG. 3 is a cross-sectional view showing a third embodiment of a liquid crystal display element according to the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (5)
不斉炭素を有する化合物を複数種類含み、そのうちの1種類が以下の化学構造式(A)を有し、他の1種類が以下の化学構造式(B)を有していること、
Including a plurality of compounds having asymmetric carbon, one of which has the following chemical structural formula (A) and the other one having the following chemical structural formula (B),
不斉炭素を有する化合物を複数種類含み、そのうちの1種類が以下の化学構造式(A)を有し、他の1種類が以下の化学構造式(C)を有していること、
Including a plurality of compounds having asymmetric carbon, one of which has the following chemical structural formula (A) and the other one having the following chemical structural formula (C),
不斉炭素を有する化合物を複数種類含み、そのうちの1種類が以下の化学構造式(A)を有し、他の1種類が以下の化学構造式(D)を有していること、
Including a plurality of compounds having asymmetric carbon, one of which has the following chemical structural formula (A) and the other one having the following chemical structural formula (D),
不斉炭素を有する化合物を複数種類含み、そのうちの1種類が以下の化学構造式(A)を有し、他の1種類が以下の化学構造式(E)を有していること、
Including a plurality of compounds having an asymmetric carbon, one of which has the following chemical structural formula (A) and the other one having the following chemical structural formula (E),
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10980198A JP3738559B2 (en) | 1998-04-20 | 1998-04-20 | Liquid crystal composition and liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10980198A JP3738559B2 (en) | 1998-04-20 | 1998-04-20 | Liquid crystal composition and liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11305187A JPH11305187A (en) | 1999-11-05 |
JP3738559B2 true JP3738559B2 (en) | 2006-01-25 |
Family
ID=14519570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10980198A Expired - Fee Related JP3738559B2 (en) | 1998-04-20 | 1998-04-20 | Liquid crystal composition and liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3738559B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4665379B2 (en) * | 2002-06-28 | 2011-04-06 | Dic株式会社 | Method for increasing helical twisting power, optically active compound, liquid crystal composition containing the same, and liquid crystal display device |
US7112290B2 (en) | 2002-10-09 | 2006-09-26 | Dainippon Ink And Chemicals, Inc. | Liquid crystal composition and liquid crystal display element |
US9475989B2 (en) | 2013-07-31 | 2016-10-25 | Semiconductor Energy Laboratory Co., Ltd. | Binaphthyl compound, liquid crystal composition, liquid crystal element, and liquid crystal display device |
US9441164B2 (en) | 2013-07-31 | 2016-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Isosorbide derivative, liquid crystal composition, liquid crystal element, and liquid crystal display device |
JP2015044796A (en) | 2013-07-31 | 2015-03-12 | 株式会社半導体エネルギー研究所 | Cyanobiphenyl derivative, liquid crystal composition, liquid crystal element, and liquid crystal display device |
-
1998
- 1998-04-20 JP JP10980198A patent/JP3738559B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11305187A (en) | 1999-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6565932B2 (en) | Liquid crystal composition and liquid crystal light modulating device using the liquid crystal composition | |
US20020176041A1 (en) | Liquid crystal display apparatus | |
US6348961B2 (en) | Liquid crystal composition and liquid crystal light modulating device | |
JP2000178557A (en) | Liquid crystal composition and liquid crystal light modulation element | |
JP3738559B2 (en) | Liquid crystal composition and liquid crystal display element | |
US6599589B1 (en) | Liquid crystal composition and liquid crystal light display element using the same | |
JP3765182B2 (en) | Liquid crystal composition and liquid crystal display element | |
JP3740856B2 (en) | Liquid crystal composition and liquid crystal display device using the same | |
JP4561003B2 (en) | Liquid crystal display element | |
JP3740855B2 (en) | Liquid crystal composition and liquid crystal display device using the same | |
JPH11288008A (en) | Liquid crystal display element | |
JP2003096460A (en) | Liquid-crystal composition and display element | |
JP4655425B2 (en) | Reflective full-color liquid crystal display element and display device including the element | |
JP2001107050A (en) | Liquid crystal composition and liquid crystal light modulation element using composition | |
JP2004170868A (en) | Laminated liquid crystal display element | |
JPH11305188A (en) | Liquid crystal composition and liquid crystal display element | |
JP2007254526A (en) | Liquid crystal composition and liquid crystal display element | |
JP2001033807A (en) | Liquid crystal optical modulation element | |
JP2001033805A (en) | Liquid crystal optical modulation element | |
JP2001188258A (en) | Liquid crystal display device | |
JPH11302654A (en) | Liquid crystal display element | |
JP2002285159A (en) | Liquid crystal composition and liquid crystal optical modulator using the same | |
JPH11323342A (en) | Liquid crystal display element | |
JP4378893B2 (en) | Liquid crystal display element | |
JP3758634B2 (en) | Liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040831 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131111 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |