[go: up one dir, main page]

JP3724084B2 - Method for producing synthetic quartz powder and quartz glass molded body - Google Patents

Method for producing synthetic quartz powder and quartz glass molded body Download PDF

Info

Publication number
JP3724084B2
JP3724084B2 JP30917696A JP30917696A JP3724084B2 JP 3724084 B2 JP3724084 B2 JP 3724084B2 JP 30917696 A JP30917696 A JP 30917696A JP 30917696 A JP30917696 A JP 30917696A JP 3724084 B2 JP3724084 B2 JP 3724084B2
Authority
JP
Japan
Prior art keywords
powder
synthetic quartz
temperature
silica gel
quartz powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30917696A
Other languages
Japanese (ja)
Other versions
JPH10152318A (en
Inventor
芳雄 勝呂
明 宇都宮
彰裕 高澤
正樹 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30917696A priority Critical patent/JP3724084B2/en
Publication of JPH10152318A publication Critical patent/JPH10152318A/en
Application granted granted Critical
Publication of JP3724084B2 publication Critical patent/JP3724084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度合成石英粉の製造方法、及びこれを溶融成形してなる石英ガラス成形体の製造方法に関する。
【0002】
【従来の技術】
近年、光通信分野、半導体産業等で使用されるガラス製品においては、その品質に関して非常に厳しい管理が行われている。このような高純度のガラスの製造方法としては主に、(1)天然石英を精製して用いる方法、(2)四塩化珪素等の気体珪素化合物の酸水素炎中での加水分解、熱分解で発生したヒュームを用いこれを溶融成形する気相法、(3)シリコンアルコキシド等の液相での加水分解・ゲル化等により得たシリカゲル粉末を焼成して得た合成石英粉を用いる方法、等が知られている。
これらのうち(1)の方法では、微量不純物含有量の低減に限界があり、(2)の方法では、極めて製造コストが高い等の問題がある。また、(3)のシリカゲル粉末を焼成して合成石英粉とする方法を採った場合、得られる合成石英粉には未燃カーボン、OH等に由来すると考えられる、溶融成形時の発泡の問題があった。
【0003】
【発明が解決しようとする課題】
かかる問題は従来より知られており、解決のために種々の手段が提案されている。
例えば、300〜500℃の温度での保持時間を長くし、充分にカーボン残量を下げたり、最高保持温度(1000〜1300℃)において、露点の低いガスを供給し、残存OH濃度を数十ppmレベルまで下げる方法がある。
しかし、このような条件で焼成しても、溶融時に発泡することがあった。
【0004】
【課題を解決するための手段】
そこで、本発明者らが上記課題を解決し、溶融成形時に発泡の少ない合成石英粉を得るべく鋭意検討したところ、焼成時に特定温度範囲での昇温過程を特定の昇温速度とすることにより、この問題を解決することができることを見出し、本発明に到達した。すなわち、本発明は、シリカゲル粉末を焼成して合成石英粉を得るに際し、800〜1000℃の昇温を4時間以上として行うことを特徴とする合成石英粉の製造方法に存する。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
まず、本発明で用いるシリカゲル粉末は、特に限定されるものではなく、例えばヒュームドシリカ等を水に分散してシリカゾルとし、これをシリカゲルとするコロイド分散法、アルコキシシラン、珪酸塩等の加水分解可能な珪素化合物の加水分解によりシリカゲルを得る加水分解法等が挙げられるが、シリカゲルの物性が優れていること、原料の精製により容易に高純度化しうることから加水分解法が、特に副生物がアルコールのみであるため容器等の腐食を生じることもなく且つ容易に除去できることから、アルコキシシランを加水分解して得たシリカゲル粉末が、好適である。
【0006】
アルコキシシランの加水分解によるシリカゲル粉末の製造は、いわゆるゾル・ゲル法として公知の方法にしたがって、アルコキシシランと水とを反応させることによって行われる。
原料として用いられるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン等のC1〜4の低級アルコキシシラン或いはその低縮合物であるオリゴマーが、加水分解が容易でありシリカゲルへ中への炭素の残存が少ない点から好ましい。
水の使用量は通常、アルコキシシラン中のアルコキシ基の1倍等量以上から10倍等量以下の範囲から選択される。この際、必要に応じて、水と相溶性のあるアルコール類やエーテル類等の有機溶媒を混合して使用してもよい。使用されるアルコールの代表例としては、メタノール・エタノール等の低級脂肪族アルコール等が挙げられる。
【0007】
この加水分解反応には、触媒として塩酸、酢酸等の酸や、アンモニア等のアルカリの存在下としてもよい。なお、当然のことながら、ここで使用する水、触媒等の、反応系に導入される物質は、全て高純度とする。
加水分解生成物のゲル化は、加熱下あるいは常温で実施される。加熱を行うと、ゲル化の速度を向上することができるので、加熱の程度を調節することにより、ゲル化時間を調節することができる。
【0008】
シリカゲルを得るには、これら公知の方法をいずれも特に限定されず採用することができるのであるが、一般にはシリカゲルを沈殿物として生成させるよりも全体を一個のゲルとし、これを粉砕して粉砕シリカゲル粉末として以下の工程に処するのが、得られる石英粉の物性が特に優れ、上澄みとの分離等余分な工程を要さずまた歩留まりもよいため、望ましい。
こうして得られたシリカゲルを必要に応じて粉砕等により細分化してシリカゲル粉末とする。また、一般には後述する焼成に先がけてシリカゲルを乾燥する。この場合、ゲルを細分化してから乾燥してもよいし、乾燥してから細分化してもよい。いずれににしても、乾燥後の粒径が、10〜1000μm、好ましくは100〜600μmとなるように細分化を行い、平均粒径を150〜300μmとする。
【0009】
乾燥の際の温度は、条件によっても異なるが、通常、50〜200℃である。また、操作は、回分、連続のいずれによっても行うことができる。乾燥の程度は、通常含液率で5〜30重量%まで行われる。
次に、こうして得られた乾燥シリカゲル粉末を焼成する。すなわち、シリカゲル粉末を加熱無孔化して石英ガラス粉とする。
焼成に際しては、予め300〜500℃の温度で加熱処理を行い、炭素濃度をある程度まで下げてから、1000〜1300℃まで昇温して焼成するのが好ましい。
これは、以下の理由による。
【0010】
上記方法によって得られた乾燥シリカゲル粉末は通常、乾燥により副生したアルコールを除去しても未反応のアルコキシ基及び副生したアルコールの一部が残存する。実際、乾燥を施したシリカゲル粉末中のカーボン濃度を測定すると、乾燥条件によっても異なるが、通常1〜3重量%である。このシリカゲル粉末を酸素含有ガス中、1000〜1300℃の温度領域で加熱し焼成すると、大部分のカーボンは、昇温過程で燃焼除去されるが、一部が未燃カーボンとして合成石英粉中に閉じこめられることがあること、この未燃カーボンを含有する合成石英粉を用いると、溶融成形の際にCO2やCOガスとなって泡発生の原因となることが、本発明者らの検討により明らかとなっている(特願平7−280726等)。そこで、シリカゲルの封孔舞えに、未燃カーボンを実質的に全量除去しておくことが必要となる。
【0011】
ここで、本発明者らの更なる研究により、乾燥シリカゲル粉末中の残存カーボンは、300℃以上の温度域で酸素含有ガスと接触すると、COやCO2を発生しつつ減少し、処理温度を上げるに従いその減少速度は増加すること、及び、シリカゲルの無孔化は600℃以上の温度領域で急激に進行することが明らかとなった。そこで、300〜500℃の温度での加熱処理により、炭素濃度を1000ppm以下とした後、以下に説明するように、焼成工程に処するのが望ましいのである。
次に、こうして加熱処理したシリカゲル粉末を、1000〜1300℃の温度領域まで昇温して焼成し、合成石英粉とする。
【0012】
本発明においては、この際、特定昇温時間とすることを特徴とする。
すなわち、800〜1000℃での昇温工程を、4時間以上とすることを特徴とする。従来の知見に反し、この温度範囲での昇温工程が、得られる合成石英粉を溶融成形した際の発泡に極めて重要な影響を与えることが、本発明者らの検討により明らかにされたものであり、この温度での昇温時間を4時間以上とすることにより、発泡防止に顕著な効果を発揮することが、本発明者らの検討により明らかとなったものである。
好ましくは、800〜1000℃での昇温速度を50℃/hr以下とする。この昇温速度とすることにより、溶融成形時の発泡抑制に顕著な効果がある。特に好ましくは、700〜1100℃での昇温速度をも50℃/hr以下とする。更に好ましくは700〜1150℃での昇温速度をも50℃/hr以下とする。
【0013】
昇温に要する時間及び昇温速度の測定は、例えば実際に粉体中に熱電対を挿入する等により得た実測値から求めることができる。
以上説明した昇温工程により、1000〜1300℃まで昇温するのであり、昇温の最終温度は、1000〜1300℃であれば特に制限されない。しかしながら、工業的実施には、1100℃以上、特に1150℃以上まで昇温することが望ましい。1100℃未満では、シラノール、特に孤立シラノールの除去を、製品として好ましい程度まで達成するのに極めて長時間を要するためである。
また、1300℃を超えると、粒子間での焼結を起こしやすくなるためである。
【0014】
こうしていったん1000〜1300℃まで昇温した後、この温度範囲で10〜100時間、保持するのが望ましい。
保持時間は最終温度までのシラノールの除去の度合いにもより、合成石英粉のシラノール濃度が100ppm以下、好ましくは60ppm以下となるまで保持することが望ましい。
以上説明した昇温及び焼成工程は、バッチ又は連続のいずれで行ってもよい。
一方、高温での焼成に際しては、耐熱性の優れたルツボ等でのバッチ処理が適しているためである。
もちろん、本発明の所定の昇温過程を達成できれば、他の要件は特に限定されるものではない。
【0015】
こうして得られた合成石英粉は、種々の公知の方法により溶融成形して石英ガラス成形体とすることができる。例えば、アークメルト法、ベルヌーイ法、ヒュージョン法等種々の成形法により、シリコン単結晶引き上げ用ルツボ、拡散炉のチュープや治具等の半導体製造用石英ガラス部材等、高温強度の要求される超高純度石英ガラス部材として特に好適である。勿論、光ファイバー、IC封止材等、高温での使用以外の用途に使用しても差し支えない。
以下、実施例により本発明を更に具体的に説明する。なお、実施例での焼成に用いた装置を図1に示す。
【0016】
(実施例1)
テトラメトキシシランを加水分解、ゲル化、粉砕、乾燥、分級する事によって得られた粒度100〜500μmシリカゲル粉末1kgを、200mmφ×200mmHの石英ガラスルツボ(1)に仕込み、中央に10mmφの穴のあいた蓋(2)をかぶせて電気炉内にセットした。次に、電気炉上部より挿入した6mmφ石英ガラス管(3)を、蓋(2)の穴を通して、ルツボ下部より10mmの位置まで粉体中に差し込み、100ml/minの流量で、露点−4 5℃の脱湿空気を供給しながら、500℃迄200℃/Hrで昇温し、500 ℃で5時間保持、そこから800℃迄200℃/Hr、800〜1200℃迄を40℃/Hrで昇温し、1200℃で45時間保持して焼成を行った。得られた合成石英ガラス粉末のシラノール濃度を赤外吸光法により測定したところ、48ppmであった。次に、これを、酸水素炎溶融法(ベルヌイ法)及び真空溶融法の2つの溶融方法で、それぞれ15mmφ×50mmL及び、40mmφ×40mmLの石英ガラスインゴットを作製したところ、目視的に検出できるレベルの泡は観察されなかった。
【0017】
(比較例1)
実施例1において、500℃で5時間保持した後、1200℃迄200℃/Hrで昇温したことを除いては、実施例1と同様の方法で合成石英ガラス粉末を作製した。
得られた合成石英ガラス粉末のシラノール濃度を測定したところ、48ppmであった。次に、これを酸水素炎溶融法(ベルヌイ法)及び真空溶融法の2つの溶融方法で、それぞれ15mmφ×50mmL及び、40mmφ×40mmLの石英ガラスインゴットを作製したところ、どちらのインゴットにおいても、数十〜数百μmφの泡が、数十個以上観察された。
【0018】
(比較例2)
実施例1において、500℃で5時間保持した後、800℃迄30℃/Hrで昇温し、800〜1200℃迄200℃/Hrで昇温したことを除いては、実施例1と同様の方法で合成石英ガラス粉末を作製した。
得られた合成石英ガラス粉末のシラノール濃度を測定したところ、50ppmであった。次に、これを酸水素炎溶融法(ベルヌイ法)及び真空溶融法の2つの溶融方法で、それぞれ15mmφ×50mmL及び、40mmφ×40mmLの石英ガラスインゴットを作製したところ、どちらのインゴットにおいても、数十〜数百μmφの泡が、数十個以上観察された。
【0019】
【発明の効果】
本発明により、シラノール基濃度の小さい高純度合成石英粉、並びに溶融成形時に発泡の少ない高純度石英ガラス成形体を得ることができる。
【図面の簡単な説明】
【図1】実施例での焼成に用いた装置示す図
【符号の説明】
1 石英ガラスルツボ
2 穴のあいた蓋
3 石英ガラス管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity synthetic quartz powder and a method for producing a quartz glass molded body obtained by melt-molding the same.
[0002]
[Prior art]
In recent years, glass products used in the optical communication field, the semiconductor industry, and the like have been subjected to very strict management regarding the quality. As a method for producing such a high-purity glass, mainly, (1) a method of purifying and using natural quartz, (2) hydrolysis and thermal decomposition of gaseous silicon compounds such as silicon tetrachloride in an oxyhydrogen flame (3) A method using a synthetic quartz powder obtained by baking silica gel powder obtained by hydrolysis / gelation in a liquid phase such as silicon alkoxide, etc. Etc. are known.
Among these, the method (1) has a limit in reducing the content of trace impurities, and the method (2) has problems such as extremely high production costs. In addition, when the method of calcining the silica gel powder of (3) to obtain a synthetic quartz powder, the synthetic quartz powder obtained is considered to be derived from unburned carbon, OH, etc. there were.
[0003]
[Problems to be solved by the invention]
Such a problem is conventionally known, and various means have been proposed for solving the problem.
For example, the holding time at a temperature of 300 to 500 ° C. is lengthened to sufficiently reduce the remaining amount of carbon, or a gas having a low dew point is supplied at the maximum holding temperature (1000 to 1300 ° C.), and the residual OH concentration is reduced to several tens. There is a way to lower it down to the ppm level.
However, even when fired under such conditions, foaming may occur during melting.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors have intensively studied to obtain the synthetic quartz powder with less foaming at the time of melt molding to solve the above-mentioned problems, and by setting the temperature rising process in a specific temperature range at a specific temperature range during firing. The present inventors have found that this problem can be solved and have reached the present invention. That is, the present invention resides in a method for producing synthetic quartz powder, characterized in that when silica gel powder is fired to obtain synthetic quartz powder, the temperature is raised to 800 to 1000 ° C. for 4 hours or more.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the silica gel powder used in the present invention is not particularly limited. For example, fumed silica is dispersed in water to form a silica sol, which is a colloidal dispersion method using silica gel, hydrolysis of alkoxysilane, silicate, etc. Hydrolysis method for obtaining silica gel by hydrolyzing a silicon compound that can be used is mentioned, but the hydrolysis method is particularly suitable as a by-product due to the excellent physical properties of silica gel and the fact that it can be easily purified by purification of raw materials. Silica gel powder obtained by hydrolyzing alkoxysilane is preferred because it is only alcohol and does not cause corrosion of containers and the like and can be easily removed.
[0006]
Production of silica gel powder by hydrolysis of alkoxysilane is carried out by reacting alkoxysilane with water according to a method known as a so-called sol-gel method.
The tetraalkoxysilane used as a raw material is a C1-4 lower alkoxysilane such as tetramethoxysilane or tetraethoxysilane or an oligomer which is a low condensate thereof, and is easily hydrolyzed and carbon remains in the silica gel. Is preferable from the viewpoint of less.
The amount of water used is usually selected from the range of 1 to 10 times the amount of alkoxy groups in the alkoxysilane. At this time, if necessary, organic solvents such as alcohols and ethers compatible with water may be mixed and used. Representative examples of the alcohol used include lower aliphatic alcohols such as methanol and ethanol.
[0007]
In this hydrolysis reaction, an acid such as hydrochloric acid or acetic acid or an alkali such as ammonia may be used as a catalyst. As a matter of course, all the substances introduced into the reaction system such as water and catalyst used here have high purity.
Gelation of the hydrolysis product is carried out under heating or at room temperature. Since the gelation speed can be improved by heating, the gelation time can be adjusted by adjusting the degree of heating.
[0008]
In order to obtain silica gel, any of these known methods can be adopted without any particular limitation. Generally, the silica gel is generally formed as a single gel rather than formed as a precipitate, and this is pulverized by pulverization. The silica gel powder is preferably subjected to the following steps because the resulting quartz powder has particularly excellent physical properties, does not require extra steps such as separation from the supernatant, and has a good yield.
The silica gel thus obtained is subdivided by pulverization or the like as necessary to obtain silica gel powder. In general, the silica gel is dried prior to firing described later. In this case, the gel may be subdivided and then dried, or may be dried and subdivided. In any case, the particle size after drying is subdivided so as to be 10 to 1000 μm, preferably 100 to 600 μm, and the average particle size is 150 to 300 μm.
[0009]
The temperature during drying varies depending on the conditions, but is usually 50 to 200 ° C. The operation can be performed either batchwise or continuously. The degree of drying is usually 5 to 30% by weight in terms of liquid content.
Next, the dried silica gel powder thus obtained is fired. That is, the silica gel powder is made nonporous by heating to form quartz glass powder.
In firing, it is preferable to perform heat treatment at a temperature of 300 to 500 ° C. in advance, lower the carbon concentration to some extent, and then raise the temperature to 1000 to 1300 ° C. to perform firing.
This is due to the following reason.
[0010]
In the dry silica gel powder obtained by the above method, an unreacted alkoxy group and a part of the by-produced alcohol remain even when the by-product alcohol is removed by drying. Actually, when the carbon concentration in the dried silica gel powder is measured, it is usually 1 to 3% by weight, although it varies depending on the drying conditions. When this silica gel powder is heated and calcined in an oxygen-containing gas at a temperature range of 1000 to 1300 ° C., most of the carbon is burned and removed in the temperature rising process, but a part of it is unburned carbon in the synthetic quartz powder. According to the study by the present inventors, the use of synthetic quartz powder containing unburned carbon may cause bubbles by forming CO 2 or CO gas during melt molding. It is clear (Japanese Patent Application No. 7-280726). Therefore, it is necessary to remove substantially all of the unburned carbon in order to seal the silica gel.
[0011]
Here, as a result of further research by the present inventors, when the residual carbon in the dry silica gel powder comes into contact with an oxygen-containing gas in a temperature range of 300 ° C. or higher, CO and CO 2 are generated while being reduced, and the processing temperature is reduced. It has been clarified that the rate of decrease increases as the temperature increases, and that the non-porous silica gel proceeds rapidly in the temperature range of 600 ° C. or higher. Therefore, it is desirable to subject the carbon concentration to 1000 ppm or less by heat treatment at a temperature of 300 to 500 ° C., and then to a firing step as described below.
Next, the heat-treated silica gel powder is heated to a temperature range of 1000 to 1300 ° C. and fired to obtain a synthetic quartz powder.
[0012]
In this invention, it is characterized by setting it as the specific temperature rising time in this case.
That is, the temperature raising step at 800 to 1000 ° C. is set to 4 hours or longer. Contrary to conventional knowledge, it has been clarified by the present inventors that the temperature raising step in this temperature range has a very important influence on foaming when the resultant synthetic quartz powder is melt-molded. Thus, it has been clarified by the present inventors that a remarkable effect for preventing foaming is exhibited by setting the temperature rising time at this temperature to 4 hours or more.
Preferably, the temperature increase rate at 800 to 1000 ° C. is set to 50 ° C./hr or less. By setting it as this temperature increase rate, there exists a remarkable effect in foaming suppression at the time of melt molding. Particularly preferably, the heating rate at 700 to 1100 ° C. is also set to 50 ° C./hr or less. More preferably, the heating rate at 700 to 1150 ° C. is also set to 50 ° C./hr or less.
[0013]
The time required for the temperature rise and the rate of temperature rise can be determined from actual measurement values obtained by actually inserting a thermocouple into the powder, for example.
The temperature is raised to 1000 to 1300 ° C. by the temperature raising step described above, and the final temperature of the temperature rise is not particularly limited as long as it is 1000 to 1300 ° C. However, for industrial implementation, it is desirable to raise the temperature to 1100 ° C. or higher, particularly 1150 ° C. or higher. This is because if it is less than 1100 ° C., it takes a very long time to achieve removal of silanol, particularly isolated silanol, to the extent preferable for a product.
Moreover, it is because it will become easy to raise | generate sintering between particle | grains when it exceeds 1300 degreeC.
[0014]
Thus, it is desirable that the temperature is once raised to 1000 to 1300 ° C. and then maintained in this temperature range for 10 to 100 hours.
The holding time is preferably maintained until the silanol concentration of the synthetic quartz powder is 100 ppm or less, preferably 60 ppm or less, depending on the degree of silanol removal up to the final temperature.
The temperature raising and firing steps described above may be performed either batchwise or continuously.
On the other hand, when firing at a high temperature, batch processing with a crucible having excellent heat resistance is suitable.
Of course, other requirements are not particularly limited as long as the predetermined temperature raising process of the present invention can be achieved.
[0015]
The synthetic quartz powder thus obtained can be melt-molded by various known methods to form a quartz glass molded body. For example, by using various forming methods such as arc melt method, Bernoulli method, fusion method, etc., ultrahigh high strength required for high temperature strength such as crucibles for pulling silicon single crystals, quartz glass members for semiconductor manufacturing such as diffusion furnace tubes and jigs, etc. It is particularly suitable as a purity quartz glass member. Of course, it may be used for applications other than the use at high temperatures, such as optical fibers and IC sealing materials.
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the apparatus used for baking in the Example is shown in FIG.
[0016]
(Example 1)
1 kg of silica gel powder having a particle size of 100 to 500 μm obtained by hydrolyzing, gelling, pulverizing, drying and classifying tetramethoxysilane was charged in a quartz glass crucible (1) of 200 mmφ × 200 mmH, and a 10 mmφ hole was formed in the center. The lid (2) was put on and set in the electric furnace. Next, the 6 mmφ quartz glass tube (3) inserted from the upper part of the electric furnace is inserted into the powder through the hole of the lid (2) to a position of 10 mm from the lower part of the crucible, and at a flow rate of 100 ml / min, the dew point −45. While supplying dehumidified air at a temperature of 200 ° C., the temperature was raised to 500 ° C. at 200 ° C./Hr, held at 500 ° C. for 5 hours, then from 800 ° C. to 200 ° C./Hr, from 800 to 1200 ° C. at 40 ° C./Hr The temperature was raised and held at 1200 ° C. for 45 hours for firing. The silanol concentration of the obtained synthetic quartz glass powder was measured by infrared absorption and found to be 48 ppm. Next, when quartz glass ingots of 15 mmφ × 50 mmL and 40 mmφ × 40 mmL were produced by two melting methods of an oxyhydrogen flame melting method (Bernui method) and a vacuum melting method, respectively, a level that can be detected visually. No bubbles were observed.
[0017]
(Comparative Example 1)
In Example 1, a synthetic quartz glass powder was produced in the same manner as in Example 1 except that the temperature was maintained at 500 ° C. for 5 hours and then increased to 1200 ° C. at 200 ° C./Hr.
When the silanol concentration of the obtained synthetic quartz glass powder was measured, it was 48 ppm. Next, quartz glass ingots of 15 mmφ × 50 mmL and 40 mmφ × 40 mmL were produced by two melting methods of oxyhydrogen flame melting method (Bernui method) and vacuum melting method, respectively. Dozens or more bubbles of 10 to several hundred μmφ were observed.
[0018]
(Comparative Example 2)
In Example 1, after holding at 500 ° C. for 5 hours, the temperature was raised to 800 ° C. at 30 ° C./Hr, and the temperature was raised from 800 to 1200 ° C. at 200 ° C./Hr, as in Example 1. A synthetic quartz glass powder was prepared by the method described above.
The silanol concentration of the obtained synthetic quartz glass powder was measured and found to be 50 ppm. Next, quartz glass ingots of 15 mmφ × 50 mmL and 40 mmφ × 40 mmL were produced by two melting methods of oxyhydrogen flame melting method (Bernui method) and vacuum melting method, respectively. Dozens or more bubbles of 10 to several hundred μmφ were observed.
[0019]
【The invention's effect】
According to the present invention, it is possible to obtain a high-purity synthetic quartz powder having a low silanol group concentration and a high-purity quartz glass molded body with less foaming during melt molding.
[Brief description of the drawings]
FIG. 1 is a diagram showing an apparatus used for firing in Examples.
1 quartz glass crucible 2 lid with hole 3 quartz glass tube

Claims (5)

シリカゲル粉末を焼成して合成石英粉を得るに際し、800〜1000℃の昇温を4時間以上として行うことを特徴とする合成石英粉の製造方法。  A method for producing synthetic quartz powder, characterized in that when silica gel powder is fired to obtain synthetic quartz powder, the temperature is raised to 800 to 1000 ° C. for 4 hours or more. シリカゲル粉末を焼成して合成石英粉を得るに際し、800〜1000℃での昇温速度を50℃/hr以下とすることを特徴とする合成石英粉の製造方法。  A method for producing a synthetic quartz powder, characterized in that when a silica gel powder is fired to obtain a synthetic quartz powder, the rate of temperature increase at 800 to 1000 ° C. is 50 ° C./hr or less. シリカゲル粉末を焼成して合成石英粉を得るに際し、700〜1100℃での昇温速度を50℃/hr以下とすることを特徴とする合成石英粉の製造方法。  A method for producing synthetic quartz powder, characterized in that when a silica gel powder is fired to obtain a synthetic quartz powder, the rate of temperature increase at 700 to 1100 ° C. is 50 ° C./hr or less. シリカゲル粉末を焼成して合成石英粉を得るに際し、700〜1150℃での昇温速度を50℃/hr以下とすることを特徴とする合成石英粉の製造方法。  A method for producing a synthetic quartz powder, characterized in that when a silica gel powder is fired to obtain a synthetic quartz powder, the rate of temperature rise at 700 to 1150 ° C is 50 ° C / hr or less. 焼成に供するシリカゲル粉末が、粒径10〜1000μmで平均粒径150〜300μmであり、かつ50〜200℃での乾燥工程を経たものであることを特徴とする請求項1〜4のいずれかに記載の合成石英粉の製造方法。  The silica gel powder to be subjected to firing has a particle size of 10 to 1000 µm, an average particle size of 150 to 300 µm, and has undergone a drying step at 50 to 200 ° C. The manufacturing method of the synthetic quartz powder of description.
JP30917696A 1996-11-20 1996-11-20 Method for producing synthetic quartz powder and quartz glass molded body Expired - Fee Related JP3724084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30917696A JP3724084B2 (en) 1996-11-20 1996-11-20 Method for producing synthetic quartz powder and quartz glass molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30917696A JP3724084B2 (en) 1996-11-20 1996-11-20 Method for producing synthetic quartz powder and quartz glass molded body

Publications (2)

Publication Number Publication Date
JPH10152318A JPH10152318A (en) 1998-06-09
JP3724084B2 true JP3724084B2 (en) 2005-12-07

Family

ID=17989855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30917696A Expired - Fee Related JP3724084B2 (en) 1996-11-20 1996-11-20 Method for producing synthetic quartz powder and quartz glass molded body

Country Status (1)

Country Link
JP (1) JP3724084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256547A4 (en) * 1999-12-28 2005-07-13 Watanabe & Co Ltd M PROCESSES FOR PRODUCING SILICA PARTICLES, SYNTHETIC QUARTZ PARTICLES AND QUARTZ GLASS SYNTHESIS
JP5188089B2 (en) * 2007-03-30 2013-04-24 株式会社田中化学研究所 Nickel positive electrode active material and method for producing the same
KR102622058B1 (en) * 2021-11-23 2024-01-09 수현첨단소재 주식회사 Manufacturing method of high purity quartz powder

Also Published As

Publication number Publication date
JPH10152318A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US5516350A (en) Process for producing synthetic quartz glass powder
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
AU684167B2 (en) Synthetic silica glass powder
JPH10287416A (en) Production of synthetic quartz powder
JPH09165214A (en) Production of synthetic quartz powder
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
EP0801026B1 (en) Process for producing synthetic quartz powder
JP3617153B2 (en) Method for producing synthetic quartz powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JP2000169163A (en) Synthetic quartz glass powder containing aluminum, synthetic quartz glass formed body containing aluminum, and production of the same
JPH11268923A (en) Production of silica gel, synthetic quartz glass powder and quartz glass molding
JPH10101324A (en) Production of synthetic quartz powder and production of quartz glass formed body
JP3884783B2 (en) Method for producing synthetic quartz powder
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JPH10182140A (en) Production of synthetic quartz glass powder and formed quartz glass
JPH11349340A (en) Production of synthetic silica glass powder and production of silica glass molded form
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product
JP3875735B2 (en) Method for producing synthetic quartz powder
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JPH10101322A (en) Silica gel, synthetic quartz glass powder, its production, and production of quartz glass formed body
JP4075193B2 (en) Niobium-containing synthetic quartz glass powder, quartz glass molded body, and production method thereof
JPH11349337A (en) Production of synthetic silica glass powder and production of silica glass molded form
JPH035329A (en) Production of synthetic quartz glass
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass
JPH0986919A (en) Production of synthetic quartz glass powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees