[go: up one dir, main page]

JP3729349B2 - Electric regenerative desalination equipment - Google Patents

Electric regenerative desalination equipment Download PDF

Info

Publication number
JP3729349B2
JP3729349B2 JP2002136605A JP2002136605A JP3729349B2 JP 3729349 B2 JP3729349 B2 JP 3729349B2 JP 2002136605 A JP2002136605 A JP 2002136605A JP 2002136605 A JP2002136605 A JP 2002136605A JP 3729349 B2 JP3729349 B2 JP 3729349B2
Authority
JP
Japan
Prior art keywords
chamber
desalting
exchanger
desalination
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002136605A
Other languages
Japanese (ja)
Other versions
JP2003326272A (en
Inventor
修行 井上
淳 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002136605A priority Critical patent/JP3729349B2/en
Publication of JP2003326272A publication Critical patent/JP2003326272A/en
Application granted granted Critical
Publication of JP3729349B2 publication Critical patent/JP3729349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気再生式脱塩装置に係り、特に、弱陰イオン成分の除去能力が高い比較的小型の電気再生式脱塩装置に関する。
【0002】
【従来の技術】
従来の純水製造方法としては、イオン交換樹脂を充填した容器に脱塩室入口水を通過させ、脱塩室入口水中のイオンをH+、OH-イオンに交換することにより純水を製造するイオン交換法が知られている。
しかし、このイオン交換法では、イオン交換樹脂の交換能力が飽和すると、イオン交換樹脂の種類に応じて、酸、アルカリを用いてイオン交換能力の再生をする必要がある。イオン交換樹脂の再生操作は、煩雑で、多量の酸、アルカリの貯蔵及び取り扱い、廃棄に細心の注意が必要であると共に設備が大きくなる、という問題を有している。
それに対し、近年、電気によってイオン交換体を再生し、連続的に純水を製造する電気再生式脱塩装置が開発された。これは図4に示すように、脱塩室入口水10中のイオン分を装置の両端に印可した直流電源により、濃縮室出口水13及び陰極液、陽極液に移動させることにより除去する装置であり、陰極1を有する陰極室2と陽極3を有する陽極室4、陰極室2と陽極室4の間に陰イオン交換膜5と陽イオン交換膜6を配置することにより形成された脱塩室7と濃縮室8を備え、少なくとも脱塩室7内にはイオン交換体9が充填されているものである。
【0003】
ここで、イオン交換体9は、イオン交換樹脂、イオン交換繊維、グラフト重合法によりイオン交換基を導入されたイオン交換不織布、スペーサ等のイオン交換機能を持つ物であればどのようなイオン交換体でもよく、陰イオン交換体、陽イオン交換体を単一もしくは混合、もしくは複層状に充填してある。
陰極室2に陰極室入口水14を、陽極室4に陽極室入口水16を、濃縮室8に濃縮室入口水12を、脱塩室7に脱塩室入口水10を導入し、陰極1と陽極3間に直流電流を印可することにより、脱塩室入口水10中に含まれているイオン分は、イオン交換体9の表面を電位の方向に移動し、陰イオンは陰イオン交換膜5、陽イオンは陽イオン交換膜6を透過して、濃縮室8中の濃縮水、陰極室2中の陰極液及び陽極室4中の陽極液に移動し、脱塩室入口水10は脱イオン処理され純水11が製造される。
【0004】
脱塩室7内に充填されたイオン交換体9は、水解によって発生するH+、OH-により連続的に再生されるため、酸あるいはアルカリによる再生作業は必要なく、このようにして、純水11を連続的に製造することが可能となる(特許第1782943、特許第2751090、特許第2699256各号明細書、特願平10−153697等)。
最近では、脱塩室7を中間イオン交換膜で2つの脱塩室に分割し、片方の脱塩室の流出水をもう片方の脱塩室に導入することで、脱塩性能を改善した電気再生式脱塩装置も開発されている(特開2001−239270、特開2001−327971各公報)。
【0005】
また、比較的小型の電気再生式脱塩装置においては、図4の通水方法の他に、図5に示すように、複数の脱塩室7に直列に脱塩室入口水10を通水することで脱塩面積を稼ぎ、脱塩能力を増加させる、という方法も行われている。
このような、比較的小型の電気再生式脱塩装置においては、濃縮室入口水12も各濃縮室8に直列に通水されたり、陰極室出口水15を濃縮室入口水12や陽極室入口水16として用いることもある。
これらの電気再生式脱塩装置において、濃縮室入口水12、陰極室入口水14、陽極室入口水16、脱塩室入口水10の通水方向は、それぞれ平行流でも、対向流でもかまわなく、その通水方法には特に制限はない。
また、陰極室2、陽極室4とも、隣接する室が濃縮室8であっても、脱塩室7であってもかまわない。
【0006】
前記の従来の電気再生式脱塩装置では、炭酸、シリカなどの弱陰イオン成分の除去能力が、他のイオン分の除去能力に比べて劣っていることが一般に知られている。
これらの弱陰イオン成分は、電気再生式脱塩装置に直流電流を過大に印可すればその除去率が多少改善することも知られているが、その場合でも弱陰イオン成分は十分には除去できなく、単位流量当りの消費電力は大きくなってしまう。
そのため、後段にイオン交換樹脂によるカートリッジポリッシャを設置してイオン交換させる、電気再生式脱塩装置を多段に構成し、第1の電気再生式脱塩装置で脱塩を行った後、第2の電気再生式脱塩装置でさらに脱塩処理を行う、などの処置が必要に応じて行われている。
しかし、このような処置を行うと、設置面積の増大、機器数の増加、価格の上昇を招くことになる。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術に鑑み、特に、比較的小型の電気再生式脱塩装置において、上述の弱陰イオン成分の除去性能を改善し、弱陰イオン成分を十分に除去できる電気再生式脱塩装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明では、陰極を有する陰極室と、陽極を有する陽極室とを有し、該両極室間に、陽極側に陽イオン交換膜、陰極側に陰イオン交換膜を配置して構成される1以上の濃縮室と、次の(a)〜(e)の脱塩室、(a)陰極側に陽イオン交換膜、陽極側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(b)両側に陽イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(c)両側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(d)陰極側に陽イオン交換膜、陽極側にバイポーラ膜を配置し、内部にイオン交換体を充填した脱塩室、(e)陰極側にバイポーラ膜、陽極側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、のいずれか1種類以上の複数の脱塩室とを有し、該脱塩室の両側に、濃縮室、陽極室、又は陰極室のいずれかを配置した前記いずれかの単一脱塩室と、間に濃縮室を介さずに前記いずれか1種類以上の脱塩室を複数隣接して配置した脱塩室群とを、それぞれ1以上を有する電気再生式脱塩装置であって、前記脱塩室群の出口と前記単一脱塩室の入口、又は、前記単一脱塩室の出口と前記脱塩室群の入口を接続することとしたものである。
【0009】
前記電気再生式脱塩装置において、間に濃縮室を介さずに配置した脱塩室群は、前記脱塩室群を構成する第1の脱塩室に導入された被処理水が、第1の脱塩室から前記脱塩室群を構成する最終の脱塩室まで、順次直列で通水して脱塩処理されるように接続するのがよく、前記単一脱塩室と脱塩室群は、それぞれ複数配備され、それぞれ複数配備された単一脱塩室又は脱塩室群同士は、それぞれ被処理水を並列又は直列に供給するように接続され、また、複数配備された単一脱塩室と脱塩室群との間の被処理水の接続は、それらのうち少なくとも一つは直列に、その他は直列又は並列に供給するようになされるのがよい。また、前記脱塩室において、(a)の脱塩室に充填されるイオン交換体は、陰イオン交換体、陽イオン交換体、又は陰イオン交換体と陽イオン交換体のイオン交換体であり、前記(b)の脱塩室に充填されるイオン交換体は、陽イオン交換体であり、前記(c)の脱塩室に充填されるイオン交換体は、陰イオン交換体であり、前記(d)の脱塩室に充填されるイン交換体は、陽イオン交換体であり、前記(e)の脱塩室に充填されるイオン交換体は、陰イオン交換体であるのがよく、前記イオン交換体は、放射線グラフト重合法によりイオン交換基が導入されたイオン交換繊維からなるイオン交換体であり、該イオン交換繊維からなるイオン交換体は、不織布又は織布、及び網目状のスペーサとすることができる。
【0010】
【発明の実施の形態】
本発明によれば、両側に濃縮室、もしくは極室を配置した単一脱塩室と、間に濃縮室を介さずに複数の脱塩室を隣接して配置した脱塩室群を有する電気再生式脱塩装置において、単一脱塩室で処理された処理水を脱塩室群に通水するか又は、脱塩室群で脱塩処理された処理水を単一脱塩室に通水し、さらに脱塩処理を行うことによって、弱陰イオン成分の除去能力を高めることができる電気再生式脱塩装置を提供することが可能となる。
さらに、脱塩室群を濃縮室を間に介さずに隣接して配置するため、その分の濃縮室を省略することができ、運転電圧の低減もはかるとともに、コスト、外形の点でも従来の電気再生式脱塩装置よりも有利となる。
【0011】
次に、本発明を図面を用いて詳細に説明する。
図1は、本発明による電気再生式脱塩装置の一例を示す概略構成図であり、先に説明した図4に示す構成と同一構成を同一符号で示して説明する。
陰極1を有する陰極室2と、陽極3を有する陽極室4を対向して配置し、この陰極室2と陽極室4の間に、陰極1側に陰イオン交換膜5を、陽極3側に陽イオン交換膜6を配置することで形成された濃縮室8と、陰極1側に陽イオン交換膜6を、陽極2側に陰イオン交換膜5を配置し、内部に陽イオン交換体と陰イオン交換体を充填して形成された単一脱塩室7、及び第2の脱塩室72、両側に陰イオン交換膜5を配置し、内部に陰イオン交換体を充填してなる第1の脱塩室71からなり、単一脱塩室7は陰極1側に陰極室2もしくは濃縮室8、陽極2側に陽極室3もしくは濃縮室8を隣接して配置することにより形成され、脱塩室群70は、第1の脱塩室71を陽極3側に、第2の脱塩室72を陰極1側に、間に濃縮室を介さずに隣接して配置することにより形成され、これらの単一脱塩室7、脱塩室群70、濃縮室8、陰極1を有する陰極室2、陽極3を有する陽極室4をもって本発明による電気再生式脱塩装置が構成される。
【0012】
脱塩室群70を形成する第1の脱塩室71の出口は第2の脱塩室72の入口に接続され、脱塩室群70の出口(本図では第2の脱塩室72の出口)は、単一脱塩室7の入口に接続されている。
この順番は特に制限はなく、図2に示すように、単一脱塩室7の出口を脱塩室群70を形成する第1、もしくは第2の脱塩室に接続すること等も可能である。また、濃縮室入口水12、陰極室入口水14、陽極室入口水16は、図1ではそれぞれ別々に導入、排出されているが、脱塩室と同様に陽極室出口水17を濃縮室入口水12や陰極室入口水14として使用したり、複数の濃縮室を有する場合には、各濃縮室に直列になるように通水することも可能であり、その流し方については特に制限はない。
【0013】
ここで、図1では、脱塩室群70を構成する脱塩室として、両側に陰イオン交換膜を配置し内部に陰イオン交換体を充填した脱塩室と、陰極1側に陽イオン交換膜6、陽極3側に陰イオン交換膜5を配置し内部に陰イオン交換体と陽イオン交換体を充填した脱塩室を選択したが、脱塩室入口水10の水質、水量、純水11の目標水質等により、適宜その組み合わせば変更することができる。
単一脱塩室7と第2の脱塩室72に陰イオン交換体と陽イオン交換体を、第1の脱塩室71に陰イオン交換体を充填しているが、これは陰イオン交換膜5と陽イオン交換膜6を両側に配置してなる単一脱塩室7、第2の脱塩室72の場合には、電極間に直流電流を印可すると、脱塩室入口水10中の陰イオンは、陰イオン交換膜5を通過して濃縮室8へ、陽イオンは、陽イオン交換膜6を通過して濃縮室8へ移動するため、陰イオン交換体と陽イオン交換体の両方を脱塩室に充填すると脱イオン効果があるのに対し、両側に陰イオン交換膜を配置した第1の脱塩室71の場合は、脱塩室入口水10中の陽イオンは、陰イオン交換膜5を通過できないため、陽イオン交換体を内部に充填していても連続脱塩効果が発揮できないためである。
【0014】
同様に、両側に陽イオン交換膜6を配置した脱塩室の場合は、陰イオンは、陽イオン交換膜6を通過できないため、内部には陽イオン交換体のみを充填するのがよく、陽極3側にバイポーラ膜を、陰極1側に陽イオン交換膜6を配置した脱塩室の場合は、バイポーラ膜は陰イオン、陽イオンとも通過できないため、陽イオン交換体を、陰極1側にバイポーラ膜を、陽極3側に陰イオン交換膜5を配置した脱塩室の場合は、陰イオン交換体を充填するのがよい。
また、濃縮室8、及び両極室2、4にも、イオン交換体9を充填することが望ましく、このイオン交換体9は、その形状、種類に特に制限はないが、濃縮室8には陽イオン交換体と陰イオン交換体の両者を使用し、陽イオン交換膜側に陽イオン交換体を、陰イオン交換膜側に陰イオン交換体を配置するのが析出の防止に効果的である。
【0015】
陰極室2には、脱塩室が隣接する場合には陽イオン交換体を、濃縮室8が隣接する場合には陰イオン交換体を充填するのがよく、陽極室4には、脱塩室が隣接する場合には陰イオン交換体を、濃縮室8が隣接する場合には陽イオン交換体を充填するのがよい。
濃縮室8、両極室2、4には、一部にイオン交換体以外の、例えばスペーサを充填することもできる。
陰極室2に陰極室入口水14を、陽極室4に陽極室入口水16を、濃縮室8に濃縮室入口水12を、第1の脱塩室71に脱塩室入口水10を導入し、陰極1と陽極3間に直流電流を印可することにより、脱塩室入口水10中に含まれているイオン分は、イオン交換体9の表面を電位の方向に移動し、陰イオンは陰イオン交換膜5、陽イオンは陽イオン交換膜6を透過して、濃縮室8中の濃縮水、陰極室2中の陰極水、陽極室4中の陽極水に移動し系外に排出され、脱イオン処理された純水11が製造される。
【0016】
脱塩室群70について詳しく説明すると、第1の脱塩室71に導入された脱塩室入口水10中の陰イオン分は、両極に印可された直流電流により陽極3側に移動し、陰イオン交換膜5を透過して濃縮室8中に移動する。陽イオン分は、陰極側に配置されている陰イオン交換膜5を透過することができないため、第1の脱塩室71に留まる。これにより、第1の脱塩室71内は陰イオン分のみが減少するためpHが高くなり、弱陰イオン成分もイオン化することで除去しやすくなる。陰極1側に配置されているイオン交換膜5からは、第2の脱塩室72で除去される残存陰イオン分とOH-が第1の脱塩室71に移動してくる。このOH-の作用で、第1の脱塩室71内に充填されている陰イオン交換体は再生され、再び脱塩室入口水10中の陰イオン分を除去できるようになる。
第1の脱塩室71で上述の脱塩処理をされた処理水は、続いて第2の脱塩室72に導入される。第2の脱塩室72には、陰イオン交換体と陽イオン交換体が充填されており、陰極1側に陽イオン交換膜6、陽極3側に陰イオン交換膜7が配置されているため、第2の脱塩室72で脱塩できなかった残存陰イオン分と陽イオン分の両方が脱塩され、濃縮室8に移動する。
【0017】
脱塩室群70で脱塩処理された処理水は、単一脱塩室7に導入され、最終的な脱塩処理が行われる。単一脱塩室7に導入された時点で、処理水中の陰イオン成分はほとんど除去されており、極微量のイオン成分が除去の対象となる。
単一脱塩室7には、陽イオン交換体と陰イオン交換体が充填されており、残存する陽イオン分は、陽イオン交換体とイオン交換された後、陰極1側に存在する陽イオン交換膜6を透過して濃縮室8に移動し、残存する陰イオン成分は、陰イオン交換体とイオン交換した後、陽極3側にある陰イオン交換膜5を透過して、濃縮室へ移動する。
単一脱塩室7、及び第2の脱塩室72では、イオン分の移動の他、水解によって水がH+とOH-に分解されており、これが脱塩室中の陽イオン交換体、陰イオン交換体を再生するため、酸、アルカリによるイオン交換体の再生作業は必要なく、このようにして、脱塩室入口水10中のイオン分は十分に除去され、連続的に純水11を得ることができる。
【0018】
また図1では、脱塩室群70は、陰極側を陰イオン交換膜5と陽イオン交換膜6を両側に配置した脱塩室で、陽極側を両側に陰イオン交換膜5を配置した脱塩室の2種類2室の脱塩室で、形成しているが、この配置方法、脱塩室の種類については特に制限はなく、脱塩室群70を構成する脱塩室数も2室でなく3室以上であってもなんら問題はない。これは、被処理水中のイオン成分、処理水の目的水質等により適宜選択することが可能である。
脱塩室群70を構成している脱塩室にバイポーラ膜を使用する場合には、バイポーラ膜の特性から、バイポーラ膜にて低電圧で効率的に水解によるH+、OH-が発生し、H+は陽イオン交換体を、OH-は陰イオン交換体を再生させ、脱塩
室入口水10中のイオン分を除去することが可能となる。
水解を効率的に発生させられるため、バイポーラ膜を用いた場合は、さらに運転電圧が低減することが期待される。
電気再生式脱塩装置においては、従来脱塩室の数±1の濃縮室が必要であったのが、上述のように、間に濃縮室を介さない複数枚の脱塩室にて構成される脱塩室群を用いることで、従来の形の電気再生式脱塩装置よりも濃縮室の室数を減らすことが可能になり、その分運転電圧を軽減することが可能となる。
【0019】
【実施例】
以下、本発明を実施例により具体的に説明する。
実施例1
本発明の効果を比較例との対比の元で説明する。試験設備は図3の試験装置のフロー図に示すように、脱塩室入口水10、濃縮室入口水1、陰極室入口水14、陽極室入口水16として、藤沢市水を活性炭濾過器保安フィルタ、逆浸透膜装置で前処理したものを使用し、その水質は、比抵抗0.25MΩ・cmであった。
本実施例では、図3に示す試験装置中の電気再生式脱塩装置に、図1に示す構成の電気再生式脱塩装置を用い、脱塩室入口水10の流量を75L/h、濃縮室入口水12の流量を10L/h、陰極室入口水14の流量及び陽極室入口水16の流量をそれぞれ10L/hとして、0.4Aの直流電流を陰極1と陽極3に印可して運転を行った。
【0020】
電気再生式脱塩装置は、電極面積640cm2、脱塩室は3室、濃縮室は1室とし、両端に陰極室と陽極室を設け、脱塩室7及び脱塩室群70を形成している第2の脱塩室72には、陽イオン交換不織布、陰イオン交換不織布、陽イオン交換スペーサ、陰イオン交換スペーサを、両側を陰イオン交換膜5で形成された第1の脱塩室71には、陰イオン交換不織布及び陰イオン交換スペーサを充填した。
また、濃縮室内部には陰イオン交換体と陽イオン交換体を、陰極室には陽イオン交換体と導電性をもたないスペーサを、陽極室には陰イオン交換体と導電性を持たないスペーサを充填した。
上記条件で運転した結果、比抵抗17.6MΩ・cmの純水11が連続して製造され、純水の水質も下記の比較例に比べ大幅に向上したほか、運転電圧は58Vに低減され、さらに炭酸除去率、シリカ除去率とも99%以上と、弱陰イオン分の除去率も大幅に向上された。
【0021】
比較例1
比較例として、図5に示す構成の電気再生式脱塩装置を用い、脱塩室入口水10の流量を75L/h、濃縮室入口水12の流量を20L/h、陰極室入口水14の流量及び陽極室入口水16の流量をそれぞれ10L/hとして、0.4Aの直流電流を陰極1と陽極3に印可して運転を行った。
電気再生式脱塩装置は、電極面積640cm2、脱塩室は3室、濃縮室は2室とし、両端に陰極室と陽極室を設け、脱塩室、濃縮室内部には陰イオン交換体と陽イオン交換体を陰極室には陽イオン交換体を陽極室には陰イオン交換体を充填してある。
上記条件で運転した結果、比抵抗14.4MΩ・cm程度の純水11が連続して製造された。
この運転において、運転電圧は66V、炭酸除去率94%、シリカ除去率88%であった。
【0022】
【発明の効果】
本発明の電気再生式脱塩装置によれば、上述したように、被処理水中の弱陰イオン成分を除去する能力を高めると共に、運転電圧を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明の電気再生式脱塩装置の一例を示す概略構成図。
【図2】本発明の電気再生式脱塩装置の他の例を示す概略構成図。
【図3】実施例に用いた試験装置のフロー図。
【図4】従来の電気再生式脱塩装置の一例を示す概略構成図。
【図5】従来の電気再生式脱塩装置の他の例を示す概略構成図。
【符号の説明】
1:陰極、2:陰極室、3:陽極、4:陽極室、5:陰イオン交換膜、6:陽イオン交換膜、7:単一脱塩室、8:濃縮室、9:イオン交換体、10:脱塩室入口水、11:純水、12:濃縮室入口水、13:濃縮室出口水、14:陰極室入口水、15:陰極室出口水、16:陽極室入口水、17:陽極室出口水、70:脱塩室群、71:第1の脱塩室、72:第2の脱塩室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric regeneration type desalination apparatus, and more particularly, to a relatively small electric regeneration type desalination apparatus having a high ability to remove weak anion components.
[0002]
[Prior art]
As a conventional pure water production method, pure water is produced by passing deionization chamber inlet water through a container filled with an ion exchange resin and exchanging ions in the demineralization chamber inlet water with H + and OH ions. Ion exchange methods are known.
However, in this ion exchange method, when the exchange capacity of the ion exchange resin is saturated, it is necessary to regenerate the ion exchange capacity using an acid or an alkali according to the type of the ion exchange resin. The regeneration operation of the ion exchange resin is complicated, and has a problem that a large amount of acid and alkali must be stored and handled, and careful attention is required for disposal, and the equipment becomes large.
On the other hand, in recent years, an electric regenerative desalination apparatus that regenerates ion exchangers by electricity and continuously produces pure water has been developed. As shown in FIG. 4, this is a device that removes ions in the desalination chamber inlet water 10 by moving them to the concentration chamber outlet water 13 and the catholyte and anolyte by a DC power source applied to both ends of the device. A desalting chamber formed by disposing an anion exchange membrane 5 and a cation exchange membrane 6 between a cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3, and between the cathode chamber 2 and the anode chamber 4. 7 and a concentrating chamber 8, and at least the desalting chamber 7 is filled with an ion exchanger 9.
[0003]
Here, the ion exchanger 9 is any ion exchanger as long as it has an ion exchange function, such as an ion exchange resin, an ion exchange fiber, an ion exchange nonwoven fabric into which an ion exchange group is introduced by a graft polymerization method, and a spacer. Alternatively, the anion exchanger and the cation exchanger may be filled in a single layer, a mixed layer, or a multilayer.
The cathode chamber inlet water 14 is introduced into the cathode chamber 2, the anode chamber inlet water 16 is introduced into the anode chamber 4, the concentration chamber inlet water 12 is introduced into the concentration chamber 8, and the desalination chamber inlet water 10 is introduced into the desalting chamber 7. By applying a direct current between the anode 3 and the anode 3, ions contained in the desalting chamber inlet water 10 move on the surface of the ion exchanger 9 in the direction of the potential, and the anions are converted into anion exchange membranes. 5. The cation passes through the cation exchange membrane 6 and moves to the concentrated water in the concentration chamber 8, the catholyte in the cathode chamber 2, and the anolyte in the anode chamber 4. The pure water 11 is manufactured by ion treatment.
[0004]
Since the ion exchanger 9 filled in the desalting chamber 7 is continuously regenerated by H + and OH generated by hydrolysis, there is no need to regenerate with acid or alkali. 11 can be manufactured continuously (Japanese Patent No. 1784243, Japanese Patent No. 2751090, Japanese Patent No. 2699256, Japanese Patent Application No. 10-153697, etc.).
Recently, the desalination chamber 7 is divided into two desalination chambers by an intermediate ion exchange membrane, and the effluent water from one desalination chamber is introduced into the other desalination chamber. Regenerative desalination apparatuses have also been developed (Japanese Patent Laid-Open Nos. 2001-239270 and 2001-327971).
[0005]
Further, in the relatively small electric regenerative desalination apparatus, in addition to the water flow method shown in FIG. 4, as shown in FIG. By doing so, there is also a method of increasing the desalting capacity by increasing the desalting area.
In such a relatively small electric regenerative desalination apparatus, the concentrating chamber inlet water 12 is also passed through each concentrating chamber 8 in series, or the cathode chamber outlet water 15 is passed through the concentrating chamber inlet water 12 or the anode chamber inlet. Sometimes used as water 16.
In these electric regeneration type desalination apparatuses, the flow directions of the concentrating chamber inlet water 12, the cathode chamber inlet water 14, the anode chamber inlet water 16, and the desalting chamber inlet water 10 may be parallel flow or counter flow. The water flow method is not particularly limited.
Further, both the cathode chamber 2 and the anode chamber 4 may be the concentrating chamber 8 or the desalting chamber 7.
[0006]
In the conventional electric regeneration type desalting apparatus, it is generally known that the ability to remove weak anion components such as carbonic acid and silica is inferior to the ability to remove other ions.
These weak anion components are known to have a slightly improved removal rate if DC current is excessively applied to an electric regeneration-type desalination apparatus, but even in this case, the weak anion components are sufficiently removed. The power consumption per unit flow rate becomes large.
For this reason, an electric regeneration type desalination apparatus in which a cartridge polisher made of an ion exchange resin is installed in the subsequent stage to perform ion exchange is configured in multiple stages, and after the desalting is performed by the first electric regeneration type desalination apparatus, the second Treatments such as further desalting using an electric regeneration type desalting apparatus are performed as necessary.
However, if such a treatment is performed, the installation area increases, the number of devices increases, and the price increases.
[0007]
[Problems to be solved by the invention]
In view of the above prior art, the present invention improves the above-mentioned weak anion component removal performance and can sufficiently remove the weak anion component, particularly in a relatively small electric regeneration type desalination apparatus. It is an object to provide a salt device.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a cathode chamber having a cathode and an anode chamber having an anode, and a cation exchange membrane on the anode side and an anion exchange membrane on the cathode side between the two electrode chambers. One or more concentrating chambers configured by arranging a desalting chamber of the following (a) to (e), (a) a cation exchange membrane on the cathode side, and an anion exchange membrane on the anode side, A desalting chamber filled with an ion exchanger inside, (b) a cation exchange membrane placed on both sides, a desalting chamber filled with an ion exchanger inside, (c) an anion exchange membrane placed on both sides, A desalting chamber filled with an ion exchanger inside, (d) a cation exchange membrane on the cathode side, a bipolar membrane on the anode side, and a desalting chamber filled with an ion exchanger inside, (e) on the cathode side One or more of a bipolar membrane and a desalting chamber in which an anion exchange membrane is arranged on the anode side and the inside is filled with an ion exchanger A plurality of desalting chambers, and on either side of the desalting chamber, any one of the concentrating chamber, the anode chamber, or the cathode chamber is disposed, and the concentrating chamber is interposed therebetween. A demineralization chamber group in which any one or more types of demineralization chambers are arranged adjacent to each other without any intervening electric regenerative demineralization apparatus, each having one or more, and an outlet of the demineralization chamber group; The inlet of the single desalting chamber or the outlet of the single desalting chamber and the inlet of the desalting chamber group are connected.
[0009]
In the electric regenerative desalination apparatus, the desalting chamber group disposed without a concentrating chamber in between is treated water introduced into the first desalting chamber constituting the desalting chamber group. It is preferable that the single desalting chamber and the desalting chamber are connected to each other from the desalting chamber to a final desalting chamber constituting the group of desalting chambers by sequentially passing water in series. A plurality of groups are respectively deployed, and a plurality of single demineralization chambers or demineralization chamber groups that are respectively deployed are connected so as to supply treated water in parallel or in series. The connection of the to-be-treated water between the desalting chamber and the desalting chamber group may be such that at least one of them is supplied in series and the other is supplied in series or in parallel. In the desalting chamber, the ion exchanger filled in the desalting chamber of (a) is an anion exchanger, a cation exchanger, or an ion exchanger of an anion exchanger and a cation exchanger. The ion exchanger filled in the desalting chamber of (b) is a cation exchanger, and the ion exchanger filled in the desalting chamber of (c) is an anion exchanger, The in exchanger to be filled in the desalting chamber of (d) is a cation exchanger, and the ion exchanger to be filled in the desalting chamber of (e) is preferably an anion exchanger, The ion exchanger is an ion exchanger made of an ion exchange fiber into which an ion exchange group is introduced by a radiation graft polymerization method, and the ion exchanger made of the ion exchange fiber is a nonwoven fabric or a woven cloth, and a mesh-like spacer It can be.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, an electric having a single desalination chamber in which concentrating chambers or polar chambers are disposed on both sides, and a desalting chamber group in which a plurality of desalting chambers are disposed adjacent to each other without interposing a concentrating chamber therebetween. In the regenerative desalination equipment, the treated water treated in the single desalting chamber is passed through the desalting chamber group, or the treated water desalted in the desalting chamber group is passed through the single desalting chamber. It is possible to provide an electric regeneration type desalting apparatus capable of increasing the ability to remove weak anion components by hydrating and further performing a desalting treatment.
Furthermore, since the desalting chambers are arranged adjacent to each other without interposing the concentrating chambers, the concentrating chambers can be omitted, the operation voltage can be reduced, and the conventional method is reduced in cost and outer shape. This is more advantageous than an electric regenerative desalting apparatus.
[0011]
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus according to the present invention, and the same configuration as the configuration shown in FIG.
A cathode chamber 2 having a cathode 1 and an anode chamber 4 having an anode 3 are arranged to face each other, and an anion exchange membrane 5 is disposed on the cathode 1 side between the cathode chamber 2 and the anode chamber 4 and on the anode 3 side. The concentration chamber 8 formed by disposing the cation exchange membrane 6, the cation exchange membrane 6 on the cathode 1 side, the anion exchange membrane 5 on the anode 2 side, and the cation exchanger and anion inside. A first desalting chamber 7 formed by filling an ion exchanger, a second desalting chamber 72, an anion exchange membrane 5 disposed on both sides, and a first anion exchanger filled therein. The single desalting chamber 7 is formed by arranging the cathode chamber 2 or the concentration chamber 8 adjacent to the cathode 1 side and the anode chamber 3 or the concentration chamber 8 adjacent to the anode 2 side. The salt chamber group 70 includes a first desalting chamber 71 on the anode 3 side, a second desalting chamber 72 on the cathode 1 side, and adjacent to each other without interposing a concentration chamber. The electric regenerative desalination according to the present invention comprises the single desalting chamber 7, the desalting chamber group 70, the concentration chamber 8, the cathode chamber 2 having the cathode 1, and the anode chamber 4 having the anode 3. The device is configured.
[0012]
The outlet of the first desalting chamber 71 forming the desalting chamber group 70 is connected to the inlet of the second desalting chamber 72, and the outlet of the desalting chamber group 70 (in this figure, the second desalting chamber 72 of the second desalting chamber 72 is connected). The outlet) is connected to the inlet of the single desalting chamber 7.
This order is not particularly limited, and it is possible to connect the outlet of the single desalting chamber 7 to the first or second desalting chamber forming the desalting chamber group 70 as shown in FIG. is there. Further, the concentrating chamber inlet water 12, the cathode chamber inlet water 14, and the anode chamber inlet water 16 are separately introduced and discharged in FIG. 1, but the anode chamber outlet water 17 is supplied to the concentrating chamber inlet as in the desalination chamber. When used as water 12 or cathode chamber inlet water 14 or having a plurality of concentrating chambers, it is possible to pass water in series with each concentrating chamber, and there is no particular limitation on the flow method. .
[0013]
Here, in FIG. 1, as a desalting chamber constituting the desalting chamber group 70, a desalting chamber in which an anion exchange membrane is arranged on both sides and an anion exchanger is filled inside, and a cation exchange on the cathode 1 side are provided. A demineralization chamber in which an anion exchange membrane 5 is arranged on the membrane 6 and the anode 3 side and an anion exchanger and a cation exchanger are filled inside is selected. Depending on the target water quality of 11, the combination can be changed as appropriate.
The single desalting chamber 7 and the second desalting chamber 72 are filled with an anion exchanger and a cation exchanger, and the first desalting chamber 71 is filled with an anion exchanger. In the case of the single desalting chamber 7 and the second desalting chamber 72 in which the membrane 5 and the cation exchange membrane 6 are arranged on both sides, when a direct current is applied between the electrodes, The anions of the anion exchange membrane 5 pass through the anion exchange membrane 5 to the concentration chamber 8, and the cations pass through the cation exchange membrane 6 to the concentration chamber 8; In the case of the first demineralization chamber 71 in which an anion exchange membrane is disposed on both sides, the cation in the demineralization chamber inlet water 10 has an anion effect when both are filled in the demineralization chamber. This is because the ion-exchange membrane 5 cannot be passed, so that the continuous desalting effect cannot be exhibited even if the cation exchanger is filled inside.
[0014]
Similarly, in the case of a desalination chamber in which cation exchange membranes 6 are arranged on both sides, since anions cannot pass through the cation exchange membrane 6, the inside should be filled only with a cation exchanger. In the case of a desalination chamber in which a bipolar membrane is disposed on the 3 side and a cation exchange membrane 6 is disposed on the cathode 1, the anion and cation cannot pass through the bipolar membrane, so a cation exchanger is disposed on the cathode 1 side. In the case of a desalting chamber in which the membrane is provided with an anion exchange membrane 5 on the anode 3 side, it is preferable to fill the membrane with an anion exchanger.
Further, it is desirable that the concentration chamber 8 and the bipolar chambers 2 and 4 are also filled with the ion exchanger 9, and the shape and type of the ion exchanger 9 are not particularly limited. Using both an ion exchanger and an anion exchanger, placing a cation exchanger on the cation exchange membrane side and an anion exchanger on the anion exchange membrane side is effective in preventing precipitation.
[0015]
The cathode chamber 2 is preferably filled with a cation exchanger when the desalting chamber is adjacent, and an anion exchanger when the concentration chamber 8 is adjacent. The anode chamber 4 has a desalting chamber. It is preferable to fill an anion exchanger when the adsorbing chambers are adjacent to each other and a cation exchanger when the concentrating chamber 8 is adjacent.
The concentration chamber 8 and the bipolar chambers 2 and 4 can be partially filled with, for example, a spacer other than the ion exchanger.
The cathode chamber inlet water 14 is introduced into the cathode chamber 2, the anode chamber inlet water 16 is introduced into the anode chamber 4, the concentration chamber inlet water 12 is introduced into the concentration chamber 8, and the desalination chamber inlet water 10 is introduced into the first desalination chamber 71. By applying a direct current between the cathode 1 and the anode 3, the ion component contained in the desalination chamber inlet water 10 moves on the surface of the ion exchanger 9 in the direction of the potential, and the anion is anion. The ion exchange membrane 5 and the cation pass through the cation exchange membrane 6, move to the concentrated water in the concentration chamber 8, the cathode water in the cathode chamber 2, and the anode water in the anode chamber 4, and are discharged out of the system. The deionized pure water 11 is produced.
[0016]
The desalination chamber group 70 will be described in detail. The anion content in the desalination chamber inlet water 10 introduced into the first desalination chamber 71 is moved to the anode 3 side by the direct current applied to the two electrodes, It passes through the ion exchange membrane 5 and moves into the concentration chamber 8. Since the cation content cannot pass through the anion exchange membrane 5 disposed on the cathode side, it remains in the first desalting chamber 71. Thereby, since only the anion content decreases in the first desalting chamber 71, the pH is increased, and the weak anion component is easily ionized and removed. From the ion exchange membrane 5 arranged on the cathode 1 side, the remaining anion content and OH removed in the second desalting chamber 72 move to the first desalting chamber 71. By the action of OH , the anion exchanger filled in the first desalting chamber 71 is regenerated, and the anion content in the desalting chamber inlet water 10 can be removed again.
The treated water that has been subjected to the desalting treatment in the first desalting chamber 71 is then introduced into the second desalting chamber 72. The second desalting chamber 72 is filled with an anion exchanger and a cation exchanger, and the cation exchange membrane 6 is disposed on the cathode 1 side and the anion exchange membrane 7 is disposed on the anode 3 side. Both the remaining anion and cation that could not be desalted in the second desalting chamber 72 are desalted and moved to the concentration chamber 8.
[0017]
The treated water desalted in the desalting chamber group 70 is introduced into the single desalting chamber 7 and a final desalting treatment is performed. When introduced into the single desalting chamber 7, the anion component in the treated water has been almost removed, and a very small amount of ionic component is to be removed.
The single desalting chamber 7 is filled with a cation exchanger and an anion exchanger, and the remaining cation is ion-exchanged with the cation exchanger and then present on the cathode 1 side. After passing through the exchange membrane 6 and moving to the concentration chamber 8, the remaining anion component exchanges ions with the anion exchanger and then passes through the anion exchange membrane 5 on the anode 3 side and moves to the concentration chamber. To do.
In the single desalting chamber 7 and the second desalting chamber 72, in addition to the movement of ions, water is decomposed into H + and OH by hydrolysis, which is a cation exchanger in the desalting chamber, In order to regenerate the anion exchanger, there is no need to regenerate the ion exchanger with acid or alkali. In this way, the ion content in the desalting chamber inlet water 10 is sufficiently removed, and the pure water 11 is continuously removed. Can be obtained.
[0018]
In FIG. 1, the desalination chamber group 70 is a desalination chamber in which the anion exchange membrane 5 and the cation exchange membrane 6 are arranged on both sides on the cathode side, and a deionization chamber in which the anion exchange membrane 5 is arranged on both sides on the anode side. There are two types of salt chambers, two demineralization chambers, but there are no particular restrictions on the arrangement method and the type of desalination chambers, and the number of demineralization chambers constituting the desalination chamber group 70 is also two. There is no problem even if there are more than three rooms. This can be appropriately selected depending on the ionic component in the water to be treated, the target water quality of the treated water, and the like.
When a bipolar membrane is used in the desalting chambers constituting the desalting chamber group 70, H + and OH are efficiently generated by water decomposition at a low voltage due to the characteristics of the bipolar membrane, H + regenerates the cation exchanger and OH regenerates the anion exchanger, so that the ion content in the desalting chamber inlet water 10 can be removed.
Since hydrolysis can be generated efficiently, it is expected that the operating voltage will be further reduced when a bipolar membrane is used.
In the electric regeneration type desalination apparatus, the number of concentration chambers of ± 1 in the conventional desalting chamber is required, but as described above, it is composed of a plurality of desalting chambers without interposing a concentration chamber. By using such a desalting chamber group, the number of concentrating chambers can be reduced as compared with the conventional type of electric regeneration type desalting apparatus, and the operating voltage can be reduced accordingly.
[0019]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
The effect of the present invention will be described based on comparison with a comparative example. As shown in the flow chart of the test apparatus in FIG. 3, Fujisawa city water is used as an activated carbon filter as the desalination chamber inlet water 10, the concentration chamber inlet water 1, the cathode chamber inlet water 14, and the anode chamber inlet water 16. What was pre-processed with the filter and the reverse osmosis membrane apparatus was used, and the water quality was a specific resistance of 0.25 MΩ · cm.
In the present embodiment, the electric regeneration type desalination apparatus in the test apparatus shown in FIG. 3 uses the electric regeneration type desalination apparatus having the configuration shown in FIG. 1, and the flow rate of the desalination chamber inlet water 10 is 75 L / h and concentrated. The flow rate of the chamber inlet water 12 is 10 L / h, the flow rate of the cathode chamber inlet water 14 and the flow rate of the anode chamber inlet water 16 are 10 L / h, respectively, and a DC current of 0.4 A is applied to the cathode 1 and the anode 3 for operation. Went.
[0020]
The electric regenerative desalting apparatus has an electrode area of 640 cm 2 , three desalting chambers, one concentrating chamber, a cathode chamber and an anode chamber at both ends, and a desalting chamber 7 and a desalting chamber group 70 are formed. The second demineralization chamber 72 includes a cation exchange nonwoven fabric, an anion exchange nonwoven fabric, a cation exchange spacer, an anion exchange spacer, and a first desalination chamber formed on both sides with an anion exchange membrane 5. 71 was filled with an anion exchange nonwoven fabric and an anion exchange spacer.
Also, an anion exchanger and a cation exchanger are provided in the concentration chamber, a spacer having no conductivity with the cation exchanger is provided in the cathode chamber, and no anion exchanger and conductivity are provided in the anode chamber. Filled with spacers.
As a result of operating under the above conditions, pure water 11 having a specific resistance of 17.6 MΩ · cm was continuously produced. The quality of pure water was significantly improved compared to the following comparative example, and the operating voltage was reduced to 58 V. Further, both the carbonic acid removal rate and the silica removal rate were 99% or more, and the removal rate of weak anions was greatly improved.
[0021]
Comparative Example 1
As a comparative example, an electric regenerative desalination apparatus having the configuration shown in FIG. 5 was used, the flow rate of the desalination chamber inlet water 10 was 75 L / h, the flow rate of the concentration chamber inlet water 12 was 20 L / h, and the cathode chamber inlet water 14 The operation was performed by applying a direct current of 0.4 A to the cathode 1 and the anode 3 at a flow rate and a flow rate of the anode chamber inlet water 16 of 10 L / h, respectively.
The electric regenerative desalination apparatus has an electrode area of 640 cm 2 , three desalting chambers, two concentrating chambers, a cathode chamber and an anode chamber at both ends, and an anion exchanger in the desalting chamber and the concentrating chamber. The cathode chamber is filled with a cation exchanger and the anode chamber is filled with an anion exchanger.
As a result of operating under the above conditions, pure water 11 having a specific resistance of about 14.4 MΩ · cm was continuously produced.
In this operation, the operation voltage was 66 V, the carbonation removal rate was 94%, and the silica removal rate was 88%.
[0022]
【The invention's effect】
According to the electric regeneration type desalination apparatus of the present invention, as described above, it is possible to increase the ability to remove weak anion components in the water to be treated and to reduce the operating voltage.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of an electric regeneration type desalination apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram showing another example of the electric regeneration type desalination apparatus of the present invention.
FIG. 3 is a flowchart of the test apparatus used in the examples.
FIG. 4 is a schematic configuration diagram showing an example of a conventional electric regenerative desalination apparatus.
FIG. 5 is a schematic configuration diagram showing another example of a conventional electric regenerative desalination apparatus.
[Explanation of symbols]
1: cathode, 2: cathode chamber, 3: anode, 4: anode chamber, 5: anion exchange membrane, 6: cation exchange membrane, 7: single desalting chamber, 8: concentration chamber, 9: ion exchanger 10: Desalination chamber inlet water, 11: Pure water, 12: Concentration chamber inlet water, 13: Concentration chamber outlet water, 14: Cathode chamber inlet water, 15: Cathode chamber outlet water, 16: Anode chamber inlet water, 17 : Anode chamber outlet water, 70: desalting chamber group, 71: first desalting chamber, 72: second desalting chamber

Claims (5)

陰極を有する陰極室と、陽極を有する陽極室とを有し、該両極室間に、陽極側に陽イオン交換膜、陰極側に陰イオン交換膜を配置して構成される1以上の濃縮室と、次の(a)〜(e)の脱塩室、(a)陰極側に陽イオン交換膜、陽極側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(b)両側に陽イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(c)両側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、(d)陰極側に陽イオン交換膜、陽極側にバイポーラ膜を配置し、内部にイオン交換体を充填した脱塩室、(e)陰極側にバイポーラ膜、陽極側に陰イオン交換膜を配置し、内部にイオン交換体を充填した脱塩室、のいずれか1種類以上の複数の脱塩室とを有し、該脱塩室の両側に、濃縮室、陽極室、又は陰極室のいずれかを配置した前記いずれかの単一脱塩室と、間に濃縮室を介さずに前記いずれか1種類以上の脱塩室を複数隣接して配置した脱塩室群とを、それぞれ1以上を有する電気再生式脱塩装置であって、前記脱塩室群の出口と前記単一脱塩室の入口、又は、前記単一脱塩室の出口と前記脱塩室群の入口を接続してあることを特徴とする電気再生式脱塩装置。One or more concentrating chambers each having a cathode chamber having a cathode and an anode chamber having an anode, wherein a cation exchange membrane is disposed on the anode side and an anion exchange membrane is disposed on the cathode side between the two electrode chambers. And the following desalting chambers (a) to (e), (a) a cation exchange membrane on the cathode side, an anion exchange membrane on the anode side, and a desalting chamber filled with an ion exchanger inside, (B) a desalting chamber in which cation exchange membranes are arranged on both sides and filled with an ion exchanger inside, (c) a desalting chamber in which an anion exchange membrane is arranged on both sides and filled with an ion exchanger, (D) A cation exchange membrane on the cathode side, a bipolar membrane on the anode side, and a desalting chamber filled with an ion exchanger inside. (E) A bipolar membrane on the cathode side and an anion exchange membrane on the anode side A plurality of one or more kinds of desalting chambers, each of which is filled with an ion exchanger. A single desalting chamber in which any one of the concentrating chamber, the anode chamber, or the cathode chamber is disposed, and a plurality of any one or more types of desalting chambers adjacent to each other without interposing a concentrating chamber. An electrically regenerative desalination apparatus having at least one demineralization chamber group arranged at the outlet, the outlet of the demineralization chamber group and the inlet of the single desalination chamber, or the single desalination chamber An electric regenerative desalination apparatus, wherein an outlet of the desalination chamber group and an inlet of the desalination chamber group are connected. 前記間に濃縮室を介さずに配置した脱塩室群は、前記脱塩室群を構成する第1の脱塩室に導入された被処理水が、第1の脱塩室から前記脱塩室群を構成する最終の脱塩室まで、順次直列で通水して脱塩処理されるように接続されていることを特徴とする請求項1記載の電気再生式脱塩装置。In the desalination chamber group arranged without using a concentrating chamber therebetween, the water to be treated introduced into the first desalination chamber constituting the desalination chamber group is transferred from the first desalination chamber to the desalination chamber. 2. The electric regenerative desalination apparatus according to claim 1, wherein the electric regenerative desalination apparatus is connected so as to be desalted by sequentially passing water in series up to a final desalting chamber constituting the chamber group. 前記単一脱塩室と脱塩室群は、それぞれ複数配備され、それぞれ複数配備された単一脱塩室又は脱塩室群同士は、それぞれ被処理水を並列又は直列に供給するように接続され、また、複数配備された単一脱塩室と脱塩室群との間の被処理水の接続は、それらのうち少なくとも一つは直列に、その他は直列又は並列に供給するようになされることを特徴とする請求項1又は2記載の電気再生式脱塩装置。A plurality of the single desalting chambers and the desalting chamber groups are provided, and the plurality of single desalting chambers or the desalting chamber groups are connected to supply the water to be treated in parallel or in series, respectively. In addition, the connection of water to be treated between a plurality of single desalting chambers and a group of desalting chambers is configured so that at least one of them is supplied in series and the others are supplied in series or in parallel. The electric regenerative desalination apparatus according to claim 1 or 2, characterized in that: 前記(a)の脱塩室に充填されるイオン交換体は、陰イオン交換体、陽イオン交換体、又は陰イオン交換体と陽イオン交換体のイオン交換体であり、前記(b)の脱塩室に充填されるイオン交換体は、陽イオン交換体であり、前記(c)の脱塩室に充填されるイオン交換体は、陰イオン交換体であり、前記(d)の脱塩室に充填されるイン交換体は、陽イオン交換体であり、前記(e)の脱塩室に充填されるイオン交換体は、陰イオン交換体であることを特徴とする請求項1、2又は3記載の電気再生式脱塩装置。The ion exchanger filled in the desalting chamber of (a) is an anion exchanger, a cation exchanger, or an ion exchanger of an anion exchanger and a cation exchanger. The ion exchanger filled in the salt chamber is a cation exchanger, the ion exchanger filled in the desalting chamber of (c) is an anion exchanger, and the desalting chamber of (d) The in-exchanger filled in is a cation exchanger, and the ion exchanger filled in the desalting chamber of (e) is an anion exchanger. 3. The electric regenerative desalination apparatus according to 3. 前記イオン交換体は、放射線グラフト重合法によりイオン交換基が導入されたイオン交換繊維からなるイオン交換体であり、該イオン交換繊維からなるイオン交換体は、不織布又は織布、及び網目状のスペーサであことを特徴とする請求項1〜4のいずれか1項記載の電気再生式脱塩装置。The ion exchanger is an ion exchanger made of an ion exchange fiber into which an ion exchange group is introduced by a radiation graft polymerization method, and the ion exchanger made of the ion exchange fiber is a nonwoven fabric or a woven cloth, and a mesh-like spacer The electric regenerative desalination apparatus according to any one of claims 1 to 4, wherein:
JP2002136605A 2002-05-13 2002-05-13 Electric regenerative desalination equipment Expired - Fee Related JP3729349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136605A JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136605A JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Publications (2)

Publication Number Publication Date
JP2003326272A JP2003326272A (en) 2003-11-18
JP3729349B2 true JP3729349B2 (en) 2005-12-21

Family

ID=29698575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136605A Expired - Fee Related JP3729349B2 (en) 2002-05-13 2002-05-13 Electric regenerative desalination equipment

Country Status (1)

Country Link
JP (1) JP3729349B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345615C (en) * 2005-09-12 2007-10-31 张贵清 Electric deionisation method and apparatus for producing superpure water using bipolar membrane
JP4828242B2 (en) * 2006-01-31 2011-11-30 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP5489867B2 (en) * 2010-06-03 2014-05-14 オルガノ株式会社 Electric deionized water production equipment
JP5689032B2 (en) * 2011-06-21 2015-03-25 オルガノ株式会社 Electric deionized water production equipment
JP5689031B2 (en) * 2011-06-21 2015-03-25 オルガノ株式会社 Electric deionized water production equipment
JP5693396B2 (en) * 2011-06-21 2015-04-01 オルガノ株式会社 Electric deionized water production equipment
JP5661930B2 (en) * 2011-08-04 2015-01-28 オルガノ株式会社 Electric deionized water production equipment
CN112456635A (en) * 2020-10-26 2021-03-09 山东光华纸业集团有限公司 Anaerobic biological treatment desalting device

Also Published As

Publication number Publication date
JP2003326272A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP4343105B2 (en) Electric desalination equipment
JP4065664B2 (en) Electric desalination equipment
JP6078074B2 (en) Desalination system and method
JP4110689B2 (en) Electrodeionization equipment
JP3956836B2 (en) Electrodeionization equipment
JP5295927B2 (en) Electric deionized water production equipment
KR20250002460A (en) Method for operating a deionized water production system and a deionized water production system
JP3729349B2 (en) Electric regenerative desalination equipment
JP4403621B2 (en) Electrodeionization equipment
JP4710176B2 (en) Ultrapure water production equipment
JP6042234B2 (en) Desalination method and desalting apparatus
KR101526093B1 (en) Electric device for producing deionized water
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP5114307B2 (en) Electric deionized water production equipment
JP3729347B2 (en) Electric regenerative desalination equipment
WO2005075359A1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP3729348B2 (en) Electric regenerative desalination equipment
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2003001258A (en) Electrodeionization equipment
JP2011121027A (en) Electric type deionized water producing apparatus
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP3717147B2 (en) Electric regenerative desalination equipment
JP4599668B2 (en) Operation method of electrodeionization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees