[go: up one dir, main page]

JP3731344B2 - Reactor pressure vessel unloading method and unloading switchgear - Google Patents

Reactor pressure vessel unloading method and unloading switchgear Download PDF

Info

Publication number
JP3731344B2
JP3731344B2 JP11816198A JP11816198A JP3731344B2 JP 3731344 B2 JP3731344 B2 JP 3731344B2 JP 11816198 A JP11816198 A JP 11816198A JP 11816198 A JP11816198 A JP 11816198A JP 3731344 B2 JP3731344 B2 JP 3731344B2
Authority
JP
Japan
Prior art keywords
door
pressure vessel
reactor pressure
reactor
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11816198A
Other languages
Japanese (ja)
Other versions
JPH11311693A (en
Inventor
昌隆 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11816198A priority Critical patent/JP3731344B2/en
Publication of JPH11311693A publication Critical patent/JPH11311693A/en
Application granted granted Critical
Publication of JP3731344B2 publication Critical patent/JP3731344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所の原子炉建屋内に収納されている原子炉圧力容器等の大型機器を建屋外に搬出するための搬出方法及び搬出用開閉装置に関する。
【0002】
【従来の技術】
原子炉圧力容器(以下、RPVと称す)は原子力発電所の最重要機器であり、原子力発電所の供用期間は、一般にRPV及び原子炉内外の付帯機器の供用期間に依存している。近年、原子力プラントの寿命を延ばし、現在稼働している経年原子力発電所の供用期間を延長することが、重要課題となってきている。経年原子力発電所の供用期間を延長するためには、原子炉内外の付帯機器を含んだRPVの取替えが必要となってきた。
【0003】
RPV取替えに伴う原子炉建屋からのRPV搬出方法には、RPVを原子炉建屋内で細断し保管容器に収納して搬出する第1の方法と、RPVを一体のまま原子炉建屋から搬出する第2の方法とがある。保管設備の容量を大きくしないためには、第2の方法が有利である。
【0004】
RPVを一体で搬出する従来技術としては、例えば特開平8−262190 号公報に、原子炉建屋を跨いで架台を設け、この架台上にエアロックやクレーン等を装備した格納設備を設け、建屋からこの格納設備内にRPVを移動させて搬出する技術が記載されている。同公報には、この装置を用いてRPVを搬出することにより、原子炉建屋からの放射性物質の放出を防止できることも記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、例えば出力780MWe規模の原子炉では、RPVは直径約6m,長さ約22m,重さ約530トンにも及ぶため、上記従来技術では、RPVを収納する格納設備やその架台はかなり大規模なものとなる。これに伴いコストも増大する。
【0006】
本発明の目的は、原子炉建屋からRPVを一体で搬出する場合でも、比較的簡易な設備で、既設の建屋内空調設備を用いて建屋からの放射性物質の放出を防止できるRPVの搬出方法及び搬出用開閉装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための第1の発明は、原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、原子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記扉を吊りワイヤが通過可能な大きさに開いた状態で、前記原子炉圧力容器を前記扉の直下まで吊り上げる第3ステップ、前記扉を前記原子炉圧力容器が通過可能な大きさまで開けて前記扉の直下にある原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出した直後に前記扉を閉じる第5ステップ、を備える。
【0008】
第2の発明は、原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記仮開口部の内側に前記原子炉圧力容器を収納するためのシールカーテンを設ける第3ステップ、前記シールカーテン内に前記原子炉圧力容器を収納後に、前記扉を開けて前記原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出後に前記扉を閉じる第5ステップ、を備える。
【0009】
第3の発明は、原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、原子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記仮開口部の下側に、該仮開口部と前記原子炉建屋内部とを区切るためのエアカーテンを形成する第3ステップ、前記扉を開けて前記原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出後に前記扉を閉じる第5ステップ、を備える。
【0010】
第4の発明は、原子力発電所の原子炉建屋から原子炉圧力容器を一体で搬出するために用いる搬出用開閉装置において、前記原子炉建屋の天井に形成され、周りに放射線を遮蔽するための遮蔽体が設けられた原子炉圧力容器を通過させるための仮開口部と、該仮開口部の上部に設けられる扉とを備え、該扉は前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、該上扉及び該下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備える。
【0011】
第5の発明は、原子力発電所の原子炉建屋から原子炉圧力容器を一体で搬出するために用いる搬出用開閉装置において、前記原子炉建屋の天井に形成され、周りに放射線を遮蔽するための遮蔽体が設けられた原子炉圧力容器を通過させるための仮開口部と、該仮開口部の上部に設けられ開閉可能な扉と、前記仮開口部の内側に設けられ前記遮蔽体が設けられた原子炉圧力容器をその内部に収納するためのシールカーテンと、を備える。
【0012】
【発明の実施の形態】
以下、図1〜図16を用いて、本発明による原子炉圧力容器(RPV)の原子炉建屋外への搬出方法の第1実施例を説明する。図1は第1実施例の搬出手順を示すフローチャート、図2は本実施例の搬出方法が適用される原子炉建屋の概略縦断面図、図3は図2の原子炉格納容器(以下、PCVと称す)周りの概略縦断面図、図4〜図16は図1の主な作業ステップにおけるPCV周りの状態を示す概略縦断面図である。本実施例は、RPVを一体で原子炉建屋より搬出し、一時保管設備へ輸送するまでの手順を示している。
【0013】
図2に示すように、原子炉建屋4内にはPCV3があり、RPV1が収納されている。RPV1内には、炉内構造物2が収納されている。原子炉建屋4の上部領域には、PCV3の上側に原子炉ウェル9が、原子炉ウェル9に隣接して使用済燃料プール19が設けてある。原子炉ウェル9には、燃料交換時や炉内構造物2の取出し時に水が張られる。
【0014】
図3に示すように、RPV1は基礎となるRPVペデスタル5にRPV基礎ボルト6で固定されている。RPV1の外周には、RPV保温材7及び放射線を遮蔽するγ線遮蔽体(以下、RSWと称す)8が設けてある。PCV3上部には、原子炉ウェル9とPCV3内を仕切る燃料交換ベローズ10とバルクヘッドプレート11が設けてある。
【0015】
RPV1には、主蒸気ノズル12,給水ノズル13,再循環入口ノズル14,再循環出口ノズル15などが設けられており、主蒸気配管22,給水配管23,再循環入口配管24,再循環出口配管25などの各系統配管に接続されている。RPV1の上部には原子炉圧力容器蓋(以下、RPVトップヘッドと称す)16が、RPV1の底部には制御棒駆動装置(以下、CRDと称す)を収納するCRDハウジング17や中性子束検出器(以下、ICMと称す)を収納するICMハウジング18が設けてある。
【0016】
始めに、図1のステップS1で、発電機を解列して原子力発電所の運転を停止する。ステップS2では、RPVトップヘッド16を開けて、原子炉開放作業を行う。原子炉開放作業では、RPVトップヘッド16を取外す作業,炉内構造物2の一部を取出す作業などが実施される。ステップS3では、全燃料を炉心内から取出し、原子炉建屋4内の使用済燃料プール19へ移動する。
【0017】
ステップS3の燃料取出作業中のPCV周りの状態を図4に示す。RPV1及び炉内構造物2を搬出する場合、燃料20が放射線源であるため、燃料20を装荷した状態でRPV1及び炉内構造物2を原子炉建屋外に搬出すると、大気中の放射能汚染の可能性がある。従って、RPV1の表面線量を下げるためにも、炉心内から全ての燃料20を取出す作業が実施される。
【0018】
次に、ステップS4で、RPV1の各ノズルと配管を切断する作業や、RPV基礎ボルト6を外して、RPVペデスタル5からRPV1を切り離す作業を行い、RPVを解体する。図5に、PCV3のバルクヘッドプレート11,PCVスタビライザ21,RPV1の各ノズルに接続された配管などを撤去する位置を破線で示している。図5で、PCVスタビライザ21はPCV3とRSW8を接続する耐震サポート、26は配管22〜25の切断時に炉水の漏れを防ぐためのプラグである。
【0019】
このステップでは、まずバルクヘッドプレート11を切断撤去してから、PCVスタビライザ21を切断撤去してPCV3内の撤去物の搬出用スペースを確保する。次に、RPVノズル12〜15にプラグ26を取付け、RPVノズル12〜15と配管22〜25の切断撤去を行い、RPV周辺の解体を完了する。
【0020】
この時、ステップS5で、ステップS4の作業と並行して、RPV1を原子炉建屋4から搬出するために用いる大型揚重機29を原子炉建屋4近傍に設置する。図6は、原子炉建屋4近傍に大型揚重機29を設置した状態を示す図である。次に、ステップS6で、原子炉建屋4の天井にRPV搬出用の仮開口部及び扉を設ける。図7に、原子炉建屋4の天井にRPV搬出用の仮開口部31を、その屋上に開閉可能な扉32を設けた状態を示す。扉32は、断面が円形状の仮開口部31の中心軸に対して互いに反対方向にスライド可能な(開閉可能な)上扉
32aと下扉32bを備えている。図8に、大型揚重機29の吊りフック29aを扉32の直上に位置決めした状態を示す。
【0021】
次に、ステップS7で、大型揚重機29の吊りフック29aを搬入できるスペース分だけ、仮開口部31の上側の扉32を開く。ステップS8では、大型揚重機の吊りフック29aを搬入する。図9に、扉32の一部を開けて、大型揚重機29の吊りフック29aを原子炉建屋内に搬入する状態を示す。
【0022】
以下、上扉32aと下扉32bが上下2重構造になっている扉32が開く様子を図10を用いて説明する。扉32が閉状態では、図10(a)に示すように、上扉32aと下扉32bが完全に重なっている。扉32は、仮開口部31の中心軸に対して上扉32aと下扉32bが互いに反対方向に且つ同時にスライドする(開閉する)構造を有している。扉32の一部が開いた状態を図10(b)に示す。上扉32a及び下扉32bは、仮開口部31の中心軸側に断面が半円状の切欠部を有する。上扉32aと下扉32bの切欠部には、ゴム又はシート等のシール部材32cが取付けられている。扉32の全開状態を図10(c)に示す。
【0023】
ここで、仮開口部31の開口面積の目安について説明する。原子炉建屋内に設置されている既設の換気(空調)設備で建屋内の負圧管理を行うためには、原子炉建屋4の仮開口部31からの空気流出量と、既設の換気設備の容量とを比較し、RPV搬出時に許容される仮開口部31の開口面積を決める必要がある。
【0024】
建屋外の風による換気力P1(kgf/m2)は、一般に次式で与えられる。
【0025】
【数1】
1 =C・γ・v1 2/2g …(数1)
ここで、Cは風圧係数、γ(kgf/m3)は外気の比重量、v1(m/s)は建屋上空の風速、g=9.8(m/s2)は重力の加速度である。建屋屋上では、C=−0.9 となる。ここで、負の風圧係数は屋内から屋外へ向かう吸引力を意味する。
【0026】
一方、発生差圧による建屋内空気の単位開口面積当たりの流出量P0(kgf/m2)は、一般に次式で与えられる。
【0027】
【数2】
0 =γ・ζ0・v0 2/2g …(数2)
ここで、ζ0 は開口部の流出損失係数、v0(m/s)は開口部の流出空気流速である。
【0028】
いま、ζ0 を見積もってみる。簡単のために、管の出口に設けたオリフィスから管内の空気が大気中に流出するモデルを考える。この場合、管内径dとオリフィス径d0 の比d0/d と、空気がオリフィスを出る時の流出損失係数ζ0 との間には、図22のような関係がある。従って、例えば管内径dに相当する原子炉建屋の平均内径を40m,オリフィス径d0 に相当する仮開口部の内径を10mとすると、d0/d =0.25となり、図23からζ0 =2.7となる。仮開口部の内径が10mよりも小さくなる分には、図23からζ0 =2.7 が維持されることが判る。
【0029】
一方、数2から次式が得られる。
【0030】
【数3】
0 =(2g・P0/(γ・ζ0))0.5 …(数3)
いま、P1(建屋外の風による換気力)とP0(発生差圧による空気流出量)がバランスした(P1=P0)と仮定すると、数1及び数3から次式が得られる。
【0031】
【数4】
0 =v1(C/ζ0)0.5 …(数4)
開口部からの単位面積当たりの空気流出量Q0(m3/h/m2)とv0 との間には、Q0 =3600v0の関係が成り立つので、数4から次式が得られる。
【0032】
【数5】
0 =3600v1(C/ζ0)0.5 …(数5)
通常、大型揚重機は屋外風速10m/s以下の条件下で使用される。従って、屋外風速10m/sの条件下でも原子炉建屋内を負圧に維持するために必要な屋内への取込必要風量Q1 は、数5から次式のようになる。
【0033】
【数6】
1 =3600×10×(0.9/2.7)0.5 =20785(m3/h/m2)…(数6)
ところで、出力780MWe規模の原子力発電所における原子炉建屋のオペレーティングフロアでの換気風量Q2 は、約51000(m3/h)である。従って、この条件において仮開口部に許容される許容開口面積S(m2)は次式で与えられる。
【0034】
【数7】
S=Q2/Q1=51000/20785=2.5 …(数7)
つまり、原子炉建屋内の放射性物質を含む空気が建屋外に流出することを防ぐためには、RPV搬出時の仮開口部の開口面積を2.5m2以下にすれば良い。
【0035】
RPV搬出時の仮開口部の開口面積を2.5m2以下にできない場合には、仮設の吸排気設備を設けて、原子炉建屋内への取込風量を増加させる必要がある。
【0036】
以上の理由から、本実施例では、RPVが仮開口部31を通過する際に、RPVを覆う遮蔽体(詳細は後述する)と仮開口部31の隙間の開口面積が2.5m2以下となるように、仮開口部31を構成する。例えば、RPVを覆う遮蔽体の外径が約10mの場合、仮開口部31の内径を約10.16m 以下とすれば良い。尚、上記見積りは屋外風速10m/sの条件下で行っているため、屋外風速がもっと弱い条件でRPV搬出を行う場合には、上記隙間の開口面積を2.5m2より大きくすることも許容される。
【0037】
以上述べたように、RPVを覆う遮蔽体と仮開口部31の隙間の開口面積を 2.5m2以下にした上で、更に図10(c)に示したように、上扉32aと下扉32bの切欠部にシール部材32cを設けることにより、仮開口部31からRPVを搬出する際に、RPVを覆う遮蔽体と上扉32a及び下扉32bとの間隙を十分に小さくできるので、既設の原子炉建屋内の空調設備でも建屋内を負圧に維持できる。これにより、原子炉建屋内の放射性物質を含んだ空気の建屋外部への流出を防止できる。
【0038】
次に、ステップS9で、放射能が高いRPV1に遮蔽体を取付ける。本ステップでは、図11に示すように、まずRPV1を吊り上げる前に遮蔽体27をRSW8の上側に仮置きし、吊り天秤33をRPV1に取付け、大型揚重機29の吊りフック29aを吊り天秤33に取付ける。その後、RPV1を吊り天秤33と一緒に吊り上げ、吊り天秤33の下端部に遮蔽体27を取付ける。このようにして、RPV1の全周に遮蔽体27を設けた状態で、RPV1を移動することができる。
【0039】
次に、ステップS10で、大型揚重機29を用いてRPV1を吊り上げる。図12に、RPV1を吊り上げた状態を示す。同図では、RPV1及び遮蔽体27は吊り天秤33を介して吊りフック29aで吊り上げられている。ステップS11では、更に、RPV1の下側のCRDハウジングやICMハウジングにも遮蔽体28を設ける。図13に、遮蔽体28を設けてRPV1を原子炉建屋4の天井近くまで吊り上げた状態を示す。この状態では、原子炉建屋4の屋上の上扉32aと下扉32bは、大型揚重機29の吊りワイヤ29bが通過できる分だけ開いている。こうして、原子炉建屋内の放射性物質を含んだ空気が建屋外に流出しないようにしている。
【0040】
次に、ステップS12で、RPV1の吊上げに合わせて扉32を徐々に開きながら、RPV1を原子炉建屋外に搬出する。即ち、本ステップでは、RPV1を吊り上げてその上端が扉32に接近した時点で扉32を開き、RPV1に仮開口部31及び扉32を通過させ、通過完了直後に扉32を閉じる。こうしてRPVの搬出を完了する。図14に仮開口部31をRPV1が通過している状態を、図15にRPV1を原子炉建屋の外に搬出した状態を、それぞれ示す。
【0041】
前述したように、本実施例では、図14に示すRPV搬出時の遮蔽体27と仮開口部31との隙間の開口面積が2.5m2以下となるようにしていると共に、
RPV1を原子炉建屋外に搬出した直後に上扉32a及び下扉32bを閉じることにより、原子炉建屋4内を負圧に維持して、原子炉建屋4内の放射性物質を含んだ空気が外部に流出することを防いでいる。
【0042】
次に、ステップS13で、原子炉建屋4の近傍に予め配置した大型トレーラにRPV1を積み込んで、一時保管設備へRPV1を輸送する。図16に、原子炉建屋4から搬出したRPV1を、大型揚重機29による吊り上げ状態から、大型トレーラ35上に設置されたRPV輸送用スキッド34により横倒しして、一時保管設備へ輸送する前の状態を示す。
【0043】
以上説明したように、本実施例によれば、仮開口部の上部に簡単な構造の扉を設けるだけで、原子炉建屋からRPVを一体で搬出する際に、既設の原子炉建屋内空調設備を用いて原子炉建屋内を負圧に保つことができる。従って、比較的簡易な設備で、原子炉建屋内の放射性物質を含む空気が外部に流出することを防ぐことができる。これに伴い工事コストを低減できる。また、既設の空調設備以外の大規模な吸排気設備を必要としないので、これもコスト低減に寄与する。更に、RPVを一体で搬出できるので、RPV取替工事の工程を大幅に短縮できる。
尚、本実施例では、RPV1に遮蔽体27及び28を設けて移動する例を説明したが、除染することでRPVの表面線量を環境へ影響しない程度まで低減することにより、RPVの遮蔽体を簡略化したり、遮蔽体を取付けずに移動することも可能である。この場合、RPVの搬出作業を無人化したり、遠隔監視することも可能で、更にコストを低減できる。
【0044】
また、本実施例ではRPVの取替作業に本発明によるRPVの搬出方法を適用した例について説明したが、廃炉工事に対しても、2枚の扉を重ねた2重構造の扉を用いてRPVなどの大型機器を一体で搬出・解体する作業に適用できることは言うまでもない。
【0045】
次に、図17〜図20を用いて、本発明によるRPVの搬出方法の第2実施例を説明する。図17は第2実施例の搬出手順を示すフローチャート、図18〜図20は図17の主な作業ステップにおけるRPV周りの状態を示す概略縦断面図である。本実施例は、RPV搬出時にシールカーテンを用いる例である。図17におけるステップT1〜T11は第1実施例のステップS1〜S11と同じであるので、ここでは説明を省略する。本実施例では、ステップT12以降が第1実施例と異なる。
【0046】
図17のステップT12で、仮開口部31の内側にRPV1を収納するための円筒状のシールカーテン36aを取付ける。シールカーテン36aは仮開口部31の内面に設置され、設置部分にしっかりと目張りを施して、原子炉建屋内の空気がこの設置部分からシールカーテン36a内に入り込まないようにする。シールカーテンとしては、工事用の防炎シートや、これに準ずるもので空気を通し難いものを用いることができる。ステップT13では、RPV1がシールカーテン36a内に入る位置までRPV1を吊り上げる。図18に、ステップT13終了後の状態を示す。
【0047】
次に、ステップT14で、シールカーテン36aの内部にRPV1を収納するように、シールカーテン36aの底部を塞ぐ。図19に、ステップT14終了後の状態を示す。同図では、シールカーテンの底部を36bで示している。このようにシールカーテンを構成することにより、原子炉建屋内の空気と、シールカーテン内の空気が遮断される。
【0048】
次に、ステップT15で、RPV1の搬出を行う。本ステップでは、まず仮開口部31の上扉32a及び下扉32bを開く。このように仮開口部31の扉32を全開にしても、シールカーテンの遮断作用によって、原子炉建屋の空気が建屋外に流出することを防ぐことができる。扉32の全開後に、RPV1を原子炉建屋4から搬出する。図20に、RPV1を搬出している状態を示す。RPV1の搬出終了後、仮開口部31の上扉32a及び下扉32bを閉じて、RPV搬出作業が終了する。次に、ステップT16で、図1のステップS13と同じようにして、RPV1の輸送作業を行う。
【0049】
本実施例でも、仮開口部に簡単な構造の扉とシールカーテンを設けるだけで、既設の原子炉建屋内空調設備を用いて原子炉建屋内を負圧に保ち、気密を維持できる。従って、比較的簡易な設備で、放射性物質を含む原子炉建屋内の空気が外部に流出することを防止できる。これに伴い工事コストを低減できる。また、既設の空調設備以外の大規模な吸排気設備を必要としないので、これもコスト低減に寄与する。更に、RPVを一体で搬出できるため、RPV取替工事の工程を大幅に短縮できる。
【0050】
次に、図21を用いて、本発明によるRPVの搬出方法の第3実施例を説明する。本実施例は、仮開口部にエアーカーテンを設けることにより、原子炉建屋内を負圧に維持しつつ、RPVを搬出する例である。図21は、本実施例の搬出方法を行うための原子炉建屋内設備の概略構成図である。
【0051】
図21で、37は吸気ファン、38は吐出フィルタ、39は吐出ダクト、40は吐出ノズル、41は排気ファン、42は吸込フィルタ、43は吸込ダクト、44は吸込ノズルである。仮開口部31の下側において互いに対向している吐出ダクト39の先端部と吸込ダクト43の先端部は、それぞれの断面が円環状の形状をしている。この断面が円環状の吐出ダクト39の先端部に吐出ノズル40を、断面が円環状の吸込ダクト43の先端部に吸込ノズル44を、それぞれ対向させて設けることにより、断面が円形状の仮開口部31の下側に開口部形状に対応させたエアーカーテンを設けている。
【0052】
本実施例では、仮開口部31の上扉32a及び下扉32bを開く前に、吸気ファン37で吸い込んだ原子炉建屋4内の空気を、吐出フィルタ38及び吐出ダクト39を介して吐出ノズル40から水平方向に放出し、排気ファン41で吸込ノズル44から吸い込み、吸込ダクト43及び吸込フィルタ42を介して排気ファン41から原子炉建屋4内に排気する。こうして仮開口部31の扉32の下側にエアーカーテンを形成する。図21には、吐出ノズル40から吸込ノズル44への空気の流れを矢印で示している。
【0053】
本実施例では、このようにして仮開口部31の扉32の下側にエアーカーテンを形成した状態で、第1実施例と同じような遮蔽体27及び28をRPV1に取付けてからRPV1を搬出する。この場合、第1及び第2実施例に比べれば、エアーカーテンを形成するための設備が必要であるが、従来に比べれば、比較的簡易な設備で、既設の原子炉建屋内空調設備を用いて原子炉建屋4内を負圧に維持でき、原子炉建屋内の放射性物質を含んだ空気が建屋外に放出されることを防止できる。これに伴い工事コストを低減できる。また、RPVを一体で搬出できるため、RPV取替工事の工程を大幅に短縮できる。
【0054】
以上説明したように、第1実施例ではRPVと仮開口部との隙間を極めて小さくすることにより、第2実施例ではシールカーテンを用いることにより、第3実施例ではエアーカーテンを用いることにより、それぞれ比較的簡易な設備を用いて、既設の原子炉建屋内の空調設備で原子炉建屋内を負圧に維持しつつ、RPVを一体で搬出できる。尚、以上の実施例ではRPVの搬出例を説明したが、RPV以外の原子炉建屋内の大型機器の搬出に対しても本発明は適用できる。
【0055】
【発明の効果】
本発明によれば、RPV等の大型機器を一体で原子炉建屋から搬出する際に、比較的簡易な設備で、既設の原子炉建屋内空調設備を用いて原子炉建屋内を負圧に維持でき、原子炉建屋内の放射性物質を含んだ空気が外部に流出することを防止できる。これに伴い工事コストを低減できる。また、大型機器を一体で搬出できるため、RPV取替工事や廃炉工事の工程を大幅に短縮できる。
【図面の簡単な説明】
【図1】本発明によるRPVの搬出方法の第1実施例を示すフローチャート。
【図2】本発明の搬出方法は適用される原子炉建屋の概略縦断面図。
【図3】図2のPCV周りの概略縦断面図。
【図4】図1のステップS3の作業中の状態を示す図。
【図5】図1のステップS4の作業の適用対象位置を示す図。
【図6】図1のステップS5の作業終了時の状態を示す図。
【図7】図1のステップS6の作業終了時の状態を示す図。
【図8】図1のステップS6の作業終了時の状態を示す図。
【図9】図1のステップS8の作業中の状態を示す図。
【図10】仮開口部の扉の開閉状態の説明図で、(a)は扉が閉じている状態を、(b)は扉の一部が開いている状態を、(c)は扉の全開状態を、それぞれ示す。
【図11】図1のステップS9の作業中の状態を示す図。
【図12】図1のステップS10の作業中の状態を示す図。
【図13】図1のステップS11の作業終了時の状態を示す図。
【図14】図1のステップS12の作業中の状態を示す図。
【図15】図1のステップS12の作業終了時の状態を示す図。
【図16】図1のステップS13の作業中の状態を示す図。
【図17】本発明によるRPVの搬出方法の第2実施例を示すフローチャート。
【図18】図17のステップT13の作業終了時の状態を示す図。
【図19】図17のステップT14の作業終了時の状態を示す図。
【図20】図17のステップT15の作業中の状態を示す図。
【図21】本発明によるRPVの搬出方法の第3実施例を行うための原子炉建屋内設備の概略構成図。
【図22】空気の流出損失係数とオリフィス径との関係図。
【符号の説明】
1…RPV、2…炉内構造物、3…PCV、4…原子炉建屋、8…RSW、9…原子炉ウェル、17…CRDハウジング、18…ICMハウジング、19…使用済燃料プール、20…燃料、26…プラグ、27,28…遮蔽体、29…大型揚重機、29a…吊りフック、29b…吊りワイヤ、31…仮開口部、32…扉、32a…上扉、32b…下扉、33…吊り天秤、34…輸送用スキッド、35…大型トレーラ、36a,36b…シールカーテン、37…吸気ファン、38…吐出フィルタ、39…吐出ダクト、40…吐出ノズル、41…排気ファン、42…吸込フィルタ、43…吸込ダクト、44…吸込ノズル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an unloading method and unloading switchgear for unloading large equipment such as a reactor pressure vessel housed in a reactor building of a nuclear power plant.
[0002]
[Prior art]
The reactor pressure vessel (hereinafter referred to as RPV) is the most important equipment of a nuclear power plant, and the service period of the nuclear power plant generally depends on the service period of the RPV and ancillary equipment inside and outside the reactor. In recent years, it has become an important issue to extend the life of nuclear power plants and extend the operating period of aged nuclear power plants that are currently in operation. In order to extend the operating period of an aged nuclear power plant, it has become necessary to replace the RPV including the auxiliary equipment inside and outside the reactor.
[0003]
The RPV removal method from the reactor building accompanying the replacement of the RPV includes the first method in which the RPV is shredded in the reactor building, stored in a storage container, and carried out, and the RPV is carried out from the reactor building while being integrated. There is a second method. In order not to increase the capacity of the storage facility, the second method is advantageous.
[0004]
As a conventional technique for carrying out the RPV as one unit, for example, in Japanese Patent Laid-Open No. 8-262190, a frame is provided across the reactor building, and a storage facility equipped with an air lock, a crane, etc. is provided on this frame, A technique for moving the RPV into the storage facility and carrying it out is described. This publication also describes that the release of radioactive material from the reactor building can be prevented by carrying out RPV using this apparatus.
[0005]
[Problems to be solved by the invention]
However, for example, in a reactor with an output of 780 MWe, the RPV has a diameter of about 6 m, a length of about 22 m, and a weight of about 530 tons. Therefore, in the above-described conventional technology, the storage equipment and the frame for storing the RPV are quite large. It will be something. Along with this, the cost also increases.
[0006]
An object of the present invention is to carry out an RPV carrying-out method capable of preventing the release of radioactive substances from a building using a relatively simple facility and using existing building air-conditioning equipment, even when carrying out an RPV integrally from a reactor building. An object of the present invention is to provide an unloading switchgear.
[0007]
[Means for Solving the Problems]
A first invention for achieving the above object is a method for carrying out a reactor pressure vessel in which a reactor pressure vessel housed in a reactor building of a nuclear power plant is integrally carried out of a reactor building. A first step of providing a temporary opening for opening and a door that can be opened and closed on the ceiling of the reactor building, a second step of providing a shielding body that shields radiation around the reactor pressure vessel, and a suspension wire can pass through the door A third step in which the reactor pressure vessel is lifted up to just below the door in a state where the reactor pressure vessel is open, and the reactor pressure is just below the door by opening the door to a size that allows the reactor pressure vessel to pass through. A fourth step of unloading the vessel to the outside, and a fifth step of closing the door immediately after unloading the reactor pressure vessel to the outside of the door.
[0008]
A second invention is a method for carrying out a reactor pressure vessel in which a reactor pressure vessel housed in a reactor building of a nuclear power plant is integrally carried out of the reactor building, and is carried out to the ceiling of the reactor building. The first step of providing a temporary opening and a door that can be opened and closed, the second step of providing a shield for shielding radiation around the sub reactor pressure vessel, and storing the reactor pressure vessel inside the temporary opening A third step of providing a seal curtain for the fourth step, a fourth step of opening the door after the reactor pressure vessel is housed in the seal curtain, and carrying the reactor pressure vessel to the outside, and the reactor pressure vessel And a fifth step of closing the door after unloading to the outside of the door.
[0009]
A third invention relates to a method for carrying out a reactor pressure vessel in which a reactor pressure vessel housed in a reactor building of a nuclear power plant is integrally carried out of the reactor building, and is carried out to the ceiling of the reactor building. A first step of providing a temporary opening and a door that can be opened and closed, a second step of providing a shield for shielding radiation around the reactor pressure vessel, and the temporary opening and the lower side of the temporary opening. A third step of forming an air curtain for separating the interior of the reactor building, a fourth step of opening the door and carrying out the reactor pressure vessel to the outside, and carrying out the reactor pressure vessel to the outside of the door And a fifth step of closing the door later.
[0010]
A fourth invention is an unloading switchgear used for unloading a reactor pressure vessel from a reactor building of a nuclear power plant, formed on the ceiling of the reactor building, for shielding radiation around it A temporary opening for passing a reactor pressure vessel provided with a shield, and a door provided at an upper portion of the temporary opening, the doors being in directions opposite to each other with respect to the central axis of the temporary opening; The upper door and the lower door each have a semicircular cutout on the central axis side of the temporary opening, A sealing member is provided in the notch.
[0011]
A fifth invention is an unloading switchgear used for unloading a reactor pressure vessel from a reactor building of a nuclear power plant, and is formed on the ceiling of the reactor building for shielding radiation around it. A temporary opening for passing a reactor pressure vessel provided with a shield, a door provided at an upper portion of the temporary opening and capable of opening and closing, and a shield provided inside the temporary opening are provided. And a sealing curtain for accommodating the reactor pressure vessel therein.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a method for carrying out a reactor pressure vessel (RPV) according to the present invention to the outside of a reactor building will be described below with reference to FIGS. FIG. 1 is a flowchart showing the unloading procedure of the first embodiment, FIG. 2 is a schematic longitudinal sectional view of a reactor building to which the unloading method of the present embodiment is applied, and FIG. 3 is a reactor containment vessel (hereinafter referred to as PCV) of FIG. FIG. 4 to FIG. 16 are schematic longitudinal sectional views showing the state around the PCV in the main work steps of FIG. The present embodiment shows a procedure from carrying out the RPV integrally from the reactor building to transporting it to the temporary storage facility.
[0013]
As shown in FIG. 2, there is a PCV 3 in the reactor building 4 and an RPV 1 is accommodated. An in-furnace structure 2 is accommodated in the RPV 1. In the upper region of the reactor building 4, a reactor well 9 is provided above the PCV 3, and a spent fuel pool 19 is provided adjacent to the reactor well 9. The reactor well 9 is filled with water when the fuel is changed or when the reactor internal structure 2 is taken out.
[0014]
As shown in FIG. 3, the RPV 1 is fixed to the RPV pedestal 5 serving as a foundation with an RPV foundation bolt 6. An RPV heat insulating material 7 and a γ-ray shield (hereinafter referred to as RSW) 8 that shields radiation are provided on the outer periphery of the RPV 1. A fuel exchange bellows 10 and a bulkhead plate 11 for partitioning the reactor well 9 and the PCV 3 are provided on the upper part of the PCV 3.
[0015]
The RPV 1 is provided with a main steam nozzle 12, a feed water nozzle 13, a recirculation inlet nozzle 14, a recirculation outlet nozzle 15, etc., and a main steam pipe 22, a feed water pipe 23, a recirculation inlet pipe 24, and a recirculation outlet pipe. 25 is connected to each system piping. At the top of the RPV 1 is a reactor pressure vessel lid (hereinafter referred to as RPV top head) 16, and at the bottom of the RPV 1 is a CRD housing 17 for storing a control rod drive (hereinafter referred to as CRD) and a neutron flux detector ( Hereinafter, an ICM housing 18 for housing the ICM) is provided.
[0016]
First, in step S1 of FIG. 1, the generator is disconnected and the operation of the nuclear power plant is stopped. In step S2, the RPV top head 16 is opened and the reactor opening operation is performed. In the nuclear reactor opening operation, an operation of removing the RPV top head 16 and an operation of taking out a part of the reactor internal structure 2 are performed. In step S3, all fuel is taken out from the core and moved to the spent fuel pool 19 in the reactor building 4.
[0017]
FIG. 4 shows a state around the PCV during the fuel extraction operation in step S3. When the RPV 1 and the reactor internal structure 2 are carried out, since the fuel 20 is a radiation source, if the RPV 1 and the reactor internal structure 2 are carried out outside the reactor building with the fuel 20 loaded, the radioactive contamination in the atmosphere There is a possibility. Therefore, in order to reduce the surface dose of the RPV 1, an operation for taking out all the fuel 20 from the core is performed.
[0018]
Next, in step S4, the work of cutting the nozzles and pipes of the RPV 1 and the work of removing the RPV foundation bolt 6 and separating the RPV 1 from the RPV pedestal 5 are performed to disassemble the RPV. In FIG. 5, positions where the pipes connected to the nozzles of the bulkhead plate 11 of the PCV3, the PCV stabilizer 21 and the RPV1 are removed are indicated by broken lines. In FIG. 5, PCV stabilizer 21 is an earthquake-resistant support that connects PCV 3 and RSW 8, and 26 is a plug for preventing leakage of reactor water when pipes 22 to 25 are cut.
[0019]
In this step, first, the bulkhead plate 11 is cut and removed, and then the PCV stabilizer 21 is cut and removed to secure a space for carrying out the removed items in the PCV 3. Next, the plug 26 is attached to the RPV nozzles 12 to 15, the RPV nozzles 12 to 15 and the pipes 22 to 25 are cut and removed, and the disassembly around the RPV is completed.
[0020]
At this time, in step S5, in parallel with the operation of step S4, a large lifting machine 29 used to carry out the RPV 1 from the reactor building 4 is installed in the vicinity of the reactor building 4. FIG. 6 is a view showing a state in which a large lifting machine 29 is installed in the vicinity of the reactor building 4. Next, in Step S <b> 6, a temporary opening and a door for carrying out RPV are provided on the ceiling of the reactor building 4. FIG. 7 shows a state in which a temporary opening 31 for carrying out RPV is provided on the ceiling of the reactor building 4 and a door 32 that can be opened and closed is provided on the roof. The door 32 is an upper door that can slide (open and close) in directions opposite to each other with respect to the central axis of the temporary opening 31 having a circular cross section.
32a and a lower door 32b. FIG. 8 shows a state in which the suspension hook 29 a of the large lifting machine 29 is positioned directly above the door 32.
[0021]
Next, in step S <b> 7, the door 32 on the upper side of the temporary opening 31 is opened by a space that can carry the hanging hook 29 a of the large lifting machine 29. In step S8, the hanging hook 29a of the large hoist is carried in. FIG. 9 shows a state in which a part of the door 32 is opened and the hanging hook 29a of the large lifting machine 29 is carried into the reactor building.
[0022]
Hereinafter, a state in which the door 32 in which the upper door 32a and the lower door 32b are vertically doubled will be described with reference to FIG. When the door 32 is closed, as shown in FIG. 10A, the upper door 32a and the lower door 32b are completely overlapped. The door 32 has a structure in which the upper door 32 a and the lower door 32 b slide (open and close) simultaneously in opposite directions with respect to the central axis of the temporary opening 31. A state in which a part of the door 32 is opened is shown in FIG. The upper door 32a and the lower door 32b have a cutout portion with a semicircular cross section on the central axis side of the temporary opening portion 31. A seal member 32c such as rubber or a sheet is attached to the cutout portions of the upper door 32a and the lower door 32b. The fully open state of the door 32 is shown in FIG.
[0023]
Here, the standard of the opening area of the temporary opening part 31 is demonstrated. In order to manage the negative pressure inside the building with the existing ventilation (air conditioning) equipment installed in the reactor building, the amount of air outflow from the temporary opening 31 of the reactor building 4 and the existing ventilation equipment It is necessary to compare the capacity and determine the opening area of the temporary opening 31 that is allowed at the time of carrying out the RPV.
[0024]
Ventilation power P due to wind outside the building1(kgf / m2) Is generally given by:
[0025]
[Expression 1]
P1= C ・ γ ・ v1 2/ 2g (Equation 1)
Where C is the wind pressure coefficient, γ (kgf / mThree) Is the specific weight of outside air, v1(m / s) is the wind speed over the building, g = 9.8 (m / s2) Is the acceleration of gravity. On the roof of the building, C = -0.9. Here, the negative wind pressure coefficient means a suction force from indoors to the outdoors.
[0026]
On the other hand, the outflow amount P per unit opening area of indoor air due to the generated differential pressure P0(kgf / m2) Is generally given by:
[0027]
[Expression 2]
P0= Γ ・ ζ0・ V0 2/ 2g (Equation 2)
Where ζ0Is the outflow loss coefficient of the opening, v0(m / s) is the outflow air flow velocity at the opening.
[0028]
Ζ now0Try to estimate. For the sake of simplicity, consider a model in which air in a pipe flows out into the atmosphere from an orifice provided at the outlet of the pipe. In this case, the pipe inner diameter d and the orifice diameter d0Ratio d0/ D and the outflow loss coefficient ζ when air exits the orifice0There is a relationship as shown in FIG. Therefore, for example, the average inner diameter of the reactor building corresponding to the pipe inner diameter d is 40 m, the orifice diameter d0When the inner diameter of the temporary opening corresponding to is 10 m, d0/D=0.25, and from FIG.0= 2.7. Since the inner diameter of the temporary opening is smaller than 10 m, from FIG.0It can be seen that = 2.7 is maintained.
[0029]
On the other hand, the following equation is obtained from Equation 2.
[0030]
[Equation 3]
v0= (2g · P0/ (Γ · ζ0))0.5 (Equation 3)
Now P1(Ventilation force by wind outside the building) and P0(Air outflow due to generated differential pressure) balanced (P1= P0), The following equation is obtained from Equation 1 and Equation 3.
[0031]
[Expression 4]
v0= V1(C / ζ0)0.5 ... (Equation 4)
Air outflow Q per unit area from the opening0(mThree/ H / m2) And v0Between and Q0= 3600v0Therefore, the following equation is obtained from Equation 4.
[0032]
[Equation 5]
Q0= 3600v1(C / ζ0)0.5 ... (Formula 5)
Usually, a large lifting machine is used under conditions of outdoor wind speed of 10 m / s or less. Therefore, the necessary intake air volume Q required to maintain the reactor building at a negative pressure even under conditions of an outdoor wind speed of 10 m / s.1Is given by the following equation from Equation 5.
[0033]
[Formula 6]
Q1= 3600 × 10 × (0.9 / 2.7)0.5= 20785 (mThree/ H / m2) ... (Equation 6)
By the way, the ventilation air volume Q on the operating floor of the reactor building in a nuclear power plant with an output of 780 MWe scale2Is approximately 51000 (mThree/ H). Therefore, the allowable opening area S (m2) Is given by:
[0034]
[Expression 7]
S = Q2/ Q1= 51000/20785 = 2.5 (Expression 7)
In other words, in order to prevent air containing radioactive materials in the reactor building from flowing out of the building, the opening area of the temporary opening when the RPV is carried out is set to 2.5 m.2The following should be done.
[0035]
The opening area of the temporary opening when carrying out RPV is 2.5m2If the following cannot be achieved, it is necessary to provide temporary intake and exhaust facilities to increase the amount of air taken into the reactor building.
[0036]
For the above reasons, in this embodiment, when the RPV passes through the temporary opening 31, the opening area of the gap between the shield (which will be described later in detail) covering the RPV and the temporary opening 31 is 2.5 m.2The temporary opening 31 is configured as follows. For example, when the outer diameter of the shield covering the RPV is about 10 m, the inner diameter of the temporary opening 31 may be about 10.16 m or less. In addition, since the above estimation is performed under the condition of an outdoor wind speed of 10 m / s, when carrying out RPV transportation under a condition where the outdoor wind speed is weaker, the opening area of the gap is set to 2.5 m.2It is allowed to be larger.
[0037]
As described above, the opening area of the gap between the shield covering the RPV and the temporary opening 31 is 2.5 m.2In the following, as shown in FIG. 10 (c), when the RPV is carried out from the temporary opening 31 by providing the sealing member 32c in the cutout portions of the upper door 32a and the lower door 32b, the RPV Since the gap between the shield covering the upper door 32a and the lower door 32b can be made sufficiently small, the building interior can be maintained at a negative pressure even with the existing air conditioning equipment in the reactor building. Thereby, the outflow of the air containing the radioactive substance in the reactor building to the outdoor part of the building can be prevented.
[0038]
Next, a shield is attached to RPV1 with high radioactivity at step S9. In this step, as shown in FIG. 11, first, before lifting the RPV 1, the shield 27 is temporarily placed on the upper side of the RSW 8, the suspension balance 33 is attached to the RPV 1, and the suspension hook 29 a of the large hoist 29 is attached to the suspension balance 33. Install. Thereafter, the RPV 1 is lifted together with the suspension balance 33, and the shield 27 is attached to the lower end portion of the suspension balance 33. In this way, the RPV 1 can be moved with the shield 27 provided on the entire circumference of the RPV 1.
[0039]
Next, in Step S10, the RPV 1 is lifted using the large lifting machine 29. FIG. 12 shows a state where the RPV 1 is lifted. In the figure, the RPV 1 and the shield 27 are lifted by a hanging hook 29 a via a lifting balance 33. In step S11, the shield 28 is also provided on the CRD housing and the ICM housing below the RPV 1. FIG. 13 shows a state in which the shield 28 is provided and the RPV 1 is lifted up to near the ceiling of the reactor building 4. In this state, the upper door 32a and the lower door 32b on the roof of the reactor building 4 are opened to the extent that the suspension wire 29b of the large lifting machine 29 can pass through. In this way, air containing radioactive materials in the reactor building is prevented from flowing out of the building.
[0040]
Next, in step S12, the RPV 1 is carried out to the outside of the reactor building while the door 32 is gradually opened in accordance with the lifting of the RPV 1. That is, in this step, when the RPV 1 is lifted and its upper end approaches the door 32, the door 32 is opened, the temporary opening 31 and the door 32 are passed through the RPV 1, and the door 32 is closed immediately after the passage is completed. In this way, the carrying out of the RPV is completed. FIG. 14 shows a state where the RPV 1 passes through the temporary opening 31, and FIG. 15 shows a state where the RPV 1 is carried out of the reactor building.
[0041]
As described above, in this embodiment, the opening area of the gap between the shield 27 and the temporary opening 31 at the time of carrying out the RPV shown in FIG. 14 is 2.5 m.2While trying to be as follows,
Immediately after carrying out the RPV 1 to the outside of the reactor building, the upper door 32a and the lower door 32b are closed, so that the inside of the reactor building 4 is maintained at a negative pressure, and the air containing the radioactive substance in the reactor building 4 is exposed to the outside. To prevent it from leaking.
[0042]
Next, in step S13, RPV1 is loaded on a large trailer previously arranged in the vicinity of the reactor building 4, and the RPV1 is transported to a temporary storage facility. FIG. 16 shows a state before the RPV 1 unloaded from the reactor building 4 is laid down by the RPV transport skid 34 installed on the large trailer 35 from the lifted state by the large lifter 29 and transported to the temporary storage facility. Indicates.
[0043]
As described above, according to the present embodiment, the existing reactor building air conditioner can be provided when the RPV is integrally carried out from the reactor building only by providing a door with a simple structure above the temporary opening. Can be used to maintain a negative pressure in the reactor building. Therefore, it is possible to prevent the air containing radioactive material in the reactor building from flowing out to the outside with relatively simple equipment. As a result, construction costs can be reduced. Moreover, since large-scale intake / exhaust facilities other than the existing air conditioning facilities are not required, this also contributes to cost reduction. Furthermore, since the RPV can be carried out integrally, the RPV replacement work process can be greatly shortened.
In this embodiment, the example in which the shields 27 and 28 are moved on the RPV 1 has been described. However, the RPV shield is reduced by decontaminating the surface dose of the RPV to a level that does not affect the environment. It is also possible to simplify or move without attaching a shield. In this case, it is possible to unload the RPV unloading work or to remotely monitor the work, thereby further reducing the cost.
[0044]
Moreover, although the present Example demonstrated the example which applied the carrying out method of RPV by this invention to the replacement | exchange work of RPV, the double structure door which piled up two doors was used also for decommissioning work. Needless to say, the present invention can be applied to work for unloading and dismantling large equipment such as RPV.
[0045]
Next, a second embodiment of the RPV carry-out method according to the present invention will be described with reference to FIGS. FIG. 17 is a flowchart showing the unloading procedure of the second embodiment, and FIGS. 18 to 20 are schematic longitudinal sectional views showing the state around the RPV in the main work steps of FIG. In this embodiment, a seal curtain is used when carrying out the RPV. Since steps T1 to T11 in FIG. 17 are the same as steps S1 to S11 of the first embodiment, description thereof is omitted here. In the present embodiment, step T12 and subsequent steps are different from the first embodiment.
[0046]
In step T12 of FIG. 17, a cylindrical seal curtain 36a for housing the RPV 1 is attached to the inside of the temporary opening 31. The seal curtain 36a is installed on the inner surface of the temporary opening 31, and the installation portion is tightly covered so that air inside the reactor building does not enter the seal curtain 36a from this installation portion. As the seal curtain, a construction flameproof sheet or a similar material that is difficult to pass air can be used. In step T13, the RPV 1 is lifted up to a position where the RPV 1 enters the seal curtain 36a. FIG. 18 shows a state after step T13.
[0047]
Next, in step T14, the bottom of the seal curtain 36a is closed so that the RPV 1 is accommodated inside the seal curtain 36a. FIG. 19 shows a state after the end of step T14. In the figure, the bottom of the seal curtain is indicated by 36b. By configuring the seal curtain in this way, the air in the reactor building and the air in the seal curtain are blocked.
[0048]
Next, RPV1 is carried out at step T15. In this step, first, the upper door 32a and the lower door 32b of the temporary opening 31 are opened. Thus, even when the door 32 of the temporary opening 31 is fully opened, the air in the reactor building can be prevented from flowing out of the building due to the blocking action of the seal curtain. After the door 32 is fully opened, the RPV 1 is unloaded from the reactor building 4. FIG. 20 shows a state where the RPV 1 is being carried out. After the completion of carrying out the RPV 1, the upper door 32a and the lower door 32b of the temporary opening 31 are closed, and the RPV carrying out operation is finished. Next, in step T16, the transport operation of RPV 1 is performed in the same manner as in step S13 of FIG.
[0049]
Also in the present embodiment, by simply providing a door and a seal curtain with a simple structure in the temporary opening, the reactor building can be kept at a negative pressure and airtight can be maintained using the existing reactor building air-conditioning equipment. Therefore, it is possible to prevent the air inside the reactor building containing the radioactive material from flowing out to the outside with a relatively simple facility. As a result, construction costs can be reduced. Moreover, since large-scale intake / exhaust facilities other than the existing air conditioning facilities are not required, this also contributes to cost reduction. Furthermore, since the RPV can be carried out integrally, the RPV replacement process can be greatly shortened.
[0050]
Next, a third embodiment of the RPV carry-out method according to the present invention will be described with reference to FIG. The present embodiment is an example of carrying out RPV while maintaining a negative pressure in the reactor building by providing an air curtain at the temporary opening. FIG. 21 is a schematic configuration diagram of a reactor building facility for carrying out the carrying-out method of the present embodiment.
[0051]
In FIG. 21, 37 is an intake fan, 38 is a discharge filter, 39 is a discharge duct, 40 is a discharge nozzle, 41 is an exhaust fan, 42 is a suction filter, 43 is a suction duct, and 44 is a suction nozzle. The front end portion of the discharge duct 39 and the front end portion of the suction duct 43 facing each other on the lower side of the temporary opening 31 have an annular shape in cross section. By providing the discharge nozzle 40 at the tip of the discharge duct 39 having an annular cross section and the suction nozzle 44 at the tip of the suction duct 43 having an annular cross section, the temporary opening having a circular cross section is provided. An air curtain corresponding to the shape of the opening is provided below the portion 31.
[0052]
In the present embodiment, before opening the upper door 32 a and the lower door 32 b of the temporary opening 31, the air in the reactor building 4 sucked by the intake fan 37 is discharged through the discharge filter 38 and the discharge duct 39 to the discharge nozzle 40. Are discharged from the suction nozzle 44 by the exhaust fan 41 and exhausted from the exhaust fan 41 into the reactor building 4 through the suction duct 43 and the suction filter 42. Thus, an air curtain is formed below the door 32 of the temporary opening 31. In FIG. 21, the flow of air from the discharge nozzle 40 to the suction nozzle 44 is indicated by arrows.
[0053]
In this embodiment, with the air curtain formed below the door 32 of the temporary opening 31 in this way, the shields 27 and 28 similar to those of the first embodiment are attached to the RPV 1 and then the RPV 1 is carried out. To do. In this case, equipment for forming an air curtain is required as compared with the first and second embodiments, but it is a relatively simple equipment and uses existing reactor building air conditioning equipment. Thus, the inside of the reactor building 4 can be maintained at a negative pressure, and air containing radioactive materials in the reactor building can be prevented from being released to the outside of the building. As a result, construction costs can be reduced. Moreover, since RPV can be carried out integrally, the process of RPV replacement construction can be significantly shortened.
[0054]
As described above, in the first embodiment, the gap between the RPV and the temporary opening is made extremely small, the seal curtain is used in the second embodiment, and the air curtain is used in the third embodiment. Using relatively simple facilities, the RPV can be carried out integrally while maintaining the reactor building at a negative pressure with the existing air conditioning equipment in the reactor building. In addition, although the above example demonstrated the example of carrying out RPV, this invention is applicable also to carrying out the large sized equipment in reactor buildings other than RPV.
[0055]
【The invention's effect】
According to the present invention, when carrying out large-scale equipment such as RPV from the reactor building as a whole, the reactor building is maintained at a negative pressure using the existing reactor building air-conditioning equipment with relatively simple equipment. It is possible to prevent the air containing radioactive material in the reactor building from flowing out. As a result, construction costs can be reduced. In addition, since large-scale equipment can be carried out integrally, the RPV replacement work and decommissioning work processes can be greatly shortened.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first embodiment of a method for carrying out an RPV according to the present invention.
FIG. 2 is a schematic longitudinal sectional view of a reactor building to which the carrying-out method of the present invention is applied.
3 is a schematic longitudinal sectional view around the PCV in FIG. 2;
FIG. 4 is a diagram showing a state during work in step S3 of FIG.
FIG. 5 is a diagram showing an application target position of the work in step S4 in FIG. 1;
6 is a diagram showing a state at the end of the operation in step S5 in FIG. 1;
FIG. 7 is a diagram showing a state at the end of the operation in step S6 of FIG.
FIG. 8 is a diagram showing a state at the end of the operation in step S6 of FIG.
FIG. 9 is a diagram showing a state during the operation in step S8 of FIG. 1;
FIGS. 10A and 10B are explanatory diagrams of the open / closed state of the door at the temporary opening, where FIG. 10A shows a state in which the door is closed, FIG. 10B shows a state in which a part of the door is open, and FIG. The fully open state is shown respectively.
FIG. 11 is a diagram showing a state during the operation of step S9 in FIG. 1;
FIG. 12 is a diagram showing a state during work in step S10 of FIG.
FIG. 13 is a diagram showing a state at the end of the operation in step S11 of FIG.
FIG. 14 is a diagram showing a state during the operation of step S12 in FIG. 1;
FIG. 15 is a diagram showing a state at the end of the work in step S12 in FIG. 1;
FIG. 16 is a diagram showing a state during work in step S13 of FIG.
FIG. 17 is a flowchart showing a second embodiment of the RPV carrying-out method according to the present invention.
FIG. 18 is a diagram showing a state at the end of the work in step T13 of FIG.
FIG. 19 is a diagram showing a state at the end of the work in step T14 of FIG.
FIG. 20 is a diagram showing a state during work in Step T15 of FIG.
FIG. 21 is a schematic configuration diagram of a reactor building facility for carrying out a third embodiment of the RPV carrying-out method according to the present invention.
FIG. 22 is a relationship diagram of an air outflow loss coefficient and an orifice diameter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... RPV, 2 ... Reactor structure, 3 ... PCV, 4 ... Reactor building, 8 ... RSW, 9 ... Reactor well, 17 ... CRD housing, 18 ... ICM housing, 19 ... Spent fuel pool, 20 ... Fuel, 26 ... Plug, 27, 28 ... Shield, 29 ... Large lifting machine, 29a ... Hanging hook, 29b ... Hanging wire, 31 ... Temporary opening, 32 ... Door, 32a ... Upper door, 32b ... Lower door, 33 ... Suspension balance, 34 ... Transport skid, 35 ... Large trailer, 36a, 36b ... Seal curtain, 37 ... Intake fan, 38 ... Discharge filter, 39 ... Discharge duct, 40 ... Discharge nozzle, 41 ... Exhaust fan, 42 ... Suction Filter, 43 ... suction duct, 44 ... suction nozzle.

Claims (6)

原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、
原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、原子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記扉を吊りワイヤが通過可能な大きさに開いた状態で、前記原子炉圧力容器を前記扉の直下まで吊り上げる第3ステップ、前記扉を前記原子炉圧力容器が通過可能な大きさまで開けて前記扉の直下にある原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出した直後に前記扉を閉じる第5ステップを備え
前記扉は、前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、
前記上扉及び前記下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備えたことを特徴とする原子炉圧力容器の搬出方法。
In the method of carrying out the reactor pressure vessel in which the reactor pressure vessel housed in the reactor building of the nuclear power plant is integrally carried out of the reactor building,
A first step of providing a temporary opening for opening and a door that can be opened and closed on the ceiling of the reactor building, a second step of providing a shielding body that shields radiation around the reactor pressure vessel, and a suspension wire can pass through the door A third step in which the reactor pressure vessel is lifted up to just below the door in a state where the reactor pressure vessel is open, and the reactor pressure is just below the door by opening the door to a size that allows the reactor pressure vessel to pass through. comprising a fifth steps to close the door immediately after the fourth step, and the reactor pressure vessel and carried to the outside of the door unloading the container to the outside,
The door has a double structure consisting of an upper door and a lower door that are slidable in opposite directions with respect to the central axis of the temporary opening,
Each of the upper door and the lower door has a semicircular cutout on the central axis side of the temporary opening, and a seal member is provided in each cutout. Unloading method.
請求項1において、前記原子炉圧力容器の搬出時に、前記原子炉圧力容器の遮蔽体と前記仮開口部との間の隙間部の断面積が2.5m2以下であることを特徴とする原子炉圧力容器の搬出方法。2. The atom according to claim 1, wherein, when the reactor pressure vessel is unloaded, a cross-sectional area of a gap portion between the shield of the reactor pressure vessel and the temporary opening portion is 2.5 m 2 or less. How to carry out the furnace pressure vessel. 原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、
原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、原子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記仮開口部の内側に前記原子炉圧力容器を収納するためのシールカーテンを設ける第3ステップ、前記シールカーテン内に前記原子炉圧力容器を収納後に、前記扉を開けて前記原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出後に前記扉を閉じる第5ステップを備え
前記扉は、前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、
前記上扉及び前記下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備えたことを特徴とする原子炉圧力容器の搬出方法。
In the method of carrying out the reactor pressure vessel in which the reactor pressure vessel housed in the reactor building of the nuclear power plant is integrally carried out of the reactor building,
A first step of providing a temporary opening for opening and a door that can be opened and closed on the ceiling of the reactor building, a second step of providing a shielding body that shields radiation around the reactor pressure vessel, and the inside of the temporary opening. A third step of providing a seal curtain for storing the reactor pressure vessel; a fourth step of opening the door and carrying the reactor pressure vessel outside after storing the reactor pressure vessel in the seal curtain; and comprising a fifth steps to close the door the reactor pressure vessel after carried to the outside of the door,
The door has a double structure consisting of an upper door and a lower door that are slidable in opposite directions with respect to the central axis of the temporary opening,
Each of the upper door and the lower door has a semicircular cutout on the central axis side of the temporary opening, and a seal member is provided in each cutout. Unloading method.
原子力発電所の原子炉建屋内に収納されている原子炉圧力容器を一体で原子炉建屋の外部に搬出する原子炉圧力容器の搬出方法において、
原子炉建屋の天井に搬出用の仮開口部と開閉可能な扉を設ける第1ステップ、原子炉圧力容器の周りに放射線を遮蔽する遮蔽体を設ける第2ステップ、前記仮開口部の下側に、該仮開口部と前記原子炉建屋内部とを区切るためのエアカーテンを形成する第3ステップ、前記扉を開けて前記原子炉圧力容器を外部に搬出する第4ステップ、及び前記原子炉圧力容器を前記扉の外部に搬出後に前記扉を閉じる第5ステップを備え
前記扉は、前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、
前記上扉及び前記下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備えたことを特徴とする原子炉圧力容器の搬出方法。
In the method of carrying out the reactor pressure vessel in which the reactor pressure vessel housed in the reactor building of the nuclear power plant is integrally carried out of the reactor building,
A first step of providing a temporary opening for opening and a door that can be opened and closed on the ceiling of the reactor building, a second step of providing a shield for shielding radiation around the reactor pressure vessel, and a lower side of the temporary opening. A third step of forming an air curtain for separating the temporary opening and the interior of the reactor building, a fourth step of opening the door and carrying out the reactor pressure vessel to the outside, and the reactor pressure vessel the includes a fifth steps to close the door after carried to the outside of the door,
The door has a double structure consisting of an upper door and a lower door that are slidable in opposite directions with respect to the central axis of the temporary opening,
Each of the upper door and the lower door has a semicircular cutout on the central axis side of the temporary opening, and a seal member is provided in each cutout. Unloading method.
原子力発電所の原子炉建屋から原子炉圧力容器を一体で搬出するために用いる搬出用開閉装置において、
前記原子炉建屋の天井に形成され、周りに放射線を遮蔽するための遮蔽体が設けられた原子炉圧力容器を通過させるための仮開口部と、該仮開口部の上部に設けられる扉とを備え、
該扉は前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、
該上扉及び該下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備えたことを特徴とする搬出用開閉装置。
In the unloading switchgear used for unloading the reactor pressure vessel from the reactor building of the nuclear power plant,
A temporary opening for passing a reactor pressure vessel formed on the ceiling of the reactor building and provided with a shield for shielding radiation around the door, and a door provided at an upper portion of the temporary opening. Prepared,
The door has a double structure consisting of an upper door and a lower door that are slidable in opposite directions with respect to the central axis of the temporary opening,
The carry-out opening / closing device, wherein the upper door and the lower door each have a cutout portion having a semicircular cross section on the central axis side of the temporary opening portion, and a seal member is provided in each cutout portion.
原子力発電所の原子炉建屋から原子炉圧力容器を一体で搬出するために用いる搬出用開閉装置において、
前記原子炉建屋の天井に形成され、周りに放射線を遮蔽するための遮蔽体が設けられた原子炉圧力容器を通過させるための仮開口部と、該仮開口部の上部に設けられ開閉可能な扉と、前記仮開口部の内側に設けられ前記遮蔽体が設けられた原子炉圧力容器をその内部に収納するためのシールカーテンとを備え、
該扉は前記仮開口部の中心軸に対して互いに反対方向にスライド可能な上扉と下扉からなる2重構造を有し、
該上扉及び該下扉はそれぞれ前記仮開口部の中心軸側に断面が半円状の切欠部を有し、それぞれの切欠部にシール部材を備えたことを特徴とする搬出用開閉装置。
In the unloading switchgear used for unloading the reactor pressure vessel from the reactor building of the nuclear power plant,
A temporary opening for passing a reactor pressure vessel formed on the ceiling of the reactor building and provided with a shield for shielding radiation around it, and provided at the upper part of the temporary opening so as to be opened and closed A door and a seal curtain for storing therein a reactor pressure vessel provided inside the temporary opening and provided with the shield ,
The door has a double structure consisting of an upper door and a lower door that are slidable in opposite directions with respect to the central axis of the temporary opening,
The carry-out opening / closing device, wherein the upper door and the lower door each have a cutout portion having a semicircular cross section on the central axis side of the temporary opening portion, and a seal member is provided in each cutout portion.
JP11816198A 1998-04-28 1998-04-28 Reactor pressure vessel unloading method and unloading switchgear Expired - Lifetime JP3731344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11816198A JP3731344B2 (en) 1998-04-28 1998-04-28 Reactor pressure vessel unloading method and unloading switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11816198A JP3731344B2 (en) 1998-04-28 1998-04-28 Reactor pressure vessel unloading method and unloading switchgear

Publications (2)

Publication Number Publication Date
JPH11311693A JPH11311693A (en) 1999-11-09
JP3731344B2 true JP3731344B2 (en) 2006-01-05

Family

ID=14729622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11816198A Expired - Lifetime JP3731344B2 (en) 1998-04-28 1998-04-28 Reactor pressure vessel unloading method and unloading switchgear

Country Status (1)

Country Link
JP (1) JP3731344B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206294A (en) 1999-01-14 2000-07-28 Hitachi Ltd How to carry out large equipment
WO2001024199A1 (en) * 1999-09-29 2001-04-05 Hitachi, Ltd. Method of carrying equipment out of nuclear power plant
US6625245B1 (en) 2000-02-25 2003-09-23 Hitachi, Ltd. Method of handling reactor vessel
JP3786009B2 (en) * 2000-03-13 2006-06-14 株式会社日立製作所 Reactor vessel handling
JP3551888B2 (en) 2000-03-31 2004-08-11 株式会社日立製作所 Handling of large structures inside the reactor building
JP2002122686A (en) * 2000-10-17 2002-04-26 Toshiba Corp Boiling water type nuclear power plant, and construction method thereof
US20020176529A1 (en) 2002-05-14 2002-11-28 Hitachi, Ltd. Reactor vessel handling method

Also Published As

Publication number Publication date
JPH11311693A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
CN104575647B (en) Radioactive waste resin shielding transfer method and device
JP6916239B2 (en) Reactor building overall cover device and reactor building preparation work method
JP3731344B2 (en) Reactor pressure vessel unloading method and unloading switchgear
US6452993B1 (en) Method of carrying out large-sized apparatus
JP6571982B2 (en) Operating floor containment compartment and nuclear plant
JP4177987B2 (en) Reactor vessel handling
JP6349059B2 (en) Radioactive material treatment facility
JP3435270B2 (en) How to bring in the reactor pressure vessel
JP3551888B2 (en) Handling of large structures inside the reactor building
JP3343447B2 (en) How to unload the reactor pressure vessel
US6744841B1 (en) Method for carrying equipment out of nuclear power plant
JP6129656B2 (en) Method for carrying out fuel debris and working house system in boiling water nuclear power plant
JP6518511B2 (en) Method of opening reactor pressure vessel and method of taking out fuel debris
JP3817211B2 (en) Radioactive material storage method and radioactive material storage facility
JP3519074B2 (en) Removal method of reactor pressure vessel
JPS6358198A (en) Nuclear reactor container
JP2000065975A (en) How to replace large equipment and structures in a nuclear power plant
JP4055156B2 (en) Reactor pressure vessel replacement method
JPS5991394A (en) Method of fixing equipment
JP2564134Y2 (en) Storage device for radioactive material storage
JPH1090475A (en) MOX fuel handling facility and MOX fuel handling method
JP2002311195A (en) How to unload the reactor pressure vessel
JPH0140316B2 (en)
JPH0631880B2 (en) CANister intermediate storage facility
JPH0431796A (en) Ventilation of vertically placed tanks for nuclear power facility during its maintenance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

EXPY Cancellation because of completion of term