[go: up one dir, main page]

JP3732046B2 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP3732046B2
JP3732046B2 JP19812699A JP19812699A JP3732046B2 JP 3732046 B2 JP3732046 B2 JP 3732046B2 JP 19812699 A JP19812699 A JP 19812699A JP 19812699 A JP19812699 A JP 19812699A JP 3732046 B2 JP3732046 B2 JP 3732046B2
Authority
JP
Japan
Prior art keywords
circuit
buffer amplifier
fet
voltage
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19812699A
Other languages
Japanese (ja)
Other versions
JP2001028515A (en
Inventor
九一 久保
文雄 浅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP19812699A priority Critical patent/JP3732046B2/en
Publication of JP2001028515A publication Critical patent/JP2001028515A/en
Application granted granted Critical
Publication of JP3732046B2 publication Critical patent/JP3732046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水晶発振器を産業上の技術分野とし、特に立上がり時の緩衝増幅器の自励発振(寄生発振)による装置の誤動作を防止した水晶発振器に関する。
【0002】
【従来の技術】
(発明の背景)水晶発振器は、周波数及び時間の基準源として通信機器を含む各種の電子機器に広く用いられている。例えば携帯電話では、中間周波数を得る局部発振器として使用される。近年では、中間周波数を得るのみならず、同期信号としても使用される。
【0003】
(従来技術の一例)第5図は従来例を説明する水晶発振器の回路図である。
水晶発振器は発振回路1に緩衝増幅器2を設けてなる。発振回路1は水晶振動子3をL成分とした図示しないコルピッツ発振回路1からなる。緩衝増幅器2は二段結合として、いずれもインバータ型とした相補接続のMOS−FET4(CMOSインバータとする)(ab)からなる。そして、一段目には帰還抵抗5を設け、動作電圧を設定する。また、発振回路1と緩衝増幅器2との間には結合コンデンサ6を設けて、高周波的に接続する。これらは、水晶振動子3を除いて図示しないシリコン基板に一体的に集積(IC)化してなる。なお、符号16は外部回路との結合コンデンサである。
【0004】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の水晶発振器では、発振回路1は水晶振動子3を使用しているので、電源投入後発振周波数(定常出力)に到達するまで、比較的立上がりが遅い(約1.5〜2.2msec)。したがって、電源投入時には緩衝増幅器2が先に動作し、自励発振を引き起こす問題があった。そして、この場合には、同期回路等の他の回路へ悪影響を招く虞があった。
【0005】
なお、発振出力が基準レベル以上(通常出力の約10%以上)になると、緩衝増幅器2の動作が安定して自励発振は生じない。
【0006】
(発明の目的)本発明は、緩衝増幅器の立上がり時の自励発振を抑制し、起動直後から安定な発振周波数を得る水晶発振器を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、発振回路に緩衝増幅器を接続して両者ともに0から1レベルの電圧となる同一電源により駆動される水晶発振回路において、前記緩衝増幅器の入力段には、前記緩衝増幅器の立ち上がりを前記発振回路の立上がりよりも遅らせる、パルス発生回路と電圧降 下回路とからなる起動遅延回路を備え、前記パルス発生回路は、前記電源に接続して前記電源投入時に充電されるコンデンサと、前記コンデンサの充電時間のみ前記電源電圧を発生する第1FETとからなり、前記電圧降下回路は前記第1FETに接続した第2FETからなり、前記第2FETは前記第1FETからの前記電源電圧によって、前記緩衝増幅記の入力段の動作電圧を前記電源電圧の1/2となる基準値からずらし、前記緩衝増幅器の出力電圧を前記0又は1レベルとして電源投入時の増幅機能を停止させた構成とする。
【0008】
【作用】
本発明では、緩衝増幅器の立上がり時の動作を遅延させる。したがって、その間に発振出力は、緩衝増幅器が正常に動作する基準レベル以上になる。したがって、緩衝増幅器の遅延動作時には、基準レベル以上の発振出力が入力されるので、立上がり時及びそれ以降の自励発振を抑制する。以下、本発明の一実施例によって作用とともに詳述する。
【0009】
【実施例】
第1図及び第2図は本発明の一実施例を説明する図で、第1図は水晶発振器の回路図、第2図タイムチャート図である。なお、前従来例図と同一部分には同番号を付与してその説明は簡略又は省略する。
水晶発振器は、前述同様、水晶振動子3をL成分としたコルピッツ発振回路1に、結合コンデンサ6によって高周波数的に接続される、二段結合のCMOSインバータ4(ab)からなる緩衝増幅器2を設けて構成される。なお、これらは集積化してなる。
【0010】
そして、この実施例では、緩衝増幅器2の入力段に起動遅延回路7を設けてなる。起動遅延回路7は、パルス発生回路8と電圧降下回路9からなる。パルス発生回路8は、直列接続した定電流源10とアース接地のコンデンサ11を電源Vccに接続する。定電流源10とコンデンサ11の中点には、電源Vccとアース間にドレイン及びソースが接続した第1FET12のゲートを接続する。そして、ドレイン側には負荷抵抗13を設ける。
【0011】
電圧降下回路9は、緩衝増幅器2の入力段とアース間にドレイン及びソースが接続した第2FET14のゲートにパルス発生回路8の出力(ドレイン)を接続する。そして、第2FET14のドレイン側に高周波阻止抵抗15を設ける。
【0012】
このようなものでは、電源Vccを投入すると「第2図(a)」、パルス発生回路8のコンデンサ11に先ず充電される。そして、コンデンサ11の電位が第1FET12の順方向降下電圧(スレシホールド電圧)を越えると、第1FET12のゲートが開き、ドレイン電流が生ずる。したがって、コンデンサ11の充電時間のみ、ドレインの出力に電源電圧(抑制パルスPとする)を発生する「第2図(b)」。
【0013】
そして、電圧降下回路9の第2FET14のゲートに抑制パルスPが印加されると、第2FET14が動作して、緩衝増幅器2の入力段からドレイン電流を生ずる。したがって、緩衝増幅器2の入力段(FETのゲート)の電圧が降下し、動作電圧が基準値(通常では電源電圧の1/2)Vsから下方のVs’へずれる。(第3図)すなわち、動作点がリニア領域(傾斜した増幅領域)から、非増幅領域(平坦部分、1レベル、HIGHレベル)へずれる。なお、第3図はCMOSインバータの入力(Vi)−出力(Vo)特性図である。
【0014】
このことから、電源投入後の抑制パルスP(約1msec)を印加中は、緩衝増幅器2は動作しない(増幅機能を有しない)。したがって、電源投入後の雑音等に起因した自励発振は生ずることがない。一方、発振回路1は電源投入とともに動作して、緩衝増幅器2への抑制パルスPの印加中に、発振出力が基準レベル以上になる「第2図(c)」。基準レベルは、緩衝増幅器2が正常に動作する通常時の例えば10%以上とする。
【0015】
また、抑制パルスPが消滅した後は、緩衝増幅器2には正常な動作電圧を印加される。そして、緩衝増幅器2には、基準レベル以上に達した発振出力(周波数)が入力され、これを増幅する「第2図(d)」。なお、安定領域に達した発振出力の入力により、緩衝増幅器2は自励発振は生じない。また、高周波阻止抵抗15により、発振回路1と電圧降下回路9とを高周波的に遮断するので、発振出力のレベル低下を防止する。
【0016】
このようなことから、電源投入時には、起動遅延回路7(抑制パルスP)によって緩衝増幅器2からの高周波的な出力はなく、抑制パルスPの消滅とともに安定な発振増幅出力を得ることができる。したがって、抑制パルスPの印加中は、緩衝増幅器2の自励発振による出力はないので、これによる同期回路等の他の回路に与える影響を防止する。そして、起動を遅延させて、遅延当初から安定な発振出力を得ることができる。
【0017】
【他の事項】
上記実施例では、抑制パルスPによって緩衝増幅器2(4a)の動作電圧を基準値Vsから下方のVs’に移行して1レベル(HIGHレベル)に設定したが、これとは逆に動作電圧を上方のへVs''に移行して0レベル(LOWレベル)に設定しても同様である。
【0018】
この場合、例えば第4図に示したように、駆動遅延回路7は前述のパルス発生器8と電圧上昇回路19とから構成される。電圧上昇回路19は、第3FET17及び第4FET18からなり、パルス発生器8からの抑止パルスPによってスイッチング動作し、緩衝増幅器2の動作電圧を基準値Vsより高いVs''(0レベル)に設定する。なお、符号20は負荷抵抗である。
【0019】
また、駆動遅延回路7はパルス発生回路8と電圧降下回路9又は電圧上昇回路19から形成したが、これに限らず、要するに緩衝増幅器2の動作電圧が起動時に基準値からずれて出力が1又は0の状態になっていればよい。
【0020】
また、緩衝増幅器2はCMOSインバータに限らず、MOSFETやパイポーラトランジスタ等の増幅器であってもよい。
【0021】
【発明の効果】
本発明は、発振回路に緩衝増幅器を接続して両者ともに0から1レベルの電圧となる同一電源により駆動される水晶発振回路において、前記緩衝増幅器の入力段には、前記緩衝増幅器の立ち上がりを前記発振回路の立上がりよりも遅らせる、パルス発生回路と電圧降下回路とからなる起動遅延回路を備え、前記パルス発生回路は、前記電源に接続して前記電源投入時に充電されるコンデンサと、前記コンデンサの充電時間のみ前記電源電圧を発生する第1FETとからなり、前記電圧降下回路は前記第1FETに接続した第2FETからなり、前記第2FETは前記第1FETからの前記電源電圧によって、前記緩衝増幅記の入力段の動作電圧を前記電源電圧の1/2となる基準値からずらし、前記緩衝増幅器の出力電圧を前記0又は1レベルとして電源投入時の増幅機能を停止させたので、起動直後から安定な発振周波数を得る水晶発振器を提供できる。
【図面の簡単な説明】
【図1】 本発明の一実施例を説明する水晶発振器の回路図である。
【図2】 本発明の一実施例の作用効果を説明するタイムチャート図である。
【図3】 本発明の一実施例の作用効果を説明するCMOSインバータの入力−出力特性図である。
【図4】 本発明の他の実施例を説明する水晶発振器の回路図である。
【図5】 従来例を説明する水晶発振器の回路図である。
【符号の説明】
1 発振回路、2 緩衝増幅器、3 水晶振動子、4 CMOSインバータ、5 帰還抵抗、6、16 結合コンデンサ、7 遅延駆動回路、8 パルス発生器、9 電圧降下回路、10 定電流源、11 コンデンサ、12、14、17、18 FET、13、20 負荷抵抗、15 高周波阻止抵抗、19 電圧上昇回路.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal oscillator in an industrial technical field, and more particularly to a crystal oscillator that prevents malfunction of a device due to self-excited oscillation (parasitic oscillation) of a buffer amplifier at the time of startup.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION Crystal oscillators are widely used in various electronic devices including communication devices as a frequency and time reference source. For example, in a mobile phone, it is used as a local oscillator that obtains an intermediate frequency. In recent years, not only an intermediate frequency is obtained but also used as a synchronization signal.
[0003]
(Example of Prior Art) FIG. 5 is a circuit diagram of a crystal oscillator for explaining a conventional example.
The crystal oscillator includes an oscillation circuit 1 and a buffer amplifier 2. The oscillation circuit 1 includes a Colpitts oscillation circuit 1 (not shown) having a crystal resonator 3 as an L component. The buffer amplifier 2 is composed of a complementary connection MOS-FET 4 (referred to as a CMOS inverter) (ab), which is a two-stage coupling, both of which are inverter type. In the first stage, a feedback resistor 5 is provided to set an operating voltage. Further, a coupling capacitor 6 is provided between the oscillation circuit 1 and the buffer amplifier 2 so as to be connected at a high frequency. These are integrated (IC) integrally on a silicon substrate (not shown) except for the crystal unit 3. Reference numeral 16 denotes a coupling capacitor with an external circuit.
[0004]
[Problems to be solved by the invention]
(Problems of the prior art) However, in the crystal oscillator configured as described above, since the oscillation circuit 1 uses the crystal resonator 3, the rise is relatively slow until the oscillation frequency (steady output) is reached after the power is turned on. (About 1.5-2.2msec). Therefore, when the power is turned on, there is a problem that the buffer amplifier 2 operates first and causes self-excited oscillation. In this case, there is a risk of adversely affecting other circuits such as a synchronous circuit.
[0005]
When the oscillation output is equal to or higher than the reference level (approximately 10% or more of the normal output), the operation of the buffer amplifier 2 is stabilized and no self-excited oscillation occurs.
[0006]
(Object of the Invention) An object of the present invention is to provide a crystal oscillator that suppresses self-excited oscillation at the time of rising of a buffer amplifier and obtains a stable oscillation frequency immediately after startup.
[0007]
[Means for Solving the Problems]
The present invention relates to a crystal oscillation circuit which is driven by the same power source in which a buffer amplifier is connected to the oscillation circuit and both of which have a voltage of 0 to 1, and the rising of the buffer amplifier is set at the input stage of the buffer amplifier. delaying the rise of the oscillation circuit, comprising a start delay circuit comprising a pulse generating circuit and voltage drop below circuit, said pulse generating circuit includes a capacitor charged when the power is turned on and connected to the power source, of the capacitor The first FET that generates the power supply voltage only during a charging time, the voltage drop circuit includes a second FET connected to the first FET, and the second FET is a buffer amplifier according to the power supply voltage from the first FET. The operating voltage of the input stage is shifted from a reference value that is ½ of the power supply voltage, and the output voltage of the buffer amplifier is set to the 0 or 1 level. A structure stopping the amplification function of the power-on as.
[0008]
[Action]
In the present invention, the operation at the time of rising of the buffer amplifier is delayed. Therefore, during that period, the oscillation output becomes equal to or higher than the reference level at which the buffer amplifier operates normally. Therefore, since the oscillation output exceeding the reference level is input during the delay operation of the buffer amplifier, the self-excited oscillation at the rising time and thereafter is suppressed. It will be described in detail with the action by one embodiment of the present invention.
[0009]
【Example】
1 and 2 are diagrams for explaining one embodiment of the present invention. FIG. 1 is a circuit diagram of a crystal oscillator and FIG. 2 is a time chart. In addition, the same number is attached | subjected to the same part as a prior art example figure, and the description is abbreviate | omitted or abbreviate | omitted.
As described above, the crystal oscillator includes a buffer amplifier 2 composed of a two-stage coupled CMOS inverter 4 (ab) connected to the Colpitts oscillation circuit 1 having the crystal resonator 3 as an L component by a coupling capacitor 6 at a high frequency. Provided and configured. These are integrated.
[0010]
In this embodiment, a startup delay circuit 7 is provided at the input stage of the buffer amplifier 2. The startup delay circuit 7 includes a pulse generation circuit 8 and a voltage drop circuit 9. The pulse generation circuit 8 connects a constant current source 10 and a grounded capacitor 11 connected in series to a power source Vcc. The middle point of the constant current source 10 and the capacitor 11 is connected to the gate of the first FET 12 whose drain and source are connected between the power source Vcc and the ground. A load resistor 13 is provided on the drain side.
[0011]
The voltage drop circuit 9 connects the output (drain) of the pulse generation circuit 8 to the gate of the second FET 14 whose drain and source are connected between the input stage of the buffer amplifier 2 and the ground. A high frequency blocking resistor 15 is provided on the drain side of the second FET 14.
[0012]
In such a case, when the power source Vcc is turned on, the capacitor 11 of the pulse generation circuit 8 is first charged as shown in FIG. 2 (a). When the potential of the capacitor 11 exceeds the forward voltage drop (threshold voltage) of the first FET 12, the gate of the first FET 12 opens and a drain current is generated. Therefore, the power supply voltage (suppressed pulse P) is generated at the drain output only during the charging time of the capacitor 11 (FIG. 2B).
[0013]
When the suppression pulse P is applied to the gate of the second FET 14 of the voltage drop circuit 9, the second FET 14 operates to generate a drain current from the input stage of the buffer amplifier 2. Therefore, the voltage of the input stage (FET gate) of the buffer amplifier 2 drops, and the operating voltage shifts from the reference value (usually 1/2 of the power supply voltage) Vs to the lower Vs ′. (FIG. 3) That is, the operating point is shifted from the linear region (inclined amplification region) to the non-amplification region (flat portion, 1 level, HIGH level). FIG. 3 is an input (Vi) -output (Vo) characteristic diagram of the CMOS inverter.
[0014]
For this reason, the buffer amplifier 2 does not operate (does not have an amplification function) while the suppression pulse P (about 1 msec) is applied after the power is turned on. Therefore, self-excited oscillation due to noise after power on does not occur. On the other hand, the oscillation circuit 1 operates when the power is turned on, and the oscillation output becomes equal to or higher than the reference level during the application of the suppression pulse P to the buffer amplifier 2 (FIG. 2 (c)). The reference level is, for example, 10% or more of the normal time when the buffer amplifier 2 operates normally.
[0015]
Further, after the suppression pulse P disappears, a normal operating voltage is applied to the buffer amplifier 2. Then, the buffer amplifier 2 receives an oscillation output (frequency) that has reached the reference level or higher, and amplifies it (FIG. 2 (d)). Note that the self-excited oscillation does not occur in the buffer amplifier 2 due to the input of the oscillation output reaching the stable region. Further, since the oscillation circuit 1 and the voltage drop circuit 9 are cut off at a high frequency by the high frequency blocking resistor 15, the level of the oscillation output is prevented from being lowered.
[0016]
For this reason, when the power is turned on, there is no high-frequency output from the buffer amplifier 2 by the start delay circuit 7 (suppression pulse P), and a stable oscillation amplification output can be obtained as the suppression pulse P disappears. Therefore, during the application of the suppression pulse P, there is no output due to the self-excited oscillation of the buffer amplifier 2, and this prevents the influence on other circuits such as a synchronous circuit. Then, the start-up is delayed and a stable oscillation output can be obtained from the beginning of the delay.
[0017]
[Other matters]
In the above embodiment, the operating voltage of the buffer amplifier 2 (4a) is shifted from the reference value Vs to Vs ′ below by the suppression pulse P and set to 1 level (HIGH level). It is the same even if it moves to Vs ″ upward and is set to 0 level (LOW level).
[0018]
In this case, for example, as shown in FIG. 4, the drive delay circuit 7 is composed of the pulse generator 8 and the voltage raising circuit 19 described above. The voltage raising circuit 19 includes a third FET 17 and a fourth FET 18 and performs a switching operation by the suppression pulse P from the pulse generator 8 to set the operating voltage of the buffer amplifier 2 to Vs ″ (0 level) higher than the reference value Vs. . Reference numeral 20 denotes a load resistance.
[0019]
Further, the drive delay circuit 7 is formed of the pulse generation circuit 8 and the voltage drop circuit 9 or the voltage rise circuit 19. However, the drive delay circuit 7 is not limited to this. What is necessary is just to be in the state of 0.
[0020]
The buffer amplifier 2 is not limited to a CMOS inverter but may be an amplifier such as a MOSFET or a bipolar transistor.
[0021]
【The invention's effect】
The present invention relates to a crystal oscillation circuit which is driven by the same power source in which a buffer amplifier is connected to the oscillation circuit and both of which have a voltage of 0 to 1, and the rising of the buffer amplifier is set at the input stage of the buffer amplifier. An activation delay circuit comprising a pulse generation circuit and a voltage drop circuit that delays the rise of the oscillation circuit; the pulse generation circuit being connected to the power supply and charged when the power is turned on; and charging of the capacitor The first FET for generating the power supply voltage only for a time, the voltage drop circuit comprises a second FET connected to the first FET, and the second FET is input to the buffer amplification register by the power supply voltage from the first FET. The operating voltage of the stage is shifted from a reference value that is ½ of the power supply voltage, and the output voltage of the buffer amplifier is set to the 0 or 1 level. Since the amplification function of the power-on it is stopped as can provide a crystal oscillator to obtain a stable oscillation frequency immediately after starting.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a crystal oscillator for explaining an embodiment of the present invention.
FIG. 2 is a time chart illustrating the operation and effect of an embodiment of the present invention.
FIG. 3 is an input-output characteristic diagram of a CMOS inverter for explaining the operation and effect of one embodiment of the present invention.
FIG. 4 is a circuit diagram of a crystal oscillator for explaining another embodiment of the present invention.
FIG. 5 is a circuit diagram of a crystal oscillator for explaining a conventional example.
[Explanation of symbols]
1 oscillator circuit, 2 buffer amplifier, 3 crystal oscillator, 4 CMOS inverter, 5 feedback resistor, 6, 16 coupling capacitor, 7 delay drive circuit, 8 pulse generator, 9 voltage drop circuit, 10 constant current source, 11 capacitor, 12, 14, 17, 18 FET, 13, 20 Load resistance, 15 High frequency blocking resistance, 19 Voltage rise circuit.

Claims (1)

発振回路に緩衝増幅器を接続して両者ともに0から1レベルの電圧となる同一電源により駆動される水晶発振回路において、
前記緩衝増幅器の入力段には、前記緩衝増幅器の立ち上がりを前記発振回路の立上がりよりも遅らせる、パルス発生回路と電圧降下回路とからなる起動遅延回路を備え、
前記パルス発生回路は、前記電源に接続して前記電源投入時に充電されるコンデンサと、前記コンデンサの充電時間のみ前記電源電圧を発生する第1FETとからなり、
前記電圧降下回路は前記第1FETに接続した第2FETからなり、前記第2FETは前記第1FETからの前記電源電圧によって、前記緩衝増幅記の入力段の動作電圧を前記電源電圧の1/2となる基準値からずらし、前記緩衝増幅器の出力電圧を前記0又は1レベルとして電源投入時の増幅機能を停止させたことを特徴とする水晶発振回路。
In a crystal oscillation circuit that is driven by the same power source in which a buffer amplifier is connected to the oscillation circuit and both are at a voltage of 0 to 1 level ,
Wherein the input stage of the buffer amplifier, the rise of the buffer amplifier Ru delayed than the rise of the oscillation circuit, comprising a start delay circuit comprising a pulse generating circuit and a voltage drop circuit,
The pulse generation circuit comprises a capacitor connected to the power supply and charged when the power is turned on, and a first FET that generates the power supply voltage only during the charging time of the capacitor,
The voltage drop circuit is composed of a second FET connected to the first FET, and the second FET makes the operating voltage of the input stage of the buffer amplifier a half of the power supply voltage by the power supply voltage from the first FET. A crystal oscillation circuit characterized in that it is shifted from a reference value, and the amplification function at power-on is stopped by setting the output voltage of the buffer amplifier to the 0 or 1 level .
JP19812699A 1999-07-12 1999-07-12 Crystal oscillator Expired - Lifetime JP3732046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19812699A JP3732046B2 (en) 1999-07-12 1999-07-12 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19812699A JP3732046B2 (en) 1999-07-12 1999-07-12 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2001028515A JP2001028515A (en) 2001-01-30
JP3732046B2 true JP3732046B2 (en) 2006-01-05

Family

ID=16385894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19812699A Expired - Lifetime JP3732046B2 (en) 1999-07-12 1999-07-12 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP3732046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384132B (en) * 2002-01-11 2005-08-10 Nec Technologies Multi-screen communication unit
CN111987991A (en) * 2019-05-21 2020-11-24 成都锐成芯微科技股份有限公司 Crystal driving circuit

Also Published As

Publication number Publication date
JP2001028515A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP4922360B2 (en) Piezoelectric oscillator
US20070139109A1 (en) Class d amplifier with start-up click noise elimination
JPH1117451A (en) Oscillation circuit
EP0593069A2 (en) Switchable compensation for improved oscillator performance
KR102141585B1 (en) Low power crystal oscillator
JP2010176276A (en) Electronic circuit
JP3625918B2 (en) Voltage generation circuit
JP3732046B2 (en) Crystal oscillator
JP2005079828A (en) Step-down voltage output circuit
US20070090884A1 (en) Method, System and Apparatus for Reducing Oscillator Frequency Spiking During Oscillator Frequency Adjustment
JP4455734B2 (en) Oscillator circuit
JP2004112376A (en) Electronic circuit and electronic device
JPH08280170A (en) Switching power supply circuit
JP2002009546A (en) Voltage controlled oscillator
JP3934189B2 (en) Crystal oscillation circuit
JP3019847B1 (en) Power supply circuit
US20240388253A1 (en) Reducing Startup Time In A Crystal Oscillator
JP3127456B2 (en) Semiconductor integrated device
JP2626589B2 (en) Oscillation circuit
JP2993534B2 (en) Semiconductor device with termination function
TW200307394A (en) Semiconductor integrated circuit
JPH09200015A (en) Semiconductor switch control circuit
JPH04237214A (en) Clocked inverter
JP2010218360A (en) Power supply device
JP2000049571A (en) Voltage control oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Ref document number: 3732046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term