[go: up one dir, main page]

JP3736751B2 - Mold steel with excellent machinability and specularity - Google Patents

Mold steel with excellent machinability and specularity Download PDF

Info

Publication number
JP3736751B2
JP3736751B2 JP2002002451A JP2002002451A JP3736751B2 JP 3736751 B2 JP3736751 B2 JP 3736751B2 JP 2002002451 A JP2002002451 A JP 2002002451A JP 2002002451 A JP2002002451 A JP 2002002451A JP 3736751 B2 JP3736751 B2 JP 3736751B2
Authority
JP
Japan
Prior art keywords
specularity
machinability
steel
hardness
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002002451A
Other languages
Japanese (ja)
Other versions
JP2003201537A (en
Inventor
大円 横井
威史 藤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002002451A priority Critical patent/JP3736751B2/en
Publication of JP2003201537A publication Critical patent/JP2003201537A/en
Application granted granted Critical
Publication of JP3736751B2 publication Critical patent/JP3736751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被削性および鏡面性に優れたプラスチック金型用鋼に関するものである。
【0002】
【従来の技術】
従来、プラスチック金型用鋼として、炭素鋼や低炭素構造用鋼が多く使用されているが、近年はプラスチック金型用鋼には被削性、鏡面性、耐食性、肉盛溶接性、シボ加工性および靱性などの様々な特性が要求されて来ている。これらの特性のうち、特に被削性および鏡面性は相反する特性であり、品質および金型コストの点で、これらの特性を両立する金型用鋼の開発が望まれてきた。
【0003】
上述した要請から、例えば特開昭63−183158号公報のように、C:0.08〜0.17%、Si:0.60%以下、Mn:0.50〜1.20%、Ni:2.50〜3.50%、Al:0.85〜1.50%、Cu:1.80〜2.50%、S:0.05〜0.16%、残部Feおよび通常の不純物よりなるプラスチック成形プリハードン金型用鋼や、特開昭60−67641号公報のように、C:0.05〜0.18%、Si:0.15〜1.0%、Mn:1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.015%以下残部Feおよび不純物からなり、溶接後時効を行った場合も溶着鋼および溶接熱影響部が母材部と同様に均一なフォートエッチング加工が可能であり、かつ鏡面性が良好であるMn−Ni−Al−Cu−Mo系時効硬化性プラスチック金型用鋼が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した特開昭63−183158号公報の場合は、MnSを含有し、被削性に優れるが、鏡面性の点で不十分である。また、特開昭60−67641号公報の場合は、S上限値を規制し、良好な鏡面性および均一なフォートエッチング性を有しているが、被削性の点で不十分であるという問題がある。このように、被削性の向上に寄与するMnSは、金型を鏡面に仕上げたときのスジ状の凹部となり、鏡面性を著しく劣化させる。一方、MnSを含有しない金型用鋼は、被削性が悪く、金型コストが高くなると言う問題がある。
【0005】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、Cr、Se、Teを添加することによって、硫化物を硬質化させ、鏡面性と被削性の両立を図るプラスチック金型用鋼を提供するものである。その発明の要旨とするところは、
(1)質量%で、C:0.01〜0.3%、Si:≦1.0%、Mn:0.1〜0.4%、Ni:1.0〜4.0%、Cr:0.1〜5.0%、Al:0.3〜1.5%、Cu:0.3〜1.5%、S:0.05〜0.2%、を含有し、残部Feおよび不可避的不純物からなり、かつ、Mn/S≦2.0、介在物硬さを300〜500HVになるように調整したことを特徴とする被削性および鏡面性に優れた金型用鋼。
(2)前記(1)記載の成分組成に、さらにSeおよびTeの1種または2種を0.5%以下含有させたことを特徴とする被削性および鏡面性に優れた金型用鋼である。
【0006】
【発明の実施の形態】
以下、本発明に係る成分組成の限定理由について述べる。
C:0.01〜0.3%
Cは、焼入れ性確保に必要な強度を高めるための基本的な元素であり、0.01%未満では十分な強度を確保することが出来ず、また、0.3%を超える添加は切削性、靱性および溶接性を低下させることから、その範囲を0.01〜0.3%とした。
Si:≦1.0%
Siは、溶製時の脱酸作用を有し、焼入れ性のために添加する。しかし、過剰の添加は靱性を低下させることから、その上限を1.0%とした。
【0007】
Mn:0.1〜0.4%
Mnは、Siと同様に、溶製時の脱酸作用を有し、しかも、焼入れ性確保のために添加する。しかし、0.1%未満ではその効果が得られず、また、過剰の添加は切削性および靱性を低下させるので、その上限を0.4%とした。
Ni:1.0〜4.0%
Niは、時効硬さの確保およびシボ加工性を向上させるために必要な元素である。しかし、1.0%未満ではその効果が得られず、また、過剰の添加は熱伝導率および被削性を低下させることから、その上限を4.0%とした。好ましくは2.5〜3.5%とする。
【0008】
Cr:0.1〜5.0%
Crは、耐食性および介在物の硬質化を図り、強度向上に役立つ元素である。従って、その効果を得るためには0.1%以上必要である。しかし、過剰の添加は、被削性を低下させることから、その上限を5.0%とした。好ましくは、1.0〜3.0%とする。
Al:0.3〜1.5%
Alは、時効硬さを確保し、かつ被削性を向上させる元素である。しかし、0.3%未満ではその効果が得られず、また、過剰の添加は靱性を低下させるので、その上限を1.5%とした。好ましくは、0.5〜1.0%とする。
【0009】
Cu:0.3〜1.5%
Cuは、時効硬さを確保し、かつ被削性を向上させる元素である。しかし、0.3%未満ではその効果が得られず、また、過剰の添加は靱性および熱間加工性を低下させるので、その上限を1.5%とした。好ましくは、0.5〜1.0%とする。
S:0.05〜0.2%
Sは、被削性を向上させる元素である。しかし、0.05%未満ではその効果が得られず、また、過剰の添加は鏡面性および耐食性を劣化させるので、その上限を0.2%とした。
【0010】
Mn/S≦2.0
Mn/Sは、MnS単体形成を防止するために規制したもので、その上限を2.0とする。
介在物硬さを300〜500HV
介在物硬さを300〜500HVとしたのは、鏡面仕上げ性を確保のために300HV以上とする。しかし、500HVを超えるとシボ加工時のむら防止をすることが出来ないことから、その上限を500HVとした。
【0011】
SeおよびTeの1種または2種を0.5%以下
SeおよびTeは、Crと共に添加することにより、MnSをCrS、Cr(S,Se)、Cr(S,Te)のいずれかの硬質介在物とする。すなわち、CrS介在物中に固溶し、介在物の硬質を確保する元素である。これにより400HVを確保することができる。しかし、0.5%を超えると靱性が低下することから、その上限を0.5%とした。望ましくは、0.3%以下とする。
上述したように、本発明は、Mn/Sを規制し、かつ、Cr,Se,Teを添加することによって、MnSをCrS、Cr(S,Se)、Cr(S,Te)、Cr(S,Se,Te)のいずれかの硬質介在物とする。一方、マトリックスと介在物間の硬度差を小さくすることによって、鏡面仕上げ時に介在物のみが先に研磨されてスジ状の凹形状になるのを防ぐものである。
【0012】
【実施例】
以下、本発明について実施例によって具体的に説明する。
表1に示す化学成分組成を有する鋼を200kg真空誘導加熱溶解炉にて溶製し、インゴットに鋳造し、1100℃に加熱後、幅100mm×長さ100mm×高さ100mmの角に鍛伸し、溶体化、時効処理して供試材に供した。その供試材を被削性試験片および鏡面性評価用試験片とした。その結果を表1に示す。なお、被削性試験および鏡面性評価試験は、以下の通りである。
【0013】
本発明に係る被削性試験としては、
(切削条件)
エンドミル:φ5、2枚刃
回転数:1900rpm
切削速度:0.3m/s
切り込み:1mm
加工形態:溝加工
冷却方法:エアブロー
(評価方法)エンドミル折損までの切削長
【0014】
本発明に係る鏡面性評価試験としては、自動研磨装置を用いて湿式ペーパーにて、#180→#320→#800→#1200を行い、引続き、ダイヤモンドペースト3μm→ダイヤモンドペースト1μmの順にて鏡面仕上げを行った。その結果、実体顕微鏡を用いて被検面積1mm2 中のピット数を測定し、目視にて評価した。その結果が表1のピット数および鏡面性である。鏡面性については、○は良好、×は鏡面性が悪い状態を示す。なお、表1に示す介在物の形態については、従来のMnSが置換されてCrSとなり、Se、Teが固溶してCr(S,Se)、Cr(S,Te)、Cr(S,Se,Te)が形成され、硬さが向上し、また、鏡面仕上性も向上するものである。
【0015】
【表1】

Figure 0003736751
【0016】
表1に示すように、No.1〜4は、本発明例であり、No.5〜6は、比較例である。比較例No.5は、Mnが高く、また、Mn/Sが高い値であることから、介在物の形態がMnSであり、そのために介在物硬さが低く、ピット数が多く、かつ鏡面性が悪い。また、比較例No.6は、Sが低く、Mn/Sが高い値であることから、介在物の形態がMnSであり、そのために介在物硬さが低く、切削長が短く、しかも鏡面性が悪いことが判る。
【0017】
【発明の効果】
以上述べたように、本発明によるMn/Sを規制し、かつCr、Se、Teを添加することによって、MnSを硬質介在物とし、かつマトリックスと介在物間の硬度差を小さくすることによって、鏡面仕上げ時に介在物のみが先に研磨されてスジ状の凹形状になることを防ぐことにより、被削性と鏡面性を両立させたプラスチック金型用鋼を製造することが可能としたことは工業的に極めて優れた効果を奏するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to steel for plastic molds excellent in machinability and specularity.
[0002]
[Prior art]
Conventionally, carbon steel and low carbon structural steel have been widely used as plastic mold steels, but in recent years, plastic mold steels have machinability, specularity, corrosion resistance, overlay welding, and embossing. Various properties such as strength and toughness have been demanded. Among these characteristics, machinability and specularity are particularly contradictory characteristics, and in view of quality and mold cost, it has been desired to develop a mold steel that satisfies both these characteristics.
[0003]
From the above request, for example, as disclosed in JP-A-63-183158, C: 0.08 to 0.17%, Si: 0.60% or less, Mn: 0.50 to 1.20%, Ni: 2.50 to 3.50%, Al: 0.85 to 1.50%, Cu: 1.80 to 2.50%, S: 0.05 to 0.16%, balance Fe and normal impurities As in plastic molded prehardened mold steel and JP-A-60-67641, C: 0.05 to 0.18%, Si: 0.15 to 1.0%, Mn: 1.0 to 2 0.0%, Ni: 2.5-3.5%, Al: 0.5-1.5%, Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: When the post-weld aging is performed, the weld steel and the weld heat-affected zone are uniform in the same manner as the base metal. Ing process are possible, and Mn-Ni-Al-Cu-Mo-based age hardenable plastic die steel mirror is good has been proposed.
[0004]
[Problems to be solved by the invention]
However, in the case of the above-mentioned JP-A-63-183158, it contains MnS and is excellent in machinability, but is insufficient in terms of specularity. In the case of Japanese Patent Application Laid-Open No. 60-67641, the upper limit value of S is regulated, and it has good specularity and uniform fort etching, but is insufficient in terms of machinability. There is. Thus, MnS that contributes to improvement of machinability becomes a streak-like recess when the mold is finished to a mirror surface, and the mirror surface property is remarkably deteriorated. On the other hand, mold steels that do not contain MnS have the problem that the machinability is poor and the mold cost is high.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the inventors have made extensive developments. As a result, by adding Cr, Se, and Te, the sulfides are hardened to achieve both specularity and machinability. It provides steel for plastic molds. The gist of the invention is that
(1) By mass%, C: 0.01 to 0.3%, Si: ≦ 1.0%, Mn: 0.1 to 0.4%, Ni: 1.0 to 4.0%, Cr: 0.1 to 5.0%, Al: 0.3 to 1.5%, Cu: 0.3 to 1.5%, S: 0.05 to 0.2%, the balance Fe and unavoidable A mold steel excellent in machinability and specularity, characterized in that it is made of mechanical impurities, Mn / S ≦ 2.0, and inclusion hardness is adjusted to 300 to 500 HV.
(2) A mold steel excellent in machinability and specularity, characterized in that the component composition described in (1) above further contains 0.5% or less of one or two of Se and Te. It is.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.01 to 0.3%
C is a basic element for increasing the strength necessary for ensuring hardenability. If it is less than 0.01%, sufficient strength cannot be ensured. The toughness and weldability are lowered, so the range was made 0.01 to 0.3%.
Si: ≦ 1.0%
Si has a deoxidizing action during melting and is added for hardenability. However, excessive addition reduces toughness, so the upper limit was made 1.0%.
[0007]
Mn: 0.1 to 0.4%
Mn, like Si, has a deoxidizing action during melting and is added to ensure hardenability. However, if the amount is less than 0.1%, the effect cannot be obtained, and excessive addition reduces machinability and toughness, so the upper limit was made 0.4%.
Ni: 1.0-4.0%
Ni is an element necessary for securing aging hardness and improving embossing workability. However, if less than 1.0%, the effect cannot be obtained, and excessive addition lowers the thermal conductivity and machinability, so the upper limit was made 4.0%. Preferably it is 2.5 to 3.5%.
[0008]
Cr: 0.1 to 5.0%
Cr is an element that helps to improve the strength by improving the corrosion resistance and hardening of inclusions. Therefore, 0.1% or more is necessary to obtain the effect. However, excessive addition reduces machinability, so the upper limit was made 5.0%. Preferably, the content is 1.0 to 3.0%.
Al: 0.3 to 1.5%
Al is an element that secures aging hardness and improves machinability. However, if less than 0.3%, the effect cannot be obtained, and excessive addition reduces toughness, so the upper limit was made 1.5%. Preferably, the content is 0.5 to 1.0%.
[0009]
Cu: 0.3 to 1.5%
Cu is an element that secures aging hardness and improves machinability. However, if less than 0.3%, the effect cannot be obtained, and excessive addition reduces toughness and hot workability, so the upper limit was made 1.5%. Preferably, the content is 0.5 to 1.0%.
S: 0.05-0.2%
S is an element that improves machinability. However, if it is less than 0.05%, the effect cannot be obtained, and excessive addition deteriorates specularity and corrosion resistance, so the upper limit was made 0.2%.
[0010]
Mn / S ≦ 2.0
Mn / S is regulated to prevent formation of MnS alone, and its upper limit is set to 2.0.
Inclusion hardness is 300-500HV
The inclusion hardness of 300 to 500 HV is set to 300 HV or more in order to ensure the mirror finish. However, if it exceeds 500 HV, unevenness cannot be prevented during embossing, so the upper limit was set to 500 HV.
[0011]
0.5% or less of 1 or 2 types of Se and Te By adding Se and Te together with Cr, MnS is hardly intermingled with either CrS, Cr (S, Se) or Cr (S, Te) It is a thing. That is, it is an element that dissolves in the CrS inclusion and ensures the hardness of the inclusion. Thereby, 400HV can be secured. However, if it exceeds 0.5%, the toughness decreases, so the upper limit was made 0.5%. Desirably, it is 0.3% or less.
As described above, the present invention regulates Mn / S and adds Cr, Se, and Te so that MnS becomes CrS, Cr (S, Se), Cr (S, Te), Cr (S , Se, Te). On the other hand, by reducing the difference in hardness between the matrix and the inclusions, only the inclusions are first polished during the mirror finish to prevent a streak-like concave shape.
[0012]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Steel having the chemical composition shown in Table 1 is melted in a 200 kg vacuum induction heating melting furnace, cast into an ingot, heated to 1100 ° C., and forged into corners of width 100 mm × length 100 mm × height 100 mm. The solution was subjected to solution treatment and aging treatment and used as a test material. The specimen was used as a machinability test piece and a test piece for specularity evaluation. The results are shown in Table 1. The machinability test and the specularity evaluation test are as follows.
[0013]
As a machinability test according to the present invention,
(Cutting conditions)
End mill: φ5, 2-blade rotation speed: 1900 rpm
Cutting speed: 0.3 m / s
Cutting depth: 1mm
Machining form: Groove machining Cooling method: Air blow (Evaluation method) Cutting length until end mill breakage [0014]
In the specularity evaluation test according to the present invention, # 180 → # 320 → # 800 → # 1200 was performed with wet paper using an automatic polishing apparatus, followed by mirror finishing in the order of diamond paste 3 μm → diamond paste 1 μm. Went. As a result, the number of pits in a test area of 1 mm 2 was measured using a stereomicroscope and evaluated visually. The result is the number of pits and specularity in Table 1. Regarding the specularity, ○ indicates good and × indicates poor specularity. In addition, about the form of the inclusion shown in Table 1, the conventional MnS is replaced to become CrS, and Se and Te are dissolved to form Cr (S, Se), Cr (S, Te), Cr (S, Se). , Te) are formed, the hardness is improved, and the mirror finish is also improved.
[0015]
[Table 1]
Figure 0003736751
[0016]
As shown in Table 1, no. 1 to 4 are examples of the present invention. 5 to 6 are comparative examples. Comparative Example No. No. 5 has a high Mn and a high value of Mn / S, and therefore the form of inclusions is MnS. Therefore, the inclusion hardness is low, the number of pits is large, and the specularity is poor. Comparative Example No. No. 6 has a low S and a high value of Mn / S, and therefore the inclusion form is MnS. Therefore, the inclusion hardness is low, the cutting length is short, and the specularity is poor.
[0017]
【The invention's effect】
As described above, by regulating Mn / S according to the present invention and adding Cr, Se, Te, by making MnS hard inclusions and reducing the hardness difference between the matrix and inclusions, By preventing only inclusions from being polished first to form a streak-like concave shape during mirror finishing, it became possible to manufacture steel for plastic molds that achieved both machinability and mirror finish. This is an industrially excellent effect.

Claims (2)

質量%で、
C:0.01〜0.3%、
Si:≦1.0%、
Mn:0.1〜0.4%、
Ni:1.0〜4.0%、
Cr:0.1〜5.0%、
Al:0.3〜1.5%、
Cu:0.3〜1.5%、
S:0.05〜0.2%、
を含有し、残部Feおよび不可避的不純物からなり、かつ、Mn/S≦2.0、介在物硬さを300〜500HVになるように調整したことを特徴とする被削性および鏡面性に優れた金型用鋼。
% By mass
C: 0.01 to 0.3%,
Si: ≦ 1.0%,
Mn: 0.1 to 0.4%,
Ni: 1.0-4.0%,
Cr: 0.1 to 5.0%,
Al: 0.3 to 1.5%,
Cu: 0.3 to 1.5%,
S: 0.05-0.2%
Excellent in machinability and specularity, characterized in that it is composed of the balance Fe and inevitable impurities, Mn / S ≦ 2.0, and the inclusion hardness is adjusted to 300 to 500 HV Mold steel.
請求項1記載の成分組成に、さらにSeおよびTeの1種または2種を0.5%以下含有させたことを特徴とする被削性および鏡面性に優れた金型用鋼。A steel for molds having excellent machinability and specularity, wherein the component composition according to claim 1 further contains 0.5% or less of one or two of Se and Te.
JP2002002451A 2002-01-09 2002-01-09 Mold steel with excellent machinability and specularity Expired - Fee Related JP3736751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002451A JP3736751B2 (en) 2002-01-09 2002-01-09 Mold steel with excellent machinability and specularity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002451A JP3736751B2 (en) 2002-01-09 2002-01-09 Mold steel with excellent machinability and specularity

Publications (2)

Publication Number Publication Date
JP2003201537A JP2003201537A (en) 2003-07-18
JP3736751B2 true JP3736751B2 (en) 2006-01-18

Family

ID=27642301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002451A Expired - Fee Related JP3736751B2 (en) 2002-01-09 2002-01-09 Mold steel with excellent machinability and specularity

Country Status (1)

Country Link
JP (1) JP3736751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580287B1 (en) * 2002-11-15 2008-01-16 Nippon Steel Corporation Steel excellent in machinability and method for production thereof

Also Published As

Publication number Publication date
JP2003201537A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP2009174033A (en) Steel for machine structure having excellent machinability
JP2007197784A (en) Alloy steel
JPS5887249A (en) Wear resistant cast iron for material of roll
JP4543963B2 (en) Hot-rolled steel sheet excellent in work hardenability and manufacturing method thereof
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP2013010983A (en) Steel for plastic molding mold
JP3736751B2 (en) Mold steel with excellent machinability and specularity
JP2005336553A (en) Hot tool steel
JP3440547B2 (en) High hardness precipitation hardening mold material
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP2001294973A (en) Steel for plastic molding die excellent in powder electric discharge machinability
JP2003138342A (en) Prehardened steel for diecasting mold
JP4223442B2 (en) Steel for plastic molds with excellent texture and machinability
JP2000303140A (en) Steel for plastic molding die
JPH05306427A (en) Centrifugally cast sleeve roll and its production
JP6794043B2 (en) Steel for plastic molding dies with excellent workability and mirror surface
JP3808322B2 (en) Steel for free-cutting plastic molds with excellent mirror finish
JPH11335783A (en) Steel for glass forming dies and rolls
JP2021080492A (en) Hot work tool steel excellent in high-temperature strength and toughness
JP2003253383A (en) Steel for plastic molding die
JP2002012941A (en) Free cutting steel for plastic molding dice excellent in finished surface roughness
JP4099888B2 (en) Casting mold with excellent melt resistance
JPH11158579A (en) Steel for plastic molding die
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
KR101986187B1 (en) Cast steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees