[go: up one dir, main page]

JP3737168B2 - Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability - Google Patents

Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability Download PDF

Info

Publication number
JP3737168B2
JP3737168B2 JP22481195A JP22481195A JP3737168B2 JP 3737168 B2 JP3737168 B2 JP 3737168B2 JP 22481195 A JP22481195 A JP 22481195A JP 22481195 A JP22481195 A JP 22481195A JP 3737168 B2 JP3737168 B2 JP 3737168B2
Authority
JP
Japan
Prior art keywords
ions
steel sheet
treatment
chemical conversion
whiteness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22481195A
Other languages
Japanese (ja)
Other versions
JPH0949086A (en
Inventor
雅之 青山
信治 野村
博巳 神尾
一実 西村
英俊 新頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Original Assignee
Nihon Parkerizing Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd, Nippon Steel Corp filed Critical Nihon Parkerizing Co Ltd
Priority to JP22481195A priority Critical patent/JP3737168B2/en
Publication of JPH0949086A publication Critical patent/JPH0949086A/en
Application granted granted Critical
Publication of JP3737168B2 publication Critical patent/JP3737168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、家電、建材、土木及び自動車と多岐の分野にわたって用いられる電気亜鉛めっき鋼板表面に優れた塗装性を付与し、白色度がL値で55以上となるような高白色度の電気亜鉛めっき鋼板の製造方法に関するものである。
【0002】
【従来の技術】
従来から電気亜鉛めっき鋼板は、耐食性、塗装性に優れたりん酸塩処理又はクロメート処理、更には有機樹脂を施し、付加価値を向上させた鋼板として使用されることがほとんどであった。
【0003】
しかしながら、近年の環境上の問題から、特にクロメート処理を施した鋼板はリサイクルできないので、有害な産業廃棄物となり大きな社会問題となりつつある。このような現状から、従来のクロメート処理鋼板に替わり毒性が少なく、塗装性が良好な電気亜鉛めっき鋼板にりん酸塩処理を施した鋼板(以下ボンデ鋼板と称する)が主として用いられてきている。しかしながら、このようなボンデ鋼板上に形成された単なるりん酸亜鉛皮膜では塗料の多様化、高品質化に対応できない場合が多くなっている。このため、ボンデ鋼板における皮膜の改善が求められている。
【0004】
そのために従来、塗装性を向上させる方法として、以下に示すように、りん酸塩処理液中に特定の2価金属イオンや有機物等を添加することで対処している。
【0005】
例えば、特開昭64−68481号公報には、電気亜鉛めっき鋼板をはじめとする金属表面をりん酸亜鉛マグネシウムを基本成分とする水溶液で処理する方法が開示されている。しかし、該方法では化成処理性は良好であるが、塗装性能が不十分である。
【0006】
また、特開平5−287549号公報には、鉄系金属表面を特定量のコバルトイオン、マンガンイオン、皮膜化成促進剤、及び錯フッ化物、単純フッ化物とを含有した酸性りん酸亜鉛処理液に接触させて、塗装性に優れた鋼板の処理方法が開示されている。しかし、該方法では、塗装性は良好であるものの、ボンデ鋼板の必要条件である白色度(L値で評価)が低く、商品価値としては低いものであった。
【0007】
このようにボンデ鋼板として必要な白色度を低下させることなく、優れた塗装性を得ることは現状では困難であり、電気亜鉛めっき鋼板に優れた塗装性を付与し、しかも白色度も55以上の高白色度の鋼板を得るような製造方法は得られていないのが実情である。
【0008】
【発明が解決しようとする課題】
本発明は、従来技術の有する上記問題点を解決し、冷延鋼板に電気亜鉛めっきを施した後に、白色度を損なうことなく、優れた塗装性を有する電気亜鉛めっき鋼板の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、従来の抱える前記問題点を解決するための手段について鋭意検討を重ねてきた結果、冷延鋼板に電気亜鉛めっきを施した後、該めっき上にりん酸イオン、硝酸イオン、亜鉛イオン、フッ化物イオン及び錯フッ化物イオンから選ばれた少なくとも1種からなる反応促進剤とを必須成分とするりん酸塩処理液中にマグネシウムイオンとニッケルイオンを特定量、特定比率で配合し、且つ特定の酸比(全酸度/遊離酸度)有する化成処理液を50〜70℃の温度で1〜10秒間接触させて特定の皮膜量で白色度(L値)が55以上の化成皮膜を形成させることにより、上記課題を解決し得ることを見い出し、本発明を完成するに至った。
【0010】
すなわち、本発明は、冷延鋼板に電気亜鉛めっきを施した後に、該めっき上にりん酸イオンを10〜20g/Lと、硝酸イオンを1〜15g/Lと、亜鉛イオンを0.5〜1.5g/Lと、フッ化物イオン及び錯フッ化物イオンから選ばれた少なくとも1種をフッ素換算で0.1〜1.0g/Lと、マグネシウムイオンとニッケルイオンとの合計量で2.1〜4.2g/L含有し、且つマグネシウムイオンとニッケルイオンとの重量比(Mg/Ni比)が0.05:1〜0.25:1の範囲で、全酸度/遊離酸度の比が10〜17である化成処理液中に50〜70℃の温度で1〜10秒間接触させて、皮膜重量が0.1〜2.0g/m2で白色度(L値)が55以上の化成皮膜を形成させることを特徴とする高白色度で塗装性に優れた電気亜鉛めっき鋼板の製造方法を提供する。
【0011】
なお、冷延鋼板に電気亜鉛めっきを施した後、該めっき上に前記化成処理液を50〜60℃の温度で1〜10秒間接触させて皮膜重量が0.1〜1.0g/m2の化成皮膜を形成させることが好ましい。
また、前記化成処理との接触前に、電気亜鉛めっき表面をチタンコロイド水溶液及びブラッシングから選ばれた少なくとも1種で活性化処理することが好ましい。
【0012】
以下に本発明の内容を詳述する。
本発明は冷延鋼板表面に電気亜鉛めっきを施すことを要件とするものであり、基本的にインラインを想定したものである。
本発明で用いられる化成処理液において、りん酸イオンの供給源は、特に制限はないが、通常はオルソりん酸が用いられ、りん酸イオンの含有量は10〜20g/Lである。より好ましくは12〜17g/Lである。りん酸イオンの含有量が10g/L未満では本発明の目的である効率的な短時間処理が困難となり、またそれが20g/Lを超えると短時間処理には好ましいが、無駄な薬剤消費となり、経済的に不利になる。
【0013】
また、硝酸イオンの供給源についても特に制限はないが、通常は硝酸が用いられ、硝酸イオンの含有量は1〜15g/Lである。より好ましくは5〜10g/Lである。硝酸イオンの含有量が1g/L未満では短時間処理が困難となり、またそれが15g/Lを超えると短時間処理の効果が飽和に達し、薬剤消費量も増大するため経済的に不利になる。
【0014】
亜鉛イオンの供給源には特に制限はないが、通常はりん酸塩あるいは硝酸塩の形で供給され、亜鉛イオンの含有量として0.5〜1.5g/Lである。より好ましくは0.75〜1.0g/Lである。亜鉛イオンの含有量が0.5g/L未満では効率的な化成皮膜の生成が困難となり、結果的には短時間処理の妨げとなる。またそれが1.5g/Lを超えると短時間処理には好ましいが無駄な薬剤を消費するので経済的に不利になる。
【0015】
本発明に用いられる化成処理液にはフッ化物イオン及び錯フッ化物イオンから選ばれる少なくとも1種を反応促進剤として含有する。その供給源も特に制限はないが、フッ酸、ケイフッ酸、ホウフッ酸、チタンフッ酸及びジルコンフッ酸等を用いることが可能で、これらの少なくとも1種が、フッ素イオンに換算して0.1〜1.0g/L含まれる。フッ素イオン含有量が0.1g/L未満では電気亜鉛めっき表面に対するエッチング不足により化成皮膜の形成に長時間を要することになり、製造コストの上昇を招くので好ましくない。またそれが、1.0g/Lを超えると過剰エッチングとなり、めっき界面のpHの上昇によるりん酸塩化成皮膜の析出を阻害することになり好ましくない。
【0016】
本発明のマグネシウムイオンとニッケルイオンの供給源も特に制限はないが、通常はりん酸塩あるいは硝酸塩の形で供給され、マグネシウムイオンとニッケルイオンの重量比(Mg/Ni)は0.05:1〜0.25:1の範囲である。この重量比が0.05:1未満では、電気亜鉛めっきに処理した後の白色度(L値)が55を下回ってしまう。またそれが0.25:1を超えると、処理後の白色度は良好となるが、ボンデ鋼板の必要条件である塗装性が低下してしまうので好ましくない。
【0017】
また、上記の重量比に加えて、マグネシウムイオンとニッケルイオンとの合計量が2.1〜4.2g/Lであることが必須条件である。両イオンの合計量が2.1g/L未満では、電気亜鉛めっきに処理した後の塗装性を低下させてしまう。またそれが4.2g/Lを超えると塗装性に対する効果は飽和に達し、薬剤消費量も増大してしまうため好ましくない。
【0018】
次に本発明の化成処理液の酸比(全酸度/遊離酸度)は10〜17の範囲でコントロールされる。
本発明において、全酸度とは化成処理液10mLをホールピペットを用いて採取し、0.1規定水酸化ナトリウム水溶液により、pHが8.3になるまで滴定し、これに要した上記水酸化ナトリウム水溶液の容量のことである。
また遊離酸度とは化成処理液10mLをホールピペットを用いて採取し、0.1規定水酸化ナトリウム水溶液により、pHが3.8になるまで滴定し、これに要した上記水酸化ナトリウム水溶液の容量のことである。
この酸比は10未満では電気亜鉛めっき鋼板は必要以上にエッチングされ効率的な皮膜形成が阻害される。また、酸比が17を超えるとエッチング不足となり、皮膜形成に長時間要するため製造コストの上昇を招き好ましくない。なお、酸比の調整はりん酸、硝酸の酸あるいは炭酸ナトリウム、水酸化ナトリウム等のアルカリにて行う。
【0019】
本発明の化成処理液の使用温度は50〜70℃であり、より好ましくは50〜60℃である。処理液の温度が50℃未満では化成皮膜の形成速度が緩慢になり、短時間処理は困難になる。またそれが70℃を超えても化成皮膜の形成速度が飽和に達し、エネルギーコストが無駄となる。
【0020】
本発明における製造方法での、処理時間は1〜10秒間である。この処理時間が1秒未満では十分な化成皮膜の形成が行われず、それが10秒を超えても化成皮膜の形成が飽和に達するので経済的には無駄である。なお、本発明で化成処理液と電気亜鉛めっき鋼板の接触方法、制御方法に制限はないが、スプレー、ディップで行うのが一般的である。
【0021】
本発明の製造方法で形成した化成皮膜の皮膜重量は0.1〜2.0g/m2であり、より好ましくは0.1〜1.0g/m2の範囲である。この範囲においてL値が最も良好になる。皮膜重量が0.1g/m2未満では塗装性能が低下してしまう。またそれが2.0g/m2を超えると塗装性は満足するものの、化成皮膜の白色度が低下してしまい好ましくない。
【0022】
更に本発明の電気亜鉛めっき表面に上記化成処理液で処理を施す前に、表面をチタンコロイド水溶液及びブラッシングをそれぞれ単独もしくは組み合わせて活性化することが好ましい。このような活性化処理を行うことにより、表面に形成されるりん酸塩皮膜が緻密化し、塗膜密着性、白色度が良好となる。この活性化処理に使用するチタンコロイド中のチタンイオンの供給源は特に制限はないが、硫酸チタン、硝酸チタニル、酸化チタン、りん酸チタンを各々単独ないし、それら2種類以上組み合わせて使用することが好ましい。また、ブラッシングの方法についても、特に制限はないが、ロールブラシ、スポンジ等が使用できる。
【0023】
亜鉛系めっき鋼板に対してりん酸塩処理は過去より行われているが、特に電気亜鉛めっき鋼板においては、ボンデ鋼板(りん酸塩処理鋼板の俗称)と呼ばれる程、一般的になっている。このボンデ鋼板の要求される性能としては、加工された成形品の塗装後の耐食性、塗膜密着性が挙げられる。また、通常は塗膜の厚みが薄いことが多いので、塗装が淡色の場合などはボンデ鋼板自体の白色度が(L値)55以上でなければ、塗膜外観が曇ってしまうので、化成皮膜の白色度が重要となってくる。
【0024】
本発明の製造方法において、冷延鋼板に電気亜鉛めっきを施した後、表面に形成された化成皮膜の作用効果は、ニッケルイオン添加による塗装性の向上である。りん酸亜鉛皮膜中にニッケルイオンを含有することで、腐食環境下において選択的に塩基性塩化亜鉛が生成し、それが保護皮膜となり優れた塗装性を発揮することは公知である。ところがりん酸亜鉛処理液中のニッケルイオン濃度をあまり高めると、処理した皮膜外観のL値が低くなってしまう。
【0025】
そこで、L値を低下させないために亜鉛イオン、ニッケルイオン以外の2価金属イオン(鉄イオン、コバルトイオン、カルシウムイオン、マグネシウムイオン、等)の添加効果を調査したところ、マグネシウムイオンのみが化成処理液中のニッケルイオン濃度が高い場合でも、良好な白色度(L値)を確保することがわかった。
即ち本発明においてこのような特定組成の化成処理液を用いて良好な塗装性と高白色度を有する電気亜鉛めっき鋼板を得ることができたのである。
【0026】
【実施例】
以下に本発明を実施例を比較例と共に挙げて、その効果を具体的に説明する。
〔供試材〕
市販の板厚0.7mmの両面電気亜鉛めっき鋼板(目付量:20g/m2)を用いた。
〔処理方法〕
下記の処理工程により、供試材表面上にりん酸塩化成皮膜を形成した。
▲1▼脱脂→▲2▼水洗→▲3▼活性化処理→▲4▼りん酸塩処理→▲5▼水洗→▲6▼脱イオン水洗→▲7▼乾燥
上記各工程の処理条件は以下の通りである。
【0027】
▲1▼脱脂処理
アルカリ脱脂剤(商標:ファインクリーナー4336、日本パーカライジング(株)製)を用いて脱脂処理を施した。
(条件)
薬剤濃度 :20g/L
処理液温度:55℃
処理方法 :スプレー処理
処理時間 :60秒
【0028】
▲2▼水洗
脱脂処理により電気亜鉛めっき鋼板表面に残存しているアルカリ分を洗浄除去した。
(条件)
使用水 :上水道水
水温 :常温
処理方法:スプレー処理
処理時間:20秒
【0029】
▲3▼活性化処理
表1に活性化処理の水準を示す。
a)チタンコロイド系活性化処理剤
商標:プレパレンZN(日本パーカライジング(株)製)を用いて処理を行った。
【0030】
(条件)
薬剤濃度 :1.5g/L
処理液温度:常温
処理方法 :スプレー処理
処理時間 :2秒
b)ブラッシング処理
カシューの繊維を使用したブラシにて、5往復ブラッシングを行った。
【0031】
【表1】

Figure 0003737168
【0032】
▲4▼りん酸塩処理
表2に本発明におけるりん酸塩処理液A〜Dを、表3に比較処理液E〜Jを示す。スプレー法にてりん酸塩皮膜を電気亜鉛めっき鋼板表面上に析出させた。
(条件)
スプレー処理及び他の条件は表4に示す。
【0033】
【表2】
Figure 0003737168
【0034】
【表3】
Figure 0003737168
【0035】
▲5▼水洗
電気亜鉛めっき鋼板表面上に付着残存した化成処理液を洗浄除去した。
(条件)
使用水 :上水道水
水温 :常温
処理方法:スプレー処理
処理時間:20秒
【0036】
▲6▼脱イオン水洗
水洗処理後、電気亜鉛めっき鋼板表面上に残存している水分中に含まれる夾雑
イオンを除去するために脱イオン水による洗浄を実施した。
(条件)
使用水 :脱イオン水
水温 :常温
処理方法:スプレー処理
処理時間:20秒
【0037】
▲7▼乾燥
熱風乾燥炉にて電気亜鉛めっき鋼板表面に付着している水分を除去した。
(条件)
乾燥温度:100℃
乾燥時間:3分
【0038】
〔評価試験方法〕
表4に皮膜特性及び性能評価を示す。
【0039】
【表4】
Figure 0003737168
【0040】
〔皮膜特性〕
(イ)皮膜重量
りん酸塩化成皮膜の皮膜重量は、下記に示す方法で測定した。
(1)予め、精密天秤を用いて試験片の重量(W1:g)を測定しておき、これを下記組成の重クロム酸アンモニウム溶液に常温で15分間浸漬し、りん酸塩化成皮膜を剥離した。
重クロム酸アンモニウム: 20g/L
25%アンモニア水 :490g/L
脱イオン水 :490g/L
(2)次に水洗を行い、試験片に残存している重クロム酸アンモニウム溶液を除去し、乾燥した。
(3)再度、精密天秤にて試験片の重量(W2:g)を測定して、重量差(W1−W2)より単位面積当たりの皮膜重量を算出した。
【0041】
(ロ)Ni、Mg、Coの含有率
更に、りん酸塩皮膜の剥離に用いた重クロム酸アンモニウム溶液のNiイオン濃度、Mgイオン濃度、Coイオン濃度を原子吸光法により測定し、単位面積当たりのNi付着量、Mg付着量、Co付着量を算出し、その時の皮膜重量に対する含有率を重量%に換算した。
【0042】
〔性能評価〕
(塗膜密着性)
りん酸塩処理を施した電気亜鉛めっき鋼板に下記条件の塗装を行い、密着試験を実施した。
(条件)
商標 :大日本塗料(株)社製デリコン#700
塗装 :バーコート法
焼き付け条件:140℃×20分
塗膜厚さ :25μmの塗膜を形成
【0043】
(イ)一次密着性
▲1▼碁盤目テスト
塗膜に鋼板素地に達するまでの1mm角の碁盤目をNTカッターで100個入れた後、セロハンテープにて剥離を行い、塗膜の残存個数にて評価した。
▲2▼碁盤目エリクセンテスト
塗膜に鋼板素地に達するまでの1mm角の碁盤目をNTカッターで100個入れ、エリクセン試験機で5mm押し出した後、この凸部をセロハンテープにて剥離し、塗料の残存個数にて評価した。
【0044】
(ロ)二次密着性
塗装板を沸騰した純水に2時間浸漬後、一次密着性と同様の評価を行った。
【0045】
(耐食性)
前記密着性試験と同一の条件で塗装を行った。
塗膜に鋼板素地に達するまでのクロスカットをNTカッターで入れて、塩水噴霧試験(JIS Z 2371)240時間後、セロハンテープで剥離し、クロスカット 部からの塗膜剥離幅で評価した。次の基準で評価を行った。
○:片側最大膨れ幅 3.0mm未満
△:片側最大膨れ幅 3.0mm以上10.0未満
×:片側最大膨れ幅 10.0mm超
【0046】
(鋼板の白色度(L値))
色差計を用いて、L値の測定を行った。
【0047】
実施例1〜5
前記の供試材について、前記の処理方法により処理を行った。活性化処理条件は表1に示した。またりん酸塩処理液の各組成を表2に示した。
実施例1〜5の各活性化処理条件、りん酸塩処理液組成、及び処理温度を表4に示した。処理によって得られた皮膜の重量、Ni、Mg及びCoの各含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0048】
比較例1
これは化成処理液にマグネシウムイオンを含有しないケースである。表3の処理液Eを用いて試験を行った。処理によって得られた皮膜の重量、Niの含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0049】
比較例2
これは化成処理液にニッケルイオンを含有しないケースである。表3の処理液Fを用いて試験を行った。処理によって得られた皮膜の重量、Mgの含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0050】
比較例3
これは、化成処理液中のマグネシウムイオンとニッケルイオンの合計量が1.8g/Lと極めて少ないケースである。表3の処理液Gを用いて試験を行った。処理によって得られた皮膜の重量、Ni及びMgの各含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0051】
比較例4
これは、化成処理液中のマグネシウムイオンとニッケルイオンとの重量比が0.02:1と極めてマグネシウムイオンの比率が実施例より小さいケースである。表3の処理液Hを用いて試験を行った。処理によって得られた皮膜の重量、Ni及びMgの各含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0052】
比較例5
これは、化成処理液中のマグネシウムイオンとニッケルイオンとの重量比が0.41:1とマグネシウムイオンの比率が実施例より大きいケースである。表3の処理液Iを用いて試験を行った。処理によって得られた皮膜の重量、Ni及びMgの各含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0053】
比較例6
これは、化成処理液中のマグネシウムイオンとフッ素イオンを含有しないケースである。表3の処理液Jを用いて試験を行った。処理によって得られた皮膜の重量、Ni及びCoの各含有率の測定結果を表4に併記し、さらに塗膜密着性、塗装後の耐食性及び鋼板の白色度の評価結果も表4に併記した。
【0054】
実施例1〜5及び比較例1〜6から次のことが言える。
▲1▼実施例1〜5は、塗膜密着性(一次及び二次密着性)、塗装後の耐食性はいずれも優れており、また鋼板の白色度は55以上を確保された。
▲2▼化成処理液にマグネシウムイオンを含有しない比較例1では、鋼板の白色度が43.8と劣る他、二次密着性も若干悪くなった。
▲3▼化成処理液にニッケルイオンを含有しない比較例2では、鋼板の白色度は55以上は確保されるが、二次密着性及び塗装後の耐食性が劣った。
▲4▼化成処理液中のマグネシウムイオンとニッケルイオンの合計量が極めて少ない比較例3では、鋼板の白色度は55以上は確保されるが、二次密着性及び塗装後の耐食性に劣った。
【0055】
▲5▼化成処理液中のニッケルイオンに対するマグネシウムイオンの重量比が実施例に比べ極めて小さい比較例4では、鋼板の白色度は55を下まわり、かつ一次及び二次密着性及び塗装後の耐食性全てにおいて劣っていた。
▲6▼化成処理液中のニッケルイオンに対するマグネシウムイオンの重量比が実施例に比べ大きい比較例5では鋼板の白色度は55以上は確保されるが、一次及び二次密着性及び塗装後の耐食性に劣った。
▲7▼化成処理液中にマグネシウムイオンとフッ素イオンを含有しないケースでは鋼板の白色度は55を下まわり、かつ二次密着性及び塗装後の耐食性に若干劣った。特に比較例1に比べて耐食性が劣った。
▲8▼比較例1〜6において、塗装性だけであれば、Ni濃度のみを高めることで満足できるが、白色度も同時に要求されるような場合には、本発明の方法で処理を行うことが必要であることは言うまでもない。
【0056】
【発明の効果】
本発明の製造方法により、りん酸塩処理された電気亜鉛めっき鋼板は、塗装後耐食性、塗膜密着性を向上させる効果があり、更に鋼板表面の外観を良好な白色度に維持することで、塗膜が薄くなっても、本来塗料の持っている色調を変化させないので汎用性が高い。
従って、最終製品の品質のバラツキをなくすことができ、結果的にコストダウンとなり実用上の効果も大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention imparts excellent paintability to the surface of an electrogalvanized steel sheet used in various fields such as home appliances, building materials, civil engineering and automobiles, and has high whiteness so that the whiteness becomes 55 or more in L value. The present invention relates to a method for producing a plated steel sheet.
[0002]
[Prior art]
Conventionally, electrogalvanized steel sheets have been mostly used as steel sheets with improved added value by applying phosphate treatment or chromate treatment with excellent corrosion resistance and paintability, and further applying an organic resin.
[0003]
However, due to environmental problems in recent years, steel plates that have been subjected to chromate treatment in particular cannot be recycled, and are becoming harmful industrial wastes and becoming a major social problem. Under such circumstances, steel plates (hereinafter referred to as bonde steel plates) in which phosphate treatment is applied to electrogalvanized steel plates with low toxicity and good paintability have been mainly used instead of conventional chromate-treated steel plates. However, there are many cases where a simple zinc phosphate coating formed on such a bonde steel sheet cannot cope with diversification and high quality of paint. For this reason, the improvement of the film | membrane in a bonde steel plate is calculated | required.
[0004]
Therefore, conventionally, as a method for improving the paintability, as shown below, a specific divalent metal ion or an organic substance is added to the phosphate treatment solution.
[0005]
For example, Japanese Patent Application Laid-Open No. 64-68481 discloses a method of treating metal surfaces such as electrogalvanized steel sheets with an aqueous solution containing zinc magnesium phosphate as a basic component. However, in this method, the chemical conversion treatment property is good, but the coating performance is insufficient.
[0006]
Japanese Patent Laid-Open No. 5-287549 discloses an acidic zinc phosphate treatment solution containing a specific amount of cobalt ions, manganese ions, film formation accelerators, complex fluorides and simple fluorides. A method for treating a steel sheet which is brought into contact with the paint and is excellent in paintability is disclosed. However, in this method, although the paintability is good, the whiteness (evaluated by L value), which is a necessary condition for the bonded steel plate, is low, and the commercial value is low.
[0007]
Thus, it is difficult to obtain excellent paintability without lowering the whiteness necessary for the bonde steel sheet, and it provides excellent paintability to the electrogalvanized steel sheet, and the whiteness is 55 or more. The actual situation is that a manufacturing method for obtaining a high whiteness steel sheet has not been obtained.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art and provides a method for producing an electrogalvanized steel sheet having excellent paintability without impairing the whiteness after electrogalvanizing a cold-rolled steel sheet. It is for the purpose.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on the means for solving the above-mentioned problems of the prior art, the present inventors have applied electrogalvanization to a cold-rolled steel sheet, and thereafter, phosphate ions, nitrate ions, Mixing magnesium ions and nickel ions in specific amounts and in specific ratios in a phosphate treatment solution containing at least one reaction accelerator selected from zinc ions, fluoride ions and complex fluoride ions as an essential component In addition, a chemical conversion treatment liquid having a specific acid ratio (total acidity / free acidity) is contacted at a temperature of 50 to 70 ° C. for 1 to 10 seconds to form a chemical conversion film having a specific coating amount and a whiteness (L value) of 55 or more. It has been found that the above problems can be solved by forming it, and the present invention has been completed.
[0010]
That is, in the present invention, after electrogalvanizing a cold-rolled steel sheet, 10-20 g / L of phosphate ions, 1-15 g / L of nitrate ions, and 0.5-0.5 zinc ions on the plating. 1.5 g / L, at least one selected from fluoride ions and complex fluoride ions is 0.1 to 1.0 g / L in terms of fluorine, and the total amount of magnesium ions and nickel ions is 2.1. The content ratio of total acidity / free acidity is 10 in the range of ~ 4.2 g / L and the weight ratio of magnesium ion to nickel ion (Mg / Ni ratio) is in the range of 0.05: 1 to 0.25: 1. A chemical conversion film having a coating weight of 0.1 to 2.0 g / m 2 and a whiteness (L value) of 55 or more by contact with a chemical conversion treatment solution of ˜17 at a temperature of 50 to 70 ° C. for 1 to 10 seconds. Electricity sublimation with high whiteness and excellent paintability To provide a method of manufacturing a plated steel sheet.
[0011]
In addition, after electrogalvanizing to a cold-rolled steel plate, the said chemical conversion liquid is made to contact on this plating for 1 to 10 second at the temperature of 50-60 degreeC, and the film weight is 0.1-1.0 g / m < 2 >. It is preferable to form a chemical conversion film.
Moreover, before the contact with the chemical conversion treatment, the electrogalvanized surface is preferably activated with at least one selected from a titanium colloid aqueous solution and brushing.
[0012]
The contents of the present invention will be described in detail below.
The present invention requires that the surface of the cold-rolled steel sheet be electrogalvanized, and basically assumes in-line.
In the chemical conversion treatment solution used in the present invention, the source of phosphate ions is not particularly limited, but usually orthophosphate is used, and the phosphate ion content is 10 to 20 g / L. More preferably, it is 12-17 g / L. If the phosphate ion content is less than 10 g / L, efficient short-time treatment, which is the object of the present invention, becomes difficult. If it exceeds 20 g / L, it is preferable for short-time treatment, but wasteful drug consumption occurs. , It becomes economically disadvantageous.
[0013]
Moreover, although there is no restriction | limiting in particular also about the supply source of nitrate ion, Usually, nitric acid is used and the content of nitrate ion is 1-15 g / L. More preferably, it is 5-10 g / L. If the content of nitrate ions is less than 1 g / L, short-time treatment becomes difficult, and if it exceeds 15 g / L, the effect of short-time treatment reaches saturation and the drug consumption increases, which is economically disadvantageous. .
[0014]
The source of zinc ions is not particularly limited, but is usually supplied in the form of phosphate or nitrate, and the zinc ion content is 0.5 to 1.5 g / L. More preferably, it is 0.75-1.0 g / L. When the zinc ion content is less than 0.5 g / L, it is difficult to efficiently form a chemical conversion film, and as a result, short-time treatment is hindered. On the other hand, if it exceeds 1.5 g / L, it is preferable for short-time treatment, but wasteful chemicals are consumed, which is economically disadvantageous.
[0015]
The chemical conversion treatment liquid used in the present invention contains at least one selected from fluoride ions and complex fluoride ions as a reaction accelerator. The supply source is not particularly limited, but hydrofluoric acid, silicic hydrofluoric acid, borohydrofluoric acid, titanium hydrofluoric acid, zircon hydrofluoric acid, and the like can be used, and at least one of them is 0.1 to 1 in terms of fluorine ions. 0.0 g / L is included. If the fluorine ion content is less than 0.1 g / L, it takes a long time to form a chemical conversion film due to insufficient etching on the electrogalvanized surface, which is not preferable because the manufacturing cost increases. Moreover, when it exceeds 1.0 g / L, it will become excessive etching and will inhibit precipitation of the phosphate chemical film by the raise of pH of a plating interface, and is unpreferable.
[0016]
The source of magnesium ion and nickel ion of the present invention is not particularly limited, but is usually supplied in the form of phosphate or nitrate, and the weight ratio of magnesium ion to nickel ion (Mg / Ni) is 0.05: 1. It is in the range of ˜0.25: 1. If this weight ratio is less than 0.05: 1, the whiteness (L value) after processing to electrogalvanization will be less than 55. Moreover, when it exceeds 0.25: 1, the whiteness after a process will become favorable, but since the coating property which is a necessary condition of a bonde steel plate will fall, it is unpreferable.
[0017]
Moreover, in addition to said weight ratio, it is essential conditions that the total amount of magnesium ion and nickel ion is 2.1-4.2 g / L. If the total amount of both ions is less than 2.1 g / L, the paintability after processing to electrogalvanization will be reduced. On the other hand, if it exceeds 4.2 g / L, the effect on the paintability reaches saturation and the amount of chemical consumption increases, which is not preferable.
[0018]
Next, the acid ratio (total acidity / free acidity) of the chemical conversion solution of the present invention is controlled in the range of 10-17.
In the present invention, the total acidity means that 10 mL of the chemical conversion solution is collected using a whole pipette, titrated with a 0.1 N sodium hydroxide aqueous solution until the pH becomes 8.3, and the sodium hydroxide required for this is collected. It is the volume of the aqueous solution.
The free acidity is 10 mL of a chemical conversion treatment solution collected using a whole pipette and titrated with a 0.1 N aqueous sodium hydroxide solution until the pH becomes 3.8. That is.
If the acid ratio is less than 10, the electrogalvanized steel sheet is etched more than necessary, and efficient film formation is inhibited. On the other hand, when the acid ratio exceeds 17, etching is insufficient, and it takes a long time to form a film, which causes an increase in manufacturing cost. The acid ratio is adjusted with phosphoric acid, nitric acid or alkali such as sodium carbonate or sodium hydroxide.
[0019]
The use temperature of the chemical conversion treatment liquid of the present invention is 50 to 70 ° C, more preferably 50 to 60 ° C. When the temperature of the treatment liquid is less than 50 ° C., the formation rate of the chemical conversion film becomes slow, and the treatment for a short time becomes difficult. Moreover, even if it exceeds 70 degreeC, the formation rate of a chemical conversion film reaches saturation and energy cost is wasted.
[0020]
In the production method of the present invention, the processing time is 1 to 10 seconds. If this treatment time is less than 1 second, the formation of a sufficient conversion film is not performed, and even if it exceeds 10 seconds, the formation of the conversion film reaches saturation, which is economically wasteful. In addition, although there is no restriction | limiting in the contact method and control method of a chemical conversion liquid and an electrogalvanized steel plate by this invention, it is common to carry out by spraying and a dip.
[0021]
The film weight of the chemical conversion film formed by the production method of the present invention is 0.1 to 2.0 g / m 2 , more preferably 0.1 to 1.0 g / m 2 . In this range, the L value is the best. When the film weight is less than 0.1 g / m 2 , the coating performance is deteriorated. On the other hand, if it exceeds 2.0 g / m 2 , the paintability is satisfactory, but the whiteness of the chemical conversion film is lowered, which is not preferable.
[0022]
Further, before the electrogalvanized surface of the present invention is treated with the chemical conversion treatment liquid, the surface is preferably activated by using a titanium colloid aqueous solution and brushing individually or in combination. By performing such activation treatment, the phosphate film formed on the surface is densified, and the coating film adhesion and whiteness are improved. The source of titanium ions in the titanium colloid used for the activation treatment is not particularly limited, but titanium sulfate, titanyl nitrate, titanium oxide, and titanium phosphate may be used alone or in combination of two or more thereof. preferable. The brushing method is not particularly limited, and a roll brush, a sponge, or the like can be used.
[0023]
Phosphate treatment has been performed on galvanized steel sheets from the past, but in electrogalvanized steel sheets in particular, it is more common to be called bonde steel sheets (popular name for phosphate-treated steel sheets). The required performance of the bonded steel sheet includes corrosion resistance after coating of the processed molded product and coating film adhesion. In addition, since the thickness of the coating film is usually thin, the appearance of the coating film becomes cloudy unless the whiteness of the bonded steel plate itself (L value) is 55 or more when the coating is light in color. The whiteness of becomes important.
[0024]
In the production method of the present invention, the effect of the chemical conversion film formed on the surface after electrogalvanizing the cold-rolled steel sheet is to improve the paintability by adding nickel ions. It is known that when zinc ions are contained in the zinc phosphate coating, basic zinc chloride is selectively produced in a corrosive environment, which becomes a protective coating and exhibits excellent paintability. However, if the nickel ion concentration in the zinc phosphate treatment solution is increased too much, the L value of the treated film appearance will be lowered.
[0025]
Therefore, when the effect of adding divalent metal ions (iron ions, cobalt ions, calcium ions, magnesium ions, etc.) other than zinc ions and nickel ions was investigated in order not to lower the L value, only the magnesium ions were subjected to chemical conversion treatment. It was found that good whiteness (L value) was ensured even when the nickel ion concentration inside was high.
That is, in the present invention, an electrogalvanized steel sheet having good paintability and high whiteness could be obtained using such a chemical conversion treatment liquid having a specific composition.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.
[Sample material]
A commercially available double-sided electrogalvanized steel sheet having a thickness of 0.7 mm (weight per unit area: 20 g / m 2 ) was used.
〔Processing method〕
A phosphate chemical conversion film was formed on the surface of the test material by the following treatment process.
(1) Degreasing → (2) Water washing → (3) Activation treatment → (4) Phosphate treatment → (5) Water washing → (6) Deionized water washing → (7) Drying The treatment conditions of the above steps are as follows: Street.
[0027]
(1) Degreasing treatment Degreasing treatment was performed using an alkaline degreasing agent (trademark: Fine Cleaner 4336, manufactured by Nihon Parkerizing Co., Ltd.).
(conditions)
Drug concentration: 20 g / L
Treatment liquid temperature: 55 ° C
Processing method: Spray processing time: 60 seconds [0028]
(2) Alkaline remaining on the surface of the electrogalvanized steel sheet was removed by washing with water and degreasing treatment.
(conditions)
Water used: Water supply water temperature: Room temperature treatment method: Spray treatment time: 20 seconds [0029]
(3) Activation treatment Table 1 shows the level of activation treatment.
a) Titanium colloid-based activation treatment agent: Treated with Preparen ZN (manufactured by Nihon Parkerizing Co., Ltd.).
[0030]
(conditions)
Drug concentration: 1.5 g / L
Treatment liquid temperature: Room temperature treatment method: Spray treatment treatment time: 2 seconds b) Brushing treatment Five reciprocal brushings were performed with a brush using cashew fibers.
[0031]
[Table 1]
Figure 0003737168
[0032]
(4) Phosphate treatment Table 2 shows phosphate treatment solutions A to D in the present invention, and Table 3 shows comparative treatment solutions E to J. A phosphate film was deposited on the surface of the electrogalvanized steel sheet by spraying.
(conditions)
Spray treatment and other conditions are shown in Table 4.
[0033]
[Table 2]
Figure 0003737168
[0034]
[Table 3]
Figure 0003737168
[0035]
(5) Water washing The chemical conversion treatment solution remaining on the surface of the electrogalvanized steel sheet was washed and removed.
(conditions)
Water used: Water supply water temperature: Room temperature treatment method: Spray treatment time: 20 seconds [0036]
(6) Deionized water washing After the water washing treatment, washing with deionized water was carried out in order to remove impurities contained in water remaining on the surface of the electrogalvanized steel sheet.
(conditions)
Water used: Deionized water Temperature: Room temperature treatment method: Spray treatment time: 20 seconds
(7) Moisture adhering to the surface of the electrogalvanized steel sheet was removed in a drying hot air drying furnace.
(conditions)
Drying temperature: 100 ° C
Drying time: 3 minutes [0038]
[Evaluation test method]
Table 4 shows the film properties and performance evaluation.
[0039]
[Table 4]
Figure 0003737168
[0040]
[Film properties]
(A) Film weight The film weight of the phosphate chemical conversion film was measured by the method shown below.
(1) The weight (W1: g) of the test piece is measured in advance using a precision balance, and immersed in an ammonium dichromate solution having the following composition at room temperature for 15 minutes to peel off the phosphate conversion coating. did.
Ammonium dichromate: 20 g / L
25% aqueous ammonia: 490 g / L
Deionized water: 490 g / L
(2) Next, it was washed with water to remove the ammonium dichromate solution remaining on the test piece and dried.
(3) The weight of the test piece (W2: g) was again measured with a precision balance, and the coating weight per unit area was calculated from the weight difference (W1-W2).
[0041]
(B) Ni, Mg, Co content ratio Further, the Ni ion concentration, Mg ion concentration, and Co ion concentration of the ammonium dichromate solution used for the removal of the phosphate film were measured by atomic absorption method. The amount of adhesion of Ni, the amount of adhesion of Mg, and the amount of adhesion of Co were calculated, and the content with respect to the film weight at that time was converted to wt%.
[0042]
[Performance evaluation]
(Coating film adhesion)
The electrogalvanized steel sheet treated with phosphate was coated under the following conditions, and an adhesion test was performed.
(conditions)
Trademark: Delicon # 700 manufactured by Dainippon Paint Co., Ltd.
Coating: Bar coating method baking condition: 140 ° C. × 20 minutes Coating thickness: forming a 25 μm coating film
(I) Primary adhesion (1) After placing 100 1 mm square grids with a NT cutter until reaching the steel plate substrate, strip with cellophane tape to obtain the remaining number of coating films. And evaluated.
(2) Put 100 100 mm square grids with a NT cutter to reach the steel plate base on the grid Eriksen test coating, and extrude 5 mm with an Eriksen tester. The remaining number was evaluated.
[0044]
(B) Secondary adhesion After immersion of the coated plate in boiled pure water for 2 hours, the same evaluation as the primary adhesion was performed.
[0045]
(Corrosion resistance)
The coating was performed under the same conditions as in the adhesion test.
A crosscut until reaching the steel sheet substrate was put into the coating film with an NT cutter, and after 240 hours of salt spray test (JIS Z 2371), it was peeled off with a cellophane tape, and the coating film peeling width from the crosscut part was evaluated. Evaluation was performed according to the following criteria.
○: Maximum bulge width on one side of less than 3.0 mm △: Maximum bulge width on one side of 3.0 mm or more and less than 10.0 ×: Maximum bulge width on one side of more than 10.0 mm
(Whiteness of steel sheet (L value))
The L value was measured using a color difference meter.
[0047]
Examples 1-5
About the said test material, it processed by the said processing method. The activation treatment conditions are shown in Table 1. Table 2 shows the compositions of the phosphating solution.
Table 4 shows the activation treatment conditions, phosphate treatment solution compositions, and treatment temperatures of Examples 1 to 5. Table 4 also shows the measurement results of the weight of the film obtained by the treatment and the respective contents of Ni, Mg and Co. Further, the evaluation results of the coating film adhesion, the corrosion resistance after coating and the whiteness of the steel sheet are also shown in Table 4. Also written.
[0048]
Comparative Example 1
This is the case where the chemical conversion solution does not contain magnesium ions. A test was performed using the treatment liquid E in Table 3. The measurement results of the weight of the film obtained by the treatment and the Ni content are shown in Table 4, and the evaluation results of coating film adhesion, corrosion resistance after coating, and whiteness of the steel sheet are also shown in Table 4.
[0049]
Comparative Example 2
This is a case where the chemical conversion solution does not contain nickel ions. A test was performed using the treatment liquid F in Table 3. The measurement results of the weight of the film obtained by the treatment and the content of Mg are also shown in Table 4, and the evaluation results of coating film adhesion, corrosion resistance after coating, and whiteness of the steel sheet are also shown in Table 4.
[0050]
Comparative Example 3
This is a case where the total amount of magnesium ions and nickel ions in the chemical conversion solution is as extremely low as 1.8 g / L. The test was performed using the treatment liquid G in Table 3. The results of the measurement of the weight of the film obtained by the treatment and the contents of Ni and Mg are also shown in Table 4, and the evaluation results of the coating film adhesion, the corrosion resistance after coating and the whiteness of the steel sheet are also shown in Table 4. .
[0051]
Comparative Example 4
This is a case where the weight ratio of magnesium ions to nickel ions in the chemical conversion solution is 0.02: 1 and the ratio of magnesium ions is much smaller than that of the example. A test was performed using the treatment liquid H in Table 3. The results of the measurement of the weight of the film obtained by the treatment and the contents of Ni and Mg are also shown in Table 4, and the evaluation results of the coating film adhesion, the corrosion resistance after coating and the whiteness of the steel sheet are also shown in Table 4. .
[0052]
Comparative Example 5
This is a case where the weight ratio of magnesium ions to nickel ions in the chemical conversion solution is 0.41: 1 and the ratio of magnesium ions is larger than that of the example. A test was performed using the treatment liquid I in Table 3. The results of the measurement of the weight of the film obtained by the treatment and the contents of Ni and Mg are also shown in Table 4, and the evaluation results of the coating film adhesion, the corrosion resistance after coating and the whiteness of the steel sheet are also shown in Table 4. .
[0053]
Comparative Example 6
This is a case where magnesium ions and fluorine ions are not contained in the chemical conversion solution. The test was performed using the treatment liquid J in Table 3. The results of measurement of the weight of the film obtained by the treatment and the content of each of Ni and Co are also shown in Table 4, and the evaluation results of coating film adhesion, corrosion resistance after coating, and whiteness of the steel sheet are also shown in Table 4. .
[0054]
The following can be said from Examples 1 to 5 and Comparative Examples 1 to 6.
(1) Examples 1 to 5 were excellent in coating film adhesion (primary and secondary adhesion) and corrosion resistance after coating, and the whiteness of the steel sheet was secured at 55 or more.
{Circle around (2)} In Comparative Example 1 in which the chemical conversion solution does not contain magnesium ions, the whiteness of the steel sheet was inferior to 43.8, and the secondary adhesion was slightly worse.
{Circle around (3)} In Comparative Example 2 where the chemical conversion solution does not contain nickel ions, the whiteness of the steel sheet is secured at 55 or more, but the secondary adhesion and the corrosion resistance after coating are inferior.
(4) In Comparative Example 3 in which the total amount of magnesium ions and nickel ions in the chemical conversion treatment solution is extremely small, the whiteness of the steel sheet is secured to 55 or more, but the secondary adhesion and the corrosion resistance after coating are inferior.
[0055]
(5) In Comparative Example 4 in which the weight ratio of magnesium ions to nickel ions in the chemical conversion solution is extremely small compared to the Examples, the whiteness of the steel sheet is less than 55, and the primary and secondary adhesion and the corrosion resistance after coating. It was inferior in all.
(6) In Comparative Example 5, where the weight ratio of magnesium ions to nickel ions in the chemical conversion solution is larger than that of the Example, the whiteness of the steel sheet is secured to 55 or more, but the primary and secondary adhesion, and the corrosion resistance after coating. Inferior to
(7) In the case where the chemical conversion solution did not contain magnesium ions and fluorine ions, the whiteness of the steel sheet was below 55, and the secondary adhesion and corrosion resistance after coating were slightly inferior. In particular, the corrosion resistance was inferior to that of Comparative Example 1.
(8) In Comparative Examples 1 to 6, if only the paintability is satisfied, it can be satisfied by increasing only the Ni concentration, but when the whiteness is also required at the same time, the treatment according to the present invention is performed. Needless to say, is necessary.
[0056]
【The invention's effect】
By the manufacturing method of the present invention, the galvanized steel sheet treated with phosphate has the effect of improving the corrosion resistance after coating, and the adhesion of the coating film, and further maintaining the appearance of the steel sheet surface in good whiteness, Even if the coating film becomes thin, it does not change the color tone inherent to the paint, so it is highly versatile.
Therefore, it is possible to eliminate variations in the quality of the final product, resulting in a reduction in cost and a great practical effect.

Claims (3)

冷延鋼板に電気亜鉛めっきを施した後に、該めっき上にりん酸イオンを10〜20g/Lと、硝酸イオンを1〜15g/Lと、亜鉛イオンを0.5〜1.5g/Lと、フッ化物イオン及び錯フッ化物イオンから選ばれた少なくとも1種をフッ素換算で0.1〜1.0g/Lと、マグネシウムイオンとニッケルイオンとの合計量で2.1〜4.2g/L含有し、且つマグネシウムイオンとニッケルイオンとの重量比(Mg/Ni比)が0.05:1〜0.25:1の範囲で、全酸度/遊離酸度の比が10〜17である化成処理液中に50〜70℃の温度で1〜10秒間接触させて、皮膜重量が0.1〜2.0g/m2で白色度(L値)が55以上の化成皮膜を形成させることを特徴とする高白色度で塗装性に優れた電気亜鉛めっき鋼板の製造方法。After electrogalvanizing the cold-rolled steel sheet, phosphate ions are 10-20 g / L, nitrate ions are 1-15 g / L, and zinc ions are 0.5-1.5 g / L on the plating. At least one selected from fluoride ions and complex fluoride ions is 0.1 to 1.0 g / L in terms of fluorine, and 2.1 to 4.2 g / L in total amount of magnesium ions and nickel ions. And a chemical conversion treatment in which the weight ratio of magnesium ions to nickel ions (Mg / Ni ratio) is in the range of 0.05: 1 to 0.25: 1 and the ratio of total acidity / free acidity is 10 to 17 It is made to contact in a liquid at a temperature of 50 to 70 ° C. for 1 to 10 seconds to form a chemical film having a coating weight of 0.1 to 2.0 g / m 2 and a whiteness (L value) of 55 or more. Of electrogalvanized steel sheet with high whiteness and excellent paintability . 冷延鋼板に電気亜鉛めっきを施した後、該めっき上に前記化成処理液を50〜60℃の温度で1〜10秒間接触させて皮膜重量が0.1〜1.0g/m2で、白色度(L値)が60以上の化成皮膜を形成させることを特徴とする請求項1に記載の電気亜鉛めっき鋼板の製造方法。After electrogalvanizing the cold-rolled steel sheet, the chemical conversion treatment liquid is contacted on the plating at a temperature of 50 to 60 ° C. for 1 to 10 seconds, and the coating weight is 0.1 to 1.0 g / m 2 . The method for producing an electrogalvanized steel sheet according to claim 1, wherein a chemical conversion film having a whiteness (L value) of 60 or more is formed. 前記化成処理液との接触前に、電気亜鉛めっき表面をチタンコロイド水溶液及びブラッシングから選ばれた少なくとも一種で活性化処理させることを特徴とする請求項1又は2に記載の電気亜鉛めっき鋼板の製造方法。The electrogalvanized steel sheet according to claim 1 or 2, wherein the electrogalvanized surface is activated with at least one selected from an aqueous colloidal titanium solution and brushing before contacting with the chemical conversion solution. Method.
JP22481195A 1995-08-09 1995-08-09 Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability Expired - Fee Related JP3737168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22481195A JP3737168B2 (en) 1995-08-09 1995-08-09 Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22481195A JP3737168B2 (en) 1995-08-09 1995-08-09 Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability

Publications (2)

Publication Number Publication Date
JPH0949086A JPH0949086A (en) 1997-02-18
JP3737168B2 true JP3737168B2 (en) 2006-01-18

Family

ID=16819583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22481195A Expired - Fee Related JP3737168B2 (en) 1995-08-09 1995-08-09 Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability

Country Status (1)

Country Link
JP (1) JP3737168B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213368B1 (en) * 1999-05-27 2010-07-14 Nippon Steel Corporation A process for preparing a phosphate-treated electrogalvanized steel sheet excellent in corrosion resistance and coating suitability
US6509099B1 (en) 1999-08-02 2003-01-21 Nkk Corporation Phosphate-treated steel plate
JP4630326B2 (en) * 1999-08-09 2011-02-09 新日本製鐵株式会社 Method for producing phosphate-treated zinc-plated steel sheet with excellent workability
KR100509183B1 (en) * 2002-06-17 2005-08-23 신닛뽄세이테쯔 카부시키카이샤 Zinc phosphate-treated galvanized steel sheet excellent in corrosion resistance and color tone
JP4267213B2 (en) 2001-03-27 2009-05-27 新日本製鐵株式会社 Zinc phosphate-treated zinc-coated steel sheet with excellent corrosion resistance and color tone
DE102010001686A1 (en) * 2010-02-09 2011-08-11 Henkel AG & Co. KGaA, 40589 Composition for the alkaline passivation of zinc surfaces
JP6115548B2 (en) * 2014-11-13 2017-04-19 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet
JP6406309B2 (en) * 2016-04-28 2018-10-17 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet

Also Published As

Publication number Publication date
JPH0949086A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
AU2016363456B2 (en) Chromium-free surface-treated tinplate, production method and surface treating agent therefor
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
EP0123980A1 (en) Composition and process for zinc phosphate coating a metal surface and a process for painting the coated surface
JP3992173B2 (en) Metal surface treatment composition, surface treatment liquid, and surface treatment method
JPS6136588B2 (en)
US4486241A (en) Composition and process for treating steel
EP0038122A1 (en) Forming corrosion-resistant coatings upon the surfaces of metals, especially zinc
GB2210900A (en) Phosphate coatings on metals
US4110129A (en) Post treatment of conversion-coated zinc surfaces
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
US4306917A (en) Conversion coating solutions for treating metallic surfaces
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JPH06506263A (en) Phosphate treatment method for metal surfaces
JP3737168B2 (en) Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability
JP3088623B2 (en) Method for forming zinc phosphate film on metal surface
JP3903594B2 (en) Manufacturing method of surface-treated steel sheet with excellent corrosion resistance
JPH0819531B2 (en) Zinc phosphate treatment method for metal surface
JPH055899B2 (en)
US3459600A (en) Novel zinc coating composition and method
US4643778A (en) Composition and process for treating steel
US5888315A (en) Composition and process for forming an underpaint coating on metals
JP3204823B2 (en) Method of forming zinc phosphate composite coating layer with excellent high-speed press formability on zinc-containing metal plated steel sheet
JPH0380877B2 (en)
JPH05331658A (en) Zinc phosphate treating method for metallic surface
JPS63178873A (en) Method for manufacturing chromate-treated plated steel sheet with excellent corrosion resistance and paintability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees