[go: up one dir, main page]

JP3737917B2 - Thermal shock-resistant alumina sintered body and heat treatment member comprising the same - Google Patents

Thermal shock-resistant alumina sintered body and heat treatment member comprising the same Download PDF

Info

Publication number
JP3737917B2
JP3737917B2 JP29031099A JP29031099A JP3737917B2 JP 3737917 B2 JP3737917 B2 JP 3737917B2 JP 29031099 A JP29031099 A JP 29031099A JP 29031099 A JP29031099 A JP 29031099A JP 3737917 B2 JP3737917 B2 JP 3737917B2
Authority
JP
Japan
Prior art keywords
alumina
zirconia
sintered body
thermal shock
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29031099A
Other languages
Japanese (ja)
Other versions
JP2001114555A (en
Inventor
宏司 大西
章 胡内
博律 中
利夫 河波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP29031099A priority Critical patent/JP3737917B2/en
Publication of JP2001114555A publication Critical patent/JP2001114555A/en
Application granted granted Critical
Publication of JP3737917B2 publication Critical patent/JP3737917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱衝撃性アルミナ焼結体及びそれよりなる熱処理用部材に関する。
【0002】
【従来技術とその問題点】
アルミナ焼結体は、耐食性、耐熱性等にすぐれ、他のセラミックスに比べて安価で取り扱いが容易であることから、古くから高温部材、熱処理用容器、セッター、炉心管、測温用保護管等の広い分野で使用されている。
【0003】
しかしながら、従来のアルミナ焼結体は、結晶粒径が不均一であり、焼結体に含有する不純物により結晶粒界に第2相やガラス相を形成しているために、高温強度、クリープ特性が温度の上昇に伴って低下するだけでなく、耐熱衝撃性が低く、耐食性が低い問題点を有している。
【0004】
特に、最近のリチウム2次電池用正極材料をはじめとする電子材料及び蛍光体材料の熱処理においては蒸発成分を極力少なくして組成の変動を少なくするためや生産効率を高めるために急速昇温、降温処理がなされている。このような使用条件では耐食性よりもむしろ耐熱衝撃性及び耐久性の高いアルミナ製熱処理用容器が要求される。
【0005】
これらの問題点を解決するために、アルミナにジルコニアを添加することが検討されている。例えば、特公平4−48749号公報には蛍光体材料の熱処理用アルミナ磁器の製造法において、MgOとZrOとが重量比で2:8〜7:3である混合物をアルミナに対して0.1〜0.65重量%含有させる技術が開示されている。しかしながら、特公平4−48749に記載されているアルミナ磁器は耐熱衝撃性については十分満足されるものではなく、加熱・冷却による添加したZrOの変態による強度劣化の危険性がある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、急熱(急速加熱)、急冷によるクラックの発生や割れに対する抵抗性、すなわち耐熱衝撃性を有し、かつ耐食性をも有するアルミナ焼結体を提供する点にある。
【0007】
【課題を解決するための手段】
本発明は、前記のような現状を鑑みて鋭意研究を重ねた結果、アルミナ結晶粒内にジルコニアの微細結晶粒子を存在させ、かつアルミナ結晶粒界にジルコニアを偏析させることにより、耐食性だけでなく、耐熱衝撃性にすぐれたアルミナ焼結体を得ることを見出した。なお、本発明では、耐熱衝撃性は急熱・急冷によるクラックの発生や割れに対する抵抗性だけでなく、加熱・冷却の繰り返しによる耐久性を意味する。
【0008】
即ち、本発明はアルミナ含有量が97重量%以上、ジルコニア含有量が0.1〜3重量%であり、ジルコニア結晶粒子がアルミナ結晶粒内に存在し、アルミナ結晶粒界にジルコニアが偏析しており、焼結体の平均結晶粒径が8〜70μmであり、焼結体かさ密度が3.7g/cm以上であることを特徴とする耐熱衝撃性アルミナ焼結体に関する。
【0009】
以下に本発明の耐熱衝撃性にすぐれたアルミナ焼結体が充足すべき各要件について詳細に述べる。
【0010】
本発明においては、アルミナ含有量が97重量%以上であることが必要であり、好ましくは98重量%以上、より好ましくは99重量%以上である。アルミナ含有量が97重量%未満の場合は、結晶粒界に形成される第2相及びガラス相が多くなり、耐食性の低下だけでなく、機械的特性、特に高温下での強度及び靭性の低下をきたし、その結果、耐熱衝撃性が低下するので好ましくない。
【0011】
さらに、本発明においてはジルコニア含有量が0.1〜3重量%であることが必要であり、好ましくは0.15〜2重量%である。ジルコニアはアルミナ焼結体の強度及び靭性の向上に寄与するだけでなく、焼結性を向上させ、結晶粒径分布の少ない微構造にするために重要である。ジルコニア含有量が0.1重量%未満の場合は、ジルコニア添加の効果が少ない。一方、ジルコニア含有量が3重量%を越える場合には、後述するようにアルミナ結晶粒界にジルコニアが結晶粒子として多く存在するため、焼結体の加熱・冷却によりアルミナとジルコニアとの熱膨張差に起因する微小クラックが発生して、さらなる加熱・冷却により微小クラックが進展し、割れにつながるので好ましくない。
【0012】
さらに、含有するジルコニアにはイットリアがジルコニアに対して1〜5モル%、好ましくは2〜4モル%含有していることが適切である。ジルコニアにイットリアが1〜5モル%含有させることによりアルミナ結晶粒内に存在するジルコニア粒子径を小さくすることができるため、アルミナ結晶粒子強度を高める効果がある。イットリアがジルコニアに対して5モル%を越える場合にはアルミナ結晶粒内に存在するジルコニア結晶相が大きくなってアルミナ結晶粒子強度を高める効果が少なくなるので好ましくない。1モル%以下の場合は、ジルコニアにイットリアを含有させる効果が少ないので好ましくない。
【0013】
本発明においては、ジルコニア結晶粒子がアルミナ結晶粒内に存在し、アルミナ結晶粒界にジルコニアが偏析していることが必要である。すなわち、図1に示すようにアルミナ結晶粒内にジルコニア結晶粒子(図中の白く点々と存在しているもの)が存在することによりアルミナ結晶粒子がジルコニアとアルミナの熱膨張差から発生する応力歪みを発生し、アルミナ結晶粒内を進展するクラックがもつエネルギーを低減させたり、クラックを分岐させる効果があり、強度及び靭性の向上に寄与し、耐熱衝撃性が高くなる。また、アルミナ結晶粒内に存在するジルコニア結晶粒子の結晶相は正方晶であることが好ましい。
【0014】
さらに、アルミナ結晶粒内に存在するジルコニアの平均結晶粒径は0.5μm以下であることが好ましい。ジルコニアの平均結晶粒径が0.5μmを越えるとアルミナ結晶粒内に発生する応力歪みの均一性が低下するため、アルミナ結晶粒子の強化が少なくなるので好ましくない。なお、アルミナ結晶粒内に存在するジルコニアの平均結晶粒径は、焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡により観察し、無作為に20個のジルコニア結晶粒径を測定し、測定した結晶粒径の平均値で表す。後述するアルミナ結晶粒界に存在するジルコニア結晶粒径についても上記と同様に測定する。
【0015】
また、ジルコニアがアルミナ結晶粒界に偏析しているということは図2に示すようにアルミナ結晶粒界及び粒界極近傍にジルコニアが分子レベルで存在することを意味する。ジルコニアがアルミナ結晶粒界に偏析することにより結晶粒界強度を高める効果がある。ジルコニア結晶粒子がアルミナ結晶粒内にのみ存在していることが好ましいが、ジルコニアがアルミナ結晶粒界に偏析し、ジルコニア結晶粒子がアルミナ結晶粒内に存在していればジルコニア結晶粒子がアルミナ結晶粒界に存在していても許容される。その場合のジルコニア結晶粒子の平均結晶粒径は3μm以下、より好ましくは1μm以下である。
【0016】
以上のように本発明においては、ジルコニア結晶粒子がアルミナ結晶粒内に存在し、ジルコニアがアルミナ結晶粒界に偏析することにより機械的特性が向上し、ひいては耐熱衝撃性を高める効果がある。
【0017】
本発明では、MgOを0.3重量%以下、好ましくは0.25重量%以下であるが0.01重量%以上含有させることにより、焼結性の向上及び結晶粒径の均一性を高くする効果がある。さらに、ジルコニアとMgOが同時に含有されていると還元雰囲気下での強度劣化を抑制することができる。MgOが0.3重量%以上含有する場合には、アルミナ結晶粒界に偏析するジルコニアによる粒界強化の効果が少なくなるので好ましくない。
【0018】
本発明においては、焼結体の平均結晶粒径は8〜70μm、好ましくは10〜50μm、より好ましくは15〜40μmであることが必要である。平均結晶粒径が8μm未満の場合は、耐久性が低下するだけでなく、耐食性が低下するので好ましくない。一方、70μmを越える場合には耐熱衝撃性が低下するので好ましくない。
【0019】
アルミナ結晶粒子の平均結晶粒径は、アルミナ焼結体を鏡面仕上げし、熱エッチングを施し、走査電子顕微鏡により観察し、インターセプト法により10点平均から求めたものである。算出式としては、
【数1】
D=1.5×L/n
〔D:平均結晶粒径(μm)、L:測定長さ(μm)、n:長さL当たりの結晶数〕を用いる。
【0020】
本発明においてはかさ密度が3.7g/cm以上、好ましくは3.8g/cm以上であることが必要である。かさ密度が3.7g/cm未満の場合は、焼結体内部に気孔が多く存在することとなり、強度低下が起こり、耐熱衝撃性の低下をきたすので好ましくない。また、気孔が起点となって腐食及び反応が進行し易くなるため、耐食性の低下が起こるので好ましくない。
【0021】
本発明の耐熱衝撃性にすぐれたアルミナ焼結体は種々の方法で作製できるが、その一例を下記に示す。
【0022】
アルミナ原料粉末としては、アルミナ純度が99.5重量%以上、平均粒子粒径が2μm以下であることが必要で、より好ましくは1.5μm以下である。また、ジルコニア原料粉末としては、液相法により作製された粉末を用いるのが好ましく、比表面積が8m/g以上である必要があり、より好ましくは10m/g以上である。さらには、ジルコニアゾルや焼成によりジルコニアとなるジルコニウム化合物を用いることもできる。ジルコニア原料粉末の比表面積が8m/g未満の場合は、ジルコニア結晶粒子がアルミナ結晶粒内に存在し、アルミナ結晶粒界に偏析しにくく、ジルコニア結晶粒子としてアルミナ結晶粒界に存在し、耐熱衝撃性及び耐食性が低下するので好ましくない。また、ジルコニアにイットリアが1〜5モル%含有していることがより好ましい。
【0023】
なお、アルミナ焼結体に含有されるSiO、TiO、Fe、CaO、NaO及びKOの合量は0.3重量%以下であることが好ましく、より好ましくは0.1重量%以下である。不純物量が0.3重量%を越えると結晶粒界にガラス相を多く形成し、高温特性の低下をきたすので好ましくない。さらに、粒界にガラス相が多く形成されると結晶粒界にジルコニアが偏析することによる粒界強化の効果が少なくなるだけでなく、ジルコニア結晶粒子のアルミナ結晶粒内への存在を抑制するので好ましくない。
【0024】
アルミナに対してジルコニア含有量が所定量となるようにアルミナ原料粉末とジルコニア原料粉末を配合し、溶媒として水または有機溶媒を用いて、ポットミル、アトリッションミル等の粉砕機により粉砕・分散・混合する。MgOを添加する場合は、粉砕・分散・混合時に水酸化物、炭酸化物等のマグネシア化合物の形態で添加しても良いし、予めアルミナ原料粉末に添加した粉末を用いても良い。得られた原料粉体の平均粒子径は1μm以下であることが必要であり、より好ましくは0.8μm以下である。原料粉体の粒度がこれらの範囲外の場合は、成形性が低下し、得られたアルミナ焼結体に欠陥を多く含有するだけでなく、本発明の微構造を有したアルミナ焼結体が得られず、耐熱衝撃性が低下するだけでなく、その他の機械的特性及び耐食性も低下するので好ましくない。
【0025】
成形方法としてプレス成形、ラバープレス成形等の方法を採用する場合には、粉砕・分散スラリーに、必要に応じて公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。また、鋳込成形法を採用する場合には、粉砕・分散スラリーに必要により公知のバインダー(例えばワックスエマルジョン、アクリル系樹脂等)を加え、石膏型あるいは樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。さらに、押出成形法を採用する場合には、粉砕・分散したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)、可塑剤(例えばポリエチレングリコール等)、滑剤(例えばステアリン酸等)を混合して坏土を作製し、押出成形する。以上のようにして得た成形体を1500〜1800℃、より好ましくは1600〜1750℃で焼成することによってアルミナ焼結体を得る。
【0026】
【実施例】
以下に実施例を示し、本発明を説明するが、本発明はこれにより何ら限定されるものでない。
【0027】
実施例(試料No.1〜9)、比較例(試料No.10〜20)
原料として、(イ)純度が99.8%、平均粒子径が0.9μmからなるアルミナ原料粉末と、(ロ)イットリアを0〜6モル%含有しており、比表面積が15m/gからなるジルコニア原料粉末、とを用いた。なお、試料No.16に使用したジルコニア原料粉末はイットリアを1.5モル%を含有し、比表面積が3m/gのものである。
【0028】
表1に示す所定量のジルコニア含有量になるように、アルミナ原料粉末とジルコニア原料粉末とを配合し、ポットミル中において溶媒としての水を用いて粉砕・分散・混合し、スラリーを作製した。得られたスラリーの粉砕粉体の平均粒子径を表1に示す。得られたスラリーを石膏型により鋳込成形し、1450〜1800℃で焼成して、φ6×45mmのアルミナ焼結体を得た。得られたアルミナ焼結体の特性を表2に示す。試料No.1〜9は本発明の範囲内(実施例)のアルミナ焼結体であり、試料No.10〜20は本発明の要件を少なくとも一つ以上満足していない(比較例)アルミナ焼結体である。
【0029】
【表1】

Figure 0003737917
【0030】
【表2】
Figure 0003737917
【0031】
本発明の範囲内である試料No.2の走査電子顕微鏡写真を図1に、透過電子顕微鏡写真を図2に、アルミナ結晶粒界直上のEDS分析結果および、アルミナ結晶粒内のそれを図3の(A)と(B)に示す。さらに、図4に本発明の範囲外の試料No.16の走査電子顕微鏡写真を示す。本発明のアルミナ焼結体はアルミナ結晶粒内に微細なジルコニア結晶粒子(図4で、白っぽく見える粒子がジルコニア結晶粒子)が存在し、アルミナ結晶粒界にはジルコニアが偏析しているが、本発明の範囲外の焼結体はジルコニアが結晶としてアルミナ結晶粒界にのみ存在している。
【0032】
耐熱衝撃性は得られたφ6×45mmのサンプルを所定の温度に30分加熱し、20℃の水中に落下させるテストを行い、テスト後のサンプルを蛍光探傷によるクラックの有無により評価した。クラックが発生しなかった加熱した最高温度と水温との差をΔT℃として評価した。
【0033】
また、加熱・冷却の繰り返しによる耐久性については上記と同サンプルを150℃で30分加熱し、20℃の水中に落下させるテストを30回繰り返し行い、蛍光探傷でクラックの発生が認められた繰り返し回数で評価した。
【0034】
本発明の焼結体は、前記表2から明らかなように、耐熱衝撃性、すなわち、急熱・急冷に対する抵抗性(ΔT℃)が高く、かつ加熱・冷却に対する耐久性もすぐれたものとなっているのに対し、本発明の要件を少なくとも一つ以上を満足していない焼結体は耐熱衝撃性に劣るものであることは明らかである。
【0035】
【発明の効果】
(1) 本発明のアルミナ焼結体は、耐熱衝撃性及び耐食性にすぐれるためリチウム2次電池正極材料の合成、蛍光体材料の合成、圧電体、誘電体、セラミックコンデンサー等の電子部品の焼成用部材として有効に用いることができる。さらに、金属及び合金の溶解用ルツボとしても有効である。
(2) また、すぐれた耐熱衝撃性を有するため、各種熱処理用炉心管、高温搬送用ローラ、サポートチューブ、ラジアントチューブ、ガス吹込管、ガス採取管に有効である。特に還元、真空及び不活性雰囲気下での使用に有効である。
【図面の簡単な説明】
【図1】実施例(試料No.2)の走査電子顕微鏡写真である。
【図2】実施例(試料No.2)の透過電子顕微鏡写真である。
【図3】(A)はアルミナ結晶粒界直上のEDSスペクトラムを示し、
(B)はアルミナ結晶粒子内のEDSスペクトラムを示す。
【図4】比較例(試料No.16)の走査電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal shock-resistant alumina sintered body and a heat treatment member comprising the same.
[0002]
[Prior art and its problems]
Alumina sintered bodies are excellent in corrosion resistance, heat resistance, etc., and are cheaper and easier to handle than other ceramics, so high temperature members, heat treatment containers, setters, furnace core tubes, temperature measuring protection tubes, etc. Is used in a wide range of fields.
[0003]
However, the conventional alumina sintered body has a non-uniform crystal grain size, and the second phase and glass phase are formed at the crystal grain boundary due to impurities contained in the sintered body. Not only decreases with increasing temperature, but also has a problem of low thermal shock resistance and low corrosion resistance.
[0004]
In particular, in recent heat treatments of electronic materials and phosphor materials, including positive electrode materials for lithium secondary batteries, rapid heating is performed to reduce evaporation components as much as possible to reduce composition fluctuations and to increase production efficiency. The temperature is lowered. Under such use conditions, an alumina heat treatment container having high thermal shock resistance and durability rather than corrosion resistance is required.
[0005]
In order to solve these problems, it has been studied to add zirconia to alumina. For example, in Japanese Patent Publication No. 4-48749, in a method of manufacturing an alumina ceramic for heat treatment of a phosphor material, a mixture in which MgO and ZrO 2 are in a weight ratio of 2: 8 to 7: 3 is set to 0. A technique for containing 1 to 0.65% by weight is disclosed. However, the alumina porcelain described in JP-B-4-48749 is not sufficiently satisfied with respect to thermal shock resistance, and there is a risk of strength deterioration due to transformation of added ZrO 2 by heating and cooling.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an alumina sintered body having resistance to cracking and cracking due to rapid heating (rapid heating) and rapid cooling, that is, thermal shock resistance and corrosion resistance.
[0007]
[Means for Solving the Problems]
In the present invention, as a result of intensive research in view of the above-mentioned present situation, not only corrosion resistance but also fine particles of zirconia are present in alumina crystal grains and zirconia is segregated at alumina crystal grain boundaries. The inventors have found that an alumina sintered body having excellent thermal shock resistance can be obtained. In the present invention, the thermal shock resistance means not only the occurrence of cracks due to rapid heating / cooling and resistance to cracking, but also the durability due to repeated heating / cooling.
[0008]
That is, the present invention has an alumina content of 97% by weight or more, a zirconia content of 0.1 to 3% by weight, zirconia crystal particles are present in the alumina crystal grains, and zirconia is segregated at the alumina crystal grain boundaries. Further, the present invention relates to a thermal shock-resistant alumina sintered body characterized in that the sintered body has an average crystal grain size of 8 to 70 μm and a sintered body bulk density of 3.7 g / cm 3 or more.
[0009]
Hereinafter, each requirement to be satisfied by the alumina sintered body excellent in thermal shock resistance of the present invention will be described in detail.
[0010]
In the present invention, the alumina content needs to be 97% by weight or more, preferably 98% by weight or more, and more preferably 99% by weight or more. When the alumina content is less than 97% by weight, the second phase and the glass phase formed at the grain boundaries increase, and not only the corrosion resistance is lowered, but also the mechanical properties, particularly the strength and toughness at high temperature are lowered. As a result, the thermal shock resistance is lowered, which is not preferable.
[0011]
Further, in the present invention, the zirconia content needs to be 0.1 to 3% by weight, preferably 0.15 to 2% by weight. Zirconia is important not only for improving the strength and toughness of the alumina sintered body, but also for improving the sinterability and forming a microstructure with a small crystal grain size distribution. When the zirconia content is less than 0.1% by weight, the effect of adding zirconia is small. On the other hand, when the zirconia content exceeds 3% by weight, since zirconia exists as crystal grains in the alumina crystal grain boundary as described later, the thermal expansion difference between alumina and zirconia is caused by heating and cooling of the sintered body. This is not preferable because a micro crack caused by the above occurs and the micro crack develops by further heating / cooling and leads to a crack.
[0012]
Further, it is appropriate that yttria is contained in the zirconia to be contained in an amount of 1 to 5 mol%, preferably 2 to 4 mol% with respect to zirconia. By containing 1 to 5 mol% of yttria in zirconia, the diameter of zirconia particles present in the alumina crystal grains can be reduced, so that there is an effect of increasing the strength of the alumina crystal particles. When yttria exceeds 5 mol% with respect to zirconia, the zirconia crystal phase present in the alumina crystal grains is enlarged, and the effect of increasing the strength of the alumina crystal particles is reduced. When the amount is 1 mol% or less, the effect of incorporating yttria into zirconia is small, which is not preferable.
[0013]
In the present invention, it is necessary that the zirconia crystal particles are present in the alumina crystal grains, and zirconia is segregated at the alumina crystal grain boundaries. That is, as shown in FIG. 1, when the zirconia crystal particles (white dots in the figure) are present in the alumina crystal grains, the stress strain generated from the difference in thermal expansion between the zirconia and the alumina occurs in the alumina crystal particles. This has the effect of reducing the energy of cracks propagating in the alumina crystal grains and branching the cracks, contributing to the improvement of strength and toughness and increasing the thermal shock resistance. Moreover, it is preferable that the crystal phase of the zirconia crystal grain which exists in an alumina crystal grain is a tetragonal crystal.
[0014]
Furthermore, the average crystal grain size of zirconia present in the alumina crystal grains is preferably 0.5 μm or less. If the average crystal grain size of zirconia exceeds 0.5 μm, the uniformity of stress strain generated in the alumina crystal grains is lowered, and this is not preferable because the strengthening of the alumina crystal grains is reduced. The average crystal grain size of zirconia present in the alumina crystal grains is obtained by mirror-finishing the sintered body, applying thermal etching, observing with a scanning electron microscope, and measuring 20 zirconia crystal grain sizes at random. The average value of the measured crystal grain sizes. The zirconia crystal grain size present in the alumina crystal grain boundary described later is also measured in the same manner as described above.
[0015]
In addition, the fact that zirconia is segregated at the alumina crystal grain boundary means that zirconia is present at the molecular level in the vicinity of the alumina crystal grain boundary and the grain boundary pole as shown in FIG. Zirconia segregates at the alumina crystal grain boundary, thereby increasing the grain boundary strength. It is preferable that the zirconia crystal particles are present only in the alumina crystal grains. However, if the zirconia is segregated at the alumina grain boundaries and the zirconia crystal particles are present in the alumina crystal grains, the zirconia crystal particles are the alumina crystal grains. Even if it exists in the field, it is allowed. In that case, the average crystal grain size of the zirconia crystal particles is 3 μm or less, more preferably 1 μm or less.
[0016]
As described above, in the present invention, the zirconia crystal particles are present in the alumina crystal grains, and zirconia segregates at the alumina crystal grain boundaries, whereby the mechanical characteristics are improved, and the thermal shock resistance is improved.
[0017]
In the present invention, MgO is contained in an amount of 0.3% by weight or less, preferably 0.25% by weight or less, but by adding 0.01% by weight or more, the sinterability is improved and the crystal grain size uniformity is increased. effective. Furthermore, when zirconia and MgO are contained at the same time, strength deterioration under a reducing atmosphere can be suppressed. When MgO is contained in an amount of 0.3% by weight or more, the effect of grain boundary strengthening by zirconia segregating at the alumina crystal grain boundary is reduced, which is not preferable.
[0018]
In the present invention, the average crystal grain size of the sintered body needs to be 8 to 70 μm, preferably 10 to 50 μm, more preferably 15 to 40 μm. When the average crystal grain size is less than 8 μm, not only the durability is lowered but also the corrosion resistance is lowered. On the other hand, if it exceeds 70 μm, the thermal shock resistance is lowered, which is not preferable.
[0019]
The average crystal grain size of the alumina crystal particles is determined from an average of 10 points by the intercept method after mirror-finishing the alumina sintered body, performing thermal etching, and observing with a scanning electron microscope. As a formula,
[Expression 1]
D = 1.5 × L / n
[D: average crystal grain size (μm), L: measurement length (μm), n: number of crystals per length L] are used.
[0020]
The bulk density in the present invention is 3.7 g / cm 3 or more, preferably required that is 3.8 g / cm 3 or more. When the bulk density is less than 3.7 g / cm 3 , many pores exist inside the sintered body, which causes a decrease in strength and a decrease in thermal shock resistance. Further, since corrosion and reaction are likely to proceed from the pores as a starting point, corrosion resistance is lowered, which is not preferable.
[0021]
An alumina sintered body having excellent thermal shock resistance according to the present invention can be produced by various methods.
[0022]
The alumina raw material powder needs to have an alumina purity of 99.5% by weight or more and an average particle diameter of 2 μm or less, and more preferably 1.5 μm or less. Moreover, it is preferable to use the powder produced by the liquid phase method as a zirconia raw material powder, and a specific surface area needs to be 8 m < 2 > / g or more, More preferably, it is 10 m < 2 > / g or more. Furthermore, a zirconium compound that becomes zirconia by firing can be used. When the specific surface area of the zirconia raw material powder is less than 8 m 2 / g, the zirconia crystal particles are present in the alumina crystal grains, are not easily segregated at the alumina crystal grain boundaries, exist as zirconia crystal grains at the alumina crystal grain boundaries, and are heat resistant. This is not preferable because impact resistance and corrosion resistance are lowered. Moreover, it is more preferable that 1-5 mol% of yttria is contained in zirconia.
[0023]
The total amount of SiO 2 , TiO 2 , Fe 2 O 3 , CaO, Na 2 O and K 2 O contained in the alumina sintered body is preferably 0.3% by weight or less, more preferably 0. .1% by weight or less. If the amount of impurities exceeds 0.3% by weight, a large amount of glass phase is formed at the grain boundaries and the high temperature characteristics are deteriorated. Furthermore, when a large amount of glass phase is formed at the grain boundary, not only the effect of strengthening the grain boundary due to segregation of zirconia at the grain boundary is reduced, but also the presence of zirconia crystal grains in the alumina crystal grains is suppressed. It is not preferable.
[0024]
Alumina raw material powder and zirconia raw material powder are blended so that the zirconia content becomes a predetermined amount with respect to alumina, using water or an organic solvent as a solvent, pulverizing / dispersing with a pulverizer such as a pot mill, an attrition mill, etc. Mix. When adding MgO, it may be added in the form of a magnesia compound such as hydroxide or carbonate during pulverization, dispersion, or mixing, or a powder previously added to the alumina raw material powder may be used. The obtained raw material powder needs to have an average particle size of 1 μm or less, and more preferably 0.8 μm or less. When the particle size of the raw material powder is outside these ranges, the formability is reduced, and the alumina sintered body obtained not only contains many defects but also the alumina sintered body having the microstructure of the present invention. This is not preferable because not only the thermal shock resistance is lowered, but also other mechanical properties and corrosion resistance are lowered.
[0025]
When a method such as press molding or rubber press molding is adopted as the molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the pulverized / dispersed slurry as necessary, and then sprayed. The powder is dried by a known method such as a dryer to produce a molded powder, which is then molded. In addition, when adopting the casting method, a known binder (for example, wax emulsion, acrylic resin, etc.) is added to the pulverized / dispersed slurry as required, and the waste mud is cast and filled using a gypsum mold or a resin mold. Molded by casting or pressure casting. Furthermore, when adopting an extrusion molding method, the pulverized / dispersed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose), a plasticizer (for example, polyethylene glycol), a lubricant (for example). For example, stearic acid or the like is mixed to prepare a clay, and extrusion molding is performed. An alumina sintered body is obtained by firing the molded body thus obtained at 1500 to 1800 ° C, more preferably 1600 to 1750 ° C.
[0026]
【Example】
The present invention will be described below with reference to examples, but the present invention is not limited thereby.
[0027]
Example (sample No. 1-9), comparative example (sample No. 10-20)
The raw material contains (a) an alumina raw material powder having a purity of 99.8% and an average particle diameter of 0.9 μm, and (b) 0 to 6 mol% of yttria, and a specific surface area of 15 m 2 / g. The zirconia raw material powder to be used was used. Sample No. The zirconia raw material powder used in No. 16 contains 1.5 mol% of yttria and has a specific surface area of 3 m 2 / g.
[0028]
Alumina raw material powder and zirconia raw material powder were blended so as to have a predetermined amount of zirconia content shown in Table 1, and pulverized, dispersed, and mixed using water as a solvent in a pot mill to prepare a slurry. Table 1 shows the average particle size of the pulverized powder of the obtained slurry. The obtained slurry was cast by a plaster mold and fired at 1450 to 1800 ° C. to obtain an alumina sintered body having a diameter of 6 × 45 mm. Table 2 shows the characteristics of the obtained alumina sintered body. Sample No. Nos. 1 to 9 are alumina sintered bodies within the scope of the present invention (Examples). 10 to 20 are alumina sintered bodies that do not satisfy at least one of the requirements of the present invention (Comparative Example).
[0029]
[Table 1]
Figure 0003737917
[0030]
[Table 2]
Figure 0003737917
[0031]
Sample No. which is within the scope of the present invention. Fig. 1 shows a scanning electron micrograph of Fig. 2, Fig. 2 shows a transmission electron micrograph, and Fig. 3 (A) and Fig. 3 (B) show the EDS analysis results immediately above the alumina crystal grain boundary and those in the alumina crystal grain. . Furthermore, in FIG. 16 scanning electron micrographs are shown. In the alumina sintered body of the present invention, fine zirconia crystal particles (the particles that appear whitish in FIG. 4 are zirconia crystal particles) are present in the alumina crystal grains, and zirconia is segregated at the alumina crystal grain boundaries. In the sintered body outside the scope of the invention, zirconia exists only as crystals in the alumina grain boundaries.
[0032]
The thermal shock resistance was evaluated by examining whether or not the obtained φ6 × 45 mm sample was heated to a predetermined temperature for 30 minutes and dropped into water at 20 ° C., and the sample after the test was cracked by fluorescence flaw detection. The difference between the heated maximum temperature at which no cracks occurred and the water temperature was evaluated as ΔT ° C.
[0033]
In addition, with regard to durability due to repeated heating and cooling, the same sample as above was heated at 150 ° C. for 30 minutes and dropped into water at 20 ° C., and the test was repeated 30 times. Evaluated by the number of times.
[0034]
As apparent from Table 2, the sintered body of the present invention has high thermal shock resistance, that is, resistance to rapid heating / cooling (ΔT ° C.) and excellent durability against heating / cooling. On the other hand, it is clear that a sintered body that does not satisfy at least one of the requirements of the present invention is inferior in thermal shock resistance.
[0035]
【The invention's effect】
(1) Since the alumina sintered body of the present invention is excellent in thermal shock resistance and corrosion resistance, synthesis of a lithium secondary battery positive electrode material, synthesis of a phosphor material, firing of electronic parts such as a piezoelectric body, a dielectric, and a ceramic capacitor It can be used effectively as a structural member. Furthermore, it is also effective as a crucible for melting metals and alloys.
(2) Further, since it has excellent thermal shock resistance, it is effective for various heat treatment core tubes, high temperature transfer rollers, support tubes, radiant tubes, gas blowing tubes, and gas sampling tubes. It is particularly effective for use in reducing, vacuum and inert atmospheres.
[Brief description of the drawings]
1 is a scanning electron micrograph of an example (sample No. 2).
FIG. 2 is a transmission electron micrograph of an example (sample No. 2).
FIG. 3A shows an EDS spectrum immediately above the alumina crystal grain boundary;
(B) shows an EDS spectrum in the alumina crystal particles.
4 is a scanning electron micrograph of a comparative example (Sample No. 16).

Claims (5)

アルミナ含有量が97重量%以上、ジルコニア含有量が0.1〜3重量%であり、ジルコニア結晶粒子がアルミナ結晶粒内に存在し、アルミナ結晶粒界にジルコニアが偏析しており、焼結体の平均結晶粒径が8〜70μmであり、焼結体かさ密度が3.7g/cm以上であることを特徴とする耐熱衝撃性アルミナ焼結体。The alumina content is 97% by weight or more, the zirconia content is 0.1 to 3% by weight, zirconia crystal particles are present in the alumina crystal grains, and zirconia is segregated at the alumina crystal grain boundaries. A thermal shock-resistant alumina sintered body having an average crystal grain size of 8 to 70 μm and a bulk density of the sintered body of 3.7 g / cm 3 or more. ジルコニアにYが1〜5モル%含有されている請求項1記載の耐熱衝撃性アルミナ焼結体。Thermal shock alumina sintered body according to claim 1, wherein Y 2 O 3 is contained 1 to 5 mol% of zirconia. アルミナ結晶粒内に存在するジルコニアの平均結晶粒径が0.5μm以下である請求項1または2記載の耐熱衝撃性アルミナ焼結体。The thermal shock-resistant alumina sintered body according to claim 1 or 2, wherein an average crystal grain size of zirconia existing in the alumina crystal grains is 0.5 µm or less. MgOを0.3重量%以下含有している請求項1〜3いずれか記載の耐熱衝撃性アルミナ焼結体。The thermal shock-resistant alumina sintered body according to any one of claims 1 to 3, which contains 0.3 wt% or less of MgO. 請求項1〜4いずれか記載の耐熱衝撃性アルミナ焼結体からなる熱処理用部材。A heat-treating member comprising the thermal shock-resistant alumina sintered body according to any one of claims 1 to 4.
JP29031099A 1999-10-12 1999-10-12 Thermal shock-resistant alumina sintered body and heat treatment member comprising the same Expired - Lifetime JP3737917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29031099A JP3737917B2 (en) 1999-10-12 1999-10-12 Thermal shock-resistant alumina sintered body and heat treatment member comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29031099A JP3737917B2 (en) 1999-10-12 1999-10-12 Thermal shock-resistant alumina sintered body and heat treatment member comprising the same

Publications (2)

Publication Number Publication Date
JP2001114555A JP2001114555A (en) 2001-04-24
JP3737917B2 true JP3737917B2 (en) 2006-01-25

Family

ID=17754460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29031099A Expired - Lifetime JP3737917B2 (en) 1999-10-12 1999-10-12 Thermal shock-resistant alumina sintered body and heat treatment member comprising the same

Country Status (1)

Country Link
JP (1) JP3737917B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906228B2 (en) * 2003-10-02 2012-03-28 株式会社ニッカトー Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP5789177B2 (en) * 2011-11-02 2015-10-07 コバレントマテリアル株式会社 Polycrystalline ceramic joined body and method for producing the same
CN107646026B (en) 2015-06-01 2021-03-26 圣戈本陶瓷及塑料股份有限公司 Refractory article and method of forming the same
EP3936489A4 (en) 2019-03-06 2022-11-23 Nikkato Corporation Ceramic sintered compact having embossed surface, method for manufacturing same, and heat treatment member comprising said ceramic sintered compact

Also Published As

Publication number Publication date
JP2001114555A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
KR101729650B1 (en) Mullite ceramic and method for producing same
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4667520B2 (en) Silicon nitride based composite ceramics and method for producing the same
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5036110B2 (en) Lightweight ceramic sintered body
JP2011088759A (en) Alumina refractory and method of producing the same
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4043425B2 (en) Zirconia heat treatment material
JP4249830B2 (en) Sintering jig and manufacturing method thereof
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JP4485615B2 (en) Corrosion-resistant spinel sintered body and heat treatment member comprising the same
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
JP6989722B1 (en) Mullite sintered body with excellent heat resistance and durability and its manufacturing method
JP2009091196A (en) Alumina ceramic excellent in wear resistance, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R150 Certificate of patent or registration of utility model

Ref document number: 3737917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term