JP3721272B2 - Method for producing thermally conductive resin molding - Google Patents
Method for producing thermally conductive resin molding Download PDFInfo
- Publication number
- JP3721272B2 JP3721272B2 JP28223998A JP28223998A JP3721272B2 JP 3721272 B2 JP3721272 B2 JP 3721272B2 JP 28223998 A JP28223998 A JP 28223998A JP 28223998 A JP28223998 A JP 28223998A JP 3721272 B2 JP3721272 B2 JP 3721272B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- thermally conductive
- resin
- particles
- conductive resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920005989 resin Polymers 0.000 title claims description 53
- 239000011347 resin Substances 0.000 title claims description 53
- 238000000465 moulding Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000002245 particle Substances 0.000 claims description 28
- 239000011231 conductive filler Substances 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 18
- 229920001296 polysiloxane Polymers 0.000 claims description 14
- 238000005520 cutting process Methods 0.000 claims description 7
- 239000011342 resin composition Substances 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 27
- 229910052582 BN Inorganic materials 0.000 description 26
- 239000000843 powder Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 6
- 238000011049 filling Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- 238000007259 addition reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007603 infrared drying Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- -1 alkaline earth metal borate Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、熱伝導性樹脂成形体の製造方法に関する。詳しくは、電子機器の放熱を行う際に、発熱電子部品とヒートシンクの間に介在させて使用される放熱部材として好適な熱伝導性成形体の製造方法に関する。
【0002】
【従来の技術】
電子機器において、使用時に発生する熱をどのように除去するかが重要な課題となっており、従来よりトランジスタやサイリスタ等の発熱電子部品を、放熱フインや放熱板等のヒートシンクに、熱伝導性シートを介して取り付けることによって行われている。この熱伝導性シートは、樹脂に熱伝導性フイラーを分散含有させたものが用いられており、熱伝導性が良好であることから発熱電子部品の実装に広く賞用されている。また、最近に至り、熱伝導性シートの柔軟性を、例えばアスカC硬度で50以下までに著しく高めた、高柔軟性放熱スペーサーも使用されるようになっている。
【0003】
熱伝導性シートの熱伝導性を良くするためには、窒化ホウ素(BN)等の熱伝導性フイラーの充填率を多くすれば良いが、シートの機械的強度が低下するので高充填には限度があった。
【0004】
また、BNは鱗片状粒子であり、その粒子自身の熱伝導性は鱗片状の面方向では約110W/mKであるのに対し、その面に対して垂直方向では約2W/mK程度しかなくBN粒子の熱伝導性は面方向が数十倍優れていることが知られている。すなわち、BN粒子の熱伝導性に優れる方向である面方向を放熱シートが熱を伝達するシートの厚さ方向と同じにする(BN粒子をシート厚み方向に立てる)ことによって熱伝導性が飛躍的に向上することが期待されるが、従来の製造方法(カレンダーロール法、ドクターブレード法、押し出し法)では、シート成型時にBN粒子の配向が発生し、図3のように鱗片状粒子の面方向がシート面方向と同一となってBN粒子の面方向の優れた熱伝導性が活かされないままとなっていた。
【0005】
このような問題点を解決するため、特公平6−12643号公報には、BN粒子をランダムに配向させることが提案されているが、横に配向したBN粒子も依然として多く存在しており、BN粒子の面方向の優れた熱伝導性が十分に活かされているとは言い難い。
【0006】
そこで、図2のように、シート厚み方向に配向しているBN粒子の割合を、シート幅方向に配向している割合よりも多くして熱伝導性を向上させる方法としては、特公平6−38460号公報があるが、この方法では、BN粒子の充填されたシリコーン固化物を成型機でブロック化し、それを垂直方向にスライスしてシート化するものであるので、ブロック化時の断面積が広すぎて内部のBNの配向度合いが不十分であり、これまた熱伝導性の十分な向上は望めない。
【0007】
更には、いずれの方法においても、熱伝導性を向上させるためにBN粒子を高充填すると、シートは硬くなり、発熱電子部品が荷重に弱い場合には取り付け時の締め付け力によって損傷する問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、熱伝導性シート等の放熱部材を、発熱電子部品とヒートシンクとの間に、締め付け力によって介在させる際、余分な締め付け力を放熱部材内に形成させた連通孔で吸収させ、もって発熱電子部品の損傷を和らげることのできる高柔軟性かつ高熱伝導性の放熱部材を提供することである。また、図2に示すように、直立に近い状態で配向させた熱伝導性フイラー粒子を、放熱部材の幅方向よりも厚み方向に多く存在させることによって、更なる高熱伝導性を付与した放熱部材を提供することである。本発明の目的は、上記高柔軟性かつ高熱伝導性の放熱部材を生産性良く製造することである。
【0009】
【課題を解決するための手段】
すなわち、本発明は、以下を要旨とするものである。
(請求項1)熱伝導性フイラー含有の樹脂組成物を用いて未硬化の棒状成型物を成形し、それらの複数本を連通孔となる空隙を設けて集結させ、その集結物を所望長さに切断してから硬化させるか、又は硬化させてから切断することを特徴とする熱伝導性樹脂成形体の製造方法。
(請求項2)熱伝導性フイラー含有樹脂組成物がBN粒子を20〜70体積%を含むシリコーンであり、棒状成型物の断面積が0.5〜300mm2 、集結物の気孔率が5〜50%、切断幅が0.05〜5mmであることを特徴とする請求項1記載の熱伝導性樹脂成形体の製造方法。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0011】
本発明でいう樹脂とは、シリコーンゴム(付加反応により加硫する液状シリコーンゴム、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーンゴム)、エポキシ樹脂、オレフィン系樹脂等の一般的に電子材料用途として用いられている樹脂のことである。
【0012】
電子機器の放熱部材では、発熱電子部品の発熱面とヒートシンク面との密着性が要求されるため、柔軟性を有する樹脂や、ゴム弾性を有する樹脂が望ましい。柔軟性樹脂としては、付加反応型液状シリコーンの固化物が好適であり、その具体例としては、一分子中にビニル基とH−Si基の両方を有する一液性のシリコーンや、末端又は側鎖にビニル基を有するオルガノポリシロキサンと末端又は側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンなどがある。このような付加反応型液状シリコーンの市販品としては、東レダウコーニング社製、商品名「SE−1885」等を例示することができる。樹脂の柔軟性は、シリコーンの架橋密度や熱伝導性フイラーの充填量によって調整することができる。
【0013】
本発明で使用される熱伝導性フイラーとしては、絶縁性が必要な場合には、窒化硼素、窒化珪素、窒化アルミニウム、アルミナ、マグネシア等のセラミックス粉末が用いられ、また絶縁性を問わない場合には、上記セラミックス粉末の他に、アルミニウム、銅、銀、金等の金属粉末や、炭化珪素粉末、炭素粉末などが用いられる。これらの熱伝導性フイラーは、一種又は二種以上が使用される。熱伝導性フイラーの形状は、破砕不規則形状、球状、繊維状、針状、鱗片状などの如何なるものでもよく、また粒度は、平均粒径1〜100μm程度のものが使用される。
【0014】
上記熱伝導性フイラーにあっても、熱伝導性シートや高柔軟性放熱スペーサー等の電子機器の放熱部材用途においては、BN粉末を単独又は他の熱伝導性フイラーと併用することが望ましい。何故ならば、BNは、上記のように六角環状網目面方向(a軸)と六角環状網目面に対して垂直方向(c軸)とでは熱伝導性が数十倍程度異なっており、うまく工夫することによってその面方向の高熱伝導性を利用することができるからである。
【0015】
BN粒子の厚み(c軸方向)は、0.1μm以上であることが好ましく、0.1μmを未満では、樹脂に分散させる際に粒子が破壊される恐れがある。また、BN粒子のアスペクト比(縦/横比)はできるだけ大きい方が熱伝導性を向上させる点で好ましく、アスペクト比としては20以上が好ましい。
【0016】
このようなBN粉末は、例えば粗製BN粉末をアルカリ金属又はアルカリ土類金属のほう酸塩の存在下、窒素雰囲気中、2000℃×3〜7時間加熱処理し、結晶を発達させたBNを粉砕後、必要に応じて硝酸等の強酸によって精製することによって製造することができる。
【0017】
本発明の熱伝導性樹脂成形体は、上記樹脂が上記熱伝導性フイラーを含有してなる成形体であり、外力によって容易に変形し、しかも連通孔を有してなることが特徴である。熱伝導性フイラーの含有量は、20〜70体積%特に35〜45体積%であることが好ましい。20体積%未満では、樹脂成形体に十分な熱伝導性を付与することができず、また70体積%をこえると、樹脂成形体の機械的強度が低下し、用途に著しい制約を受ける。
【0018】
本発明において、「外力によって容易に変形する」とは、0.1MPa程度の小さい荷重でも外観からわかる程度に変形する高柔軟性であることを意味する。その程度は、0.1MPaの荷重をかけた時に厚みが5%以上変形するか、アスカーC硬度が100以下であることが好ましい。その調整は、樹脂の硬化程度、熱伝導性フイラーの充填量、更には後記する連通孔の大きさとその数などによって行うことができる。
【0019】
また、本発明における「連通孔」とは、図1に例示するように、樹脂成形体の一方の面から反対面にわたって貫通した気孔を意味する。連通孔の大きさとしては、気孔断面積の平均が0.1〜10mm2 であることが好ましく、またその本数は、単数でも複数でもよいが、樹脂成形体の気孔率が5〜50%特に10〜30%となる本数であることが好ましい。
【0020】
連通孔は、目視又は顕微鏡観察によって確認することができ、その気孔断面積広さは、顕微鏡写真の画像処理によって測定することができる。また、樹脂成形体の気孔率は、樹脂成形体の単位断面積当たりの気孔断面積の割合を測定することによって求めることができる。
【0021】
本発明の熱伝導性樹脂成形体の形状については全く任意であり、用途に応じて適切な形状が選択される。シート状ないしは矩形状のものは、熱伝導性シートや高柔軟性放熱スペーサーとして使用される。この場合において、連通孔は樹脂成形体の厚み方向に形成されていることが好ましい。更には、図2に示すように、シートの厚み方向に配向しているBN粒子の割合が、シートの幅方向に配向している割合よりも多くすることが更に好ましい。具体的には、シートの厚み方向にX線を照射して得られたX線回折図において、<100>面(a軸)に対する<002>面(c軸)のピーク比(<002>/<100>)が6以下であることが好ましい。このような状態にしてBN粒子を樹脂に充填する方法については後記する。
【0022】
本発明の熱伝導性樹脂成形体は、電子機器の放熱部材として好適であり、連通孔のそれぞれの開気孔面を発熱電子部品面とヒートシンク面に接触させ、両者間に介在させて使用されることが好ましい。放熱部材の介在には、通常、締め付け外力が加わるので、それによって連通孔の一部又は全部が押しつぶされた状態となっている。
【0023】
次に、本発明の熱伝導性樹脂成形体の製造方法について説明する。
【0024】
先ず、樹脂と熱伝導性フイラーを混合する。両者の割合は、樹脂30〜80体積%、熱伝導性フイラー70〜20体積%であることが好ましい。混合は、ロールミル、ニーダー、バンバリーミキサー等を用いて行われる。次いで、この混合物を複数穴を有するダイスより押し出して未硬化の棒状成型物を成形し、それらの複数本を連通孔となる空隙を設けて集結する。一本の棒状成型物の断面積(ダイスの穴径に相当)は、0.5〜300mm2 とすることが好ましく、これによって、熱伝導性フイラーがBN粉末である場合、混合物がダイスの狭い流路を通過する際にBN粒子を一定方向に配向させることができ、もって本発明の熱伝導性樹脂成形体の厚み方向に配向しているBN粒子の割合が、幅方向に配向している割合よりも容易に多くすることが可能となる。
【0025】
次に、未硬化の棒状成型物の複数本を、本発明の熱伝導性樹脂成形体の連通孔となる空隙を設けて集結し、所望長さに切断してから硬化させるか、又は硬化させてから所望長さに切断することによって、本発明の熱伝導性樹脂成形体を製造することができる。
【0026】
未硬化棒状成型物の集結物の外観形状は柱状体であり、その平面(断面)形状は連通孔を有する矩形、楕円、円などである。その平面形状の大きさについては、対角線、直径、長径等の最大長さが30cm程度であることが、切断の容易さや樹脂の硬化の点で好ましい。
【0027】
未硬化棒状成型物の集結物の硬化は、遠赤外乾燥炉内を通過させる、熱風乾燥機に入れて加熱するとによって行われる。なお、棒状成型物の切断幅、すなわち本発明の熱伝導性樹脂成形体の厚みは、0.05〜5mm特に0.2〜2mmであることが好ましい。
【0028】
【実施例】
以下、実施例と比較例をあげて更に具体的に本発明を説明する。
【0029】
実施例1
ミラブル型シリコーンゴム(東芝シリコーン社製、商品名「TSE2913U」)に、平均粒子径15μm、平均粒子厚み1μmのBN粉末(電気化学工業社製、商品名「デンカボロンナイトライド」)を表1に示す割合で配合し、ミキサー(神戸製鋼社製「BBミキサー」)で混合し、更にシリコーンゴム用加硫剤(2、4−ジクロロパーオキサイド)、シリコーンゴム用難燃付与剤(白金含有イソプロピルアルコール)、フイラー分散剤(日本ユニカー社製、商品名「A−173」)をそれぞれ少量添加して熱伝導性コンパウンドを調製した。
【0030】
次いで、直径3mmの穴が縦に17列、横に17列設けられたダイスから、上記コンパウンドを押し出して未硬化の棒状成型物を成形し、それらの全てを自重と側面ロールによって集結しながら(集結体の平面形状は50×50mm程度である)、150℃の遠赤外乾燥炉を5分間通過させて加硫硬化させた後、幅(厚み)1mmに切断して、図1に示すような本発明の熱伝導性樹脂成形体を製造した。
【0031】
実施例2
樹脂としてA液(ビニル基を有するオルガノポリシロキサン)とB液(H−Si基を有するオルガノポリシロキサン)の二液性の付加反応型液状シリコーン(東レダウコーニング社製、商品名「SE−1885」)をA液対B液の混合比を表1に示す配合(体積%)で混合してコンパウンドを調製したこと以外は実施例1と同様にして熱伝導性樹脂成形体を製造した。
【0032】
実施例3
遠赤外乾燥機を通さなかったこと以外は実施例2と同様にして熱伝導性樹脂成形体を製造した。
【0033】
比較例1〜2
押し出し口が平面形状であるダイスを用いたこと以外は、実施例1又は実施例2と同様にして樹脂成形体を製造した。
【0034】
比較例3
実施例1で調製された熱伝導性コンパウンドを、圧力50kg/cm2 、温度150℃、30分間の加圧プレスを行って樹脂成形体を製造した。
【0035】
上記で得られた樹脂成形体について、以下に従う熱伝導率、「外力によって容易に変形する」指標としての硬度、連通孔の有無、及び気孔率を測定した。それらの結果を表1に示す。
【0036】
(1)熱伝導率
樹脂成形体を25×25mmに切断し、これに15×15mmの銅製ヒーターケースと銅板との間にはさみ、締付けトルク5kgf−cmにてセットした後、銅製ヒーターケースに電力15Wをかけて4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、熱抵抗(℃/W)=温度差(℃)/電力(W)、にて熱抵抗を算出した。次いで、銅製ヒーターケースと銅板の伝熱面積を2.25cm2 を用い次式により、熱伝導率を算出した。
【0037】
熱伝導率(W/mK)={電力(W)×シート厚(m)}/{伝熱面積(m2)×温度差(℃)}
【0038】
(2)「外力によって容易に変形する」指標としての硬度硬度
樹脂成形体を数枚重ね厚みを10mmとし、アスカーC硬度計にて硬度を測定した。
【0039】
(3)連通孔の有無
目視と顕微鏡写真によって行った。
【0040】
(4)気孔率
樹脂成形体の単位断面積当たりの気孔断面積の割合を測定した。
【0041】
【表1】
【0042】
表1より、実施例の熱伝導性樹脂成形体は、比較例の樹脂成形体に比べて、熱伝導性が大幅に向上し、しかも高柔軟性であることがわかる。
【0043】
次に、実施例で製造された本発明の熱伝導性樹脂成形体を、ボールグッリドアレイ式のSRAMとヒートシンクの間にわずかの荷重をかけて介在させたところ良く密着し、作動時の温度上昇の少ない高信頼性の電子機器を作製することができた。
【0044】
【発明の効果】
本発明の製造方法によれば、高柔軟性かつ高熱伝導性の樹脂成形体を生産性良く製造することができる。製造された熱伝導性樹脂成形体は、熱伝導性シート、柔軟性放熱スペーサー等の電子機器の放熱部材として好適なものである。
【図面の簡単な説明】
【図1】本発明の熱伝導性樹脂成形体の斜視図
【図2】図1のA−A断面図
【図3】従来の熱伝導性シートの厚み方向における断面図
【符号の説明】
1 熱伝導性樹脂成形体
2 樹脂
3 熱伝導性フイラー
4 連通孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how of the thermally conductive resin formed body. More specifically, the present invention relates to a method for manufacturing a thermally conductive molded body suitable as a heat radiating member used by interposing between a heat generating electronic component and a heat sink when radiating heat from an electronic device.
[0002]
[Prior art]
In electronic equipment, how to remove the heat generated during use has become an important issue. Conventionally, heat-generating electronic components such as transistors and thyristors are used as heat sinks such as heat-dissipating fins and heat-dissipating plates. It is done by attaching through a sheet. As this heat conductive sheet, a resin in which a heat conductive filler is dispersed and used is used, and since it has good heat conductivity, it is widely used for mounting heat-generating electronic components. Recently, a highly flexible heat-dissipating spacer has been used in which the flexibility of the heat conductive sheet is remarkably increased to, for example, 50 or less in Asuka C hardness.
[0003]
In order to improve the thermal conductivity of the thermal conductive sheet, it is sufficient to increase the filling rate of the thermal conductive filler such as boron nitride (BN). However, since the mechanical strength of the sheet is lowered, there is a limit to high filling. was there.
[0004]
Further, BN is a scaly particle, and the thermal conductivity of the particle itself is about 110 W / mK in the scaly surface direction, but only about 2 W / mK in the direction perpendicular to the surface. It is known that the thermal conductivity of particles is several tens of times better in the surface direction. That is, by making the surface direction, which is the direction in which the thermal conductivity of the BN particles is excellent, the same as the thickness direction of the sheet to which the heat radiating sheet transmits heat (the BN particles are set in the sheet thickness direction), the thermal conductivity is dramatically increased. However, in the conventional manufacturing methods (calendar roll method, doctor blade method, extrusion method), the orientation of BN particles occurs during sheet molding, and the surface direction of the scaly particles as shown in FIG. Is the same as the sheet surface direction, and excellent thermal conductivity in the surface direction of the BN particles remains unutilized.
[0005]
In order to solve such problems, Japanese Patent Publication No. 6-12463 proposes to orient BN particles randomly, but there are still many BN particles that are horizontally oriented. It cannot be said that the excellent thermal conductivity in the surface direction of the particles is fully utilized.
[0006]
Therefore, as shown in FIG. 2, as a method for improving the thermal conductivity by increasing the proportion of BN particles oriented in the sheet thickness direction more than the proportion oriented in the sheet width direction, JP-B-6 No. 38460, but in this method, the solidified silicone filled with BN particles is blocked by a molding machine and sliced vertically to form a sheet. It is too wide and the degree of orientation of BN in the interior is insufficient, and sufficient improvement in thermal conductivity cannot be expected.
[0007]
Furthermore, in any of the methods, if BN particles are highly filled to improve thermal conductivity, the sheet becomes hard, and if the heat generating electronic component is weak to the load, there is a problem that it is damaged by the tightening force at the time of mounting. It was.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and when a heat radiating member such as a heat conductive sheet is interposed between a heat generating electronic component and a heat sink by a tightening force, an extra tightening force is placed in the heat radiating member. It is an object of the present invention to provide a highly flexible and highly thermally conductive heat dissipating member that can be absorbed by the formed communication holes and thereby reduce damage to heat-generating electronic components. Moreover , as shown in FIG. 2, the heat radiating member which provided the further high heat conductivity by making many heat conductive filler particles orientated in the state close | similar to an upright state exist in the thickness direction rather than the width direction of a heat radiating member. Is to provide. The purpose of the present invention is to produce with good productivity the high flexibility and high heat conductivity of the heat radiating member.
[0009]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(Claim 1 ) An uncured rod-shaped molded product is molded using a resin composition containing a heat conductive filler, and a plurality of these are formed by providing voids serving as communication holes, and the aggregated product has a desired length. A method for producing a thermally conductive resin molded body comprising: cutting after being cured, or curing and then cutting.
(Claim 2) thermally conductive filler-containing resin composition is a silicone containing 20-70 vol% BN particles, cross-sectional area 0.5~300Mm 2 rod-like molded product, the porosity of the gathered material is 5 50%, the production method of the thermally conductive resin formed body according to claim 1, wherein the cutting width is 0.05 to 5 mm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The resin referred to in the present invention is a general one such as silicone rubber (liquid silicone rubber vulcanized by addition reaction, heat-curing type millable type silicone rubber using peroxide for vulcanization), epoxy resin, olefin resin, etc. It is a resin used for electronic materials.
[0012]
In the heat radiating member of an electronic device, since the adhesiveness between the heat generating surface of the heat generating electronic component and the heat sink surface is required, a resin having flexibility or a resin having rubber elasticity is desirable. As the flexible resin, a solidified product of addition reaction type liquid silicone is preferable, and specific examples thereof include one-part silicone having both vinyl group and H-Si group in one molecule, and terminal or side. There are two-part silicones of an organopolysiloxane having a vinyl group in the chain and an organopolysiloxane having two or more H-Si groups in the terminal or side chain. As a commercial item of such an addition reaction type liquid silicone, the Toray Dow Corning make, brand name "SE-1885" etc. can be illustrated. The flexibility of the resin can be adjusted by the crosslinking density of the silicone and the filling amount of the heat conductive filler.
[0013]
As the heat conductive filler used in the present invention, when insulation is required, ceramic powders such as boron nitride, silicon nitride, aluminum nitride, alumina, and magnesia are used. In addition to the ceramic powder, metal powder such as aluminum, copper, silver, and gold, silicon carbide powder, carbon powder, and the like are used. One or two or more of these heat conductive fillers are used. The heat conductive filler may have any shape such as a crushing irregular shape, a spherical shape, a fiber shape, a needle shape, or a scale shape, and a particle size having an average particle size of about 1 to 100 μm is used.
[0014]
Even in the above heat conductive filler, it is desirable to use BN powder alone or in combination with other heat conductive fillers for use in heat dissipation members of electronic devices such as heat conductive sheets and highly flexible heat dissipation spacers. This is because, as described above, the thermal conductivity of BN differs by several tens of times in the direction of the hexagonal annular mesh surface (a axis) and the direction perpendicular to the hexagonal annular mesh surface (c axis). This is because the high thermal conductivity in the surface direction can be utilized.
[0015]
The thickness (c-axis direction) of the BN particles is preferably 0.1 μm or more. If the thickness is less than 0.1 μm, the particles may be destroyed when dispersed in the resin. Further, the aspect ratio (vertical / lateral ratio) of the BN particles is preferably as large as possible from the viewpoint of improving thermal conductivity, and the aspect ratio is preferably 20 or more.
[0016]
Such BN powder is obtained, for example, by subjecting crude BN powder to heat treatment at 2000 ° C. for 3 to 7 hours in a nitrogen atmosphere in the presence of an alkali metal or alkaline earth metal borate, and pulverizing BN that has developed crystals. If necessary, it can be produced by purification with a strong acid such as nitric acid.
[0017]
The thermally conductive resin molded article of the present invention is a molded article in which the resin contains the thermally conductive filler, and is characterized by being easily deformed by an external force and having a communication hole. The content of the heat conductive filler is preferably 20 to 70% by volume, particularly 35 to 45% by volume. If it is less than 20% by volume, sufficient heat conductivity cannot be imparted to the resin molded body, and if it exceeds 70% by volume, the mechanical strength of the resin molded body is lowered, and the application is significantly restricted.
[0018]
In the present invention, “easily deformed by an external force” means high flexibility that deforms to an extent that can be seen from the appearance even with a small load of about 0.1 MPa. The degree is preferably such that the thickness is deformed by 5% or more when a load of 0.1 MPa is applied, or the Asker C hardness is 100 or less. The adjustment can be performed according to the degree of curing of the resin, the filling amount of the heat conductive filler, and the size and number of communication holes described later.
[0019]
In addition, the “communication hole” in the present invention means a pore penetrating from one surface of the resin molded body to the opposite surface as illustrated in FIG. As the size of the communication holes, the average pore cross-sectional area is preferably 0.1 to 10 mm 2 , and the number of the communication holes may be singular or plural, but the porosity of the resin molded body is particularly 5 to 50%. The number is preferably 10 to 30%.
[0020]
The communication hole can be confirmed by visual observation or microscopic observation, and the pore cross-sectional area can be measured by image processing of a microphotograph. The porosity of the resin molded body can be determined by measuring the ratio of the pore cross-sectional area per unit cross-sectional area of the resin molded body.
[0021]
The shape of the thermally conductive resin molding of the present invention is completely arbitrary, and an appropriate shape is selected according to the application. The sheet or rectangular shape is used as a heat conductive sheet or a highly flexible heat dissipation spacer. In this case, the communication hole is preferably formed in the thickness direction of the resin molded body. Furthermore, as shown in FIG. 2, it is more preferable that the ratio of BN particles oriented in the thickness direction of the sheet is larger than the ratio of orientation in the width direction of the sheet. Specifically, in the X-ray diffraction diagram obtained by irradiating X-rays in the thickness direction of the sheet, the peak ratio of the <002> plane (c axis) to the <100> plane (a axis) (<002> / <100>) is preferably 6 or less. A method for filling the resin with BN particles in such a state will be described later.
[0022]
The thermally conductive resin molded body of the present invention is suitable as a heat radiating member of an electronic device, and is used with each open hole surface of the communication hole being in contact with the heat generating electronic component surface and the heat sink surface and being interposed therebetween. It is preferable. Usually, a tightening external force is applied to the interposition of the heat dissipating member, whereby a part or all of the communication hole is crushed.
[0023]
Next, the manufacturing method of the heat conductive resin molding of this invention is demonstrated.
[0024]
First, a resin and a heat conductive filler are mixed. The ratio of both is preferably 30 to 80% by volume of resin and 70 to 20% by volume of heat conductive filler. Mixing is performed using a roll mill, a kneader, a Banbury mixer, or the like. Next, this mixture is extruded from a die having a plurality of holes to form an uncured rod-shaped molded product, and a plurality of these are provided together with a gap serving as a communication hole. The cross-sectional area (corresponding to the hole diameter of a die) of a single rod-shaped molded product is preferably 0.5 to 300 mm 2 , whereby when the thermally conductive filler is BN powder, the mixture is narrow in the die. When passing through the flow path, the BN particles can be oriented in a certain direction, so that the proportion of the BN particles oriented in the thickness direction of the thermally conductive resin molded body of the present invention is oriented in the width direction. It becomes possible to increase more easily than the ratio.
[0025]
Next, a plurality of uncured rod-shaped moldings are gathered together by providing voids that serve as communication holes of the thermally conductive resin molded body of the present invention, and cut into a desired length and then cured or cured. The heat conductive resin molding of this invention can be manufactured by cut | disconnecting to desired length after that.
[0026]
The external shape of the uncured rod-shaped molded product is a columnar body, and its planar (cross-sectional) shape is a rectangle, an ellipse, a circle or the like having a communication hole. Regarding the size of the planar shape, the maximum length such as a diagonal line, diameter, major axis, etc. is preferably about 30 cm from the viewpoint of easy cutting and curing of the resin.
[0027]
Curing of the aggregate of the uncured rod-shaped molded product is performed by heating in a hot-air dryer that passes through a far-infrared drying furnace. In addition, it is preferable that the cutting width of the rod-shaped molded product, that is, the thickness of the thermally conductive resin molded body of the present invention is 0.05 to 5 mm, particularly 0.2 to 2 mm.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0029]
Example 1
Table 1 shows BN powder (trade name “DENCABORON NITRIDE” manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle size of 15 μm and an average particle thickness of 1 μm on a millable silicone rubber (trade name “TSE2913U” manufactured by Toshiba Silicone Co., Ltd.). It mixes with the ratio which shows, mixes with the mixer (the Kobe Steel “BB mixer”), furthermore vulcanizing agent for silicone rubber (2,4-dichloroperoxide), flame retardant imparting agent for silicone rubber (platinum isopropyl alcohol) ) And a filler dispersant (trade name “A-173” manufactured by Nihon Unicar Co., Ltd.) were added in small amounts to prepare a thermally conductive compound.
[0030]
Next, from a die having 17 rows of 3 mm diameter holes arranged vertically and 17 rows horizontally, the above compound is extruded to form an uncured rod-shaped molded product, and all of them are gathered by their own weight and side rolls ( The planar shape of the aggregate is about 50 × 50 mm), passed through a 150 ° C. far-infrared drying oven for 5 minutes and cured by vulcanization, and then cut into a width (thickness) of 1 mm, as shown in FIG. The heat conductive resin molding of this invention was manufactured.
[0031]
Example 2
Two-part addition-reaction type liquid silicone (trade name "SE-1885, manufactured by Toray Dow Corning Co., Ltd.) of liquid A (organopolysiloxane having vinyl group) and liquid B (organopolysiloxane having H-Si group) as resin. )) Was prepared in the same manner as in Example 1 except that a compound was prepared by mixing the mixing ratio of A liquid to B liquid in the formulation (volume%) shown in Table 1 to produce a thermally conductive resin molded body.
[0032]
Example 3
A thermally conductive resin molding was produced in the same manner as in Example 2 except that it did not pass through a far infrared dryer.
[0033]
Comparative Examples 1-2
A resin molded body was manufactured in the same manner as in Example 1 or Example 2 except that a die having a flat extrusion port was used.
[0034]
Comparative Example 3
The heat conductive compound prepared in Example 1 was pressure-pressed at a pressure of 50 kg / cm 2 and a temperature of 150 ° C. for 30 minutes to produce a resin molded body.
[0035]
About the resin molding obtained above, the thermal conductivity according to the following, the hardness as an index “deformable easily by external force”, the presence or absence of communication holes, and the porosity were measured. The results are shown in Table 1.
[0036]
(1) The thermal conductivity resin molded body is cut into 25 × 25 mm, sandwiched between a 15 × 15 mm copper heater case and a copper plate, and set with a tightening torque of 5 kgf-cm. 15 W was applied for 4 minutes, the temperature difference between the copper heater case and the copper plate was measured, and the thermal resistance was calculated as follows: thermal resistance (° C./W)=temperature difference (° C.) / Power (W). Next, the heat conductivity was calculated by the following equation using 2.25 cm 2 as the heat transfer area between the copper heater case and the copper plate.
[0037]
Thermal conductivity (W / mK) = {Power (W) × Sheet thickness ( m )} / {Heat transfer area (m 2 ) × Temperature difference (° C.)}
[0038]
(2) Hardness as an index of “easily deformed by external force” A number of resin moldings were stacked, the thickness was 10 mm, and the hardness was measured with an Asker C hardness meter.
[0039]
(3) The presence or absence of a communication hole was observed visually and microscopically.
[0040]
(4) Porosity The ratio of the pore cross-sectional area per unit cross-sectional area of the resin molded body was measured.
[0041]
[Table 1]
[0042]
From Table 1, it can be seen that the thermal conductive resin moldings of the examples have significantly improved thermal conductivity and high flexibility as compared with the resin moldings of the comparative examples.
[0043]
Next, the heat conductive resin molded body of the present invention produced in the example was in close contact with a ball grid array type SRAM and a heat sink placed with a slight load, and the temperature during operation was A highly reliable electronic device with little rise could be manufactured.
[0044]
【The invention's effect】
According to the production method of the present invention , it is possible to produce a highly flexible and highly thermally conductive resin molded product with high productivity . The manufactured heat conductive resin molding is suitable as a heat radiating member for electronic devices such as a heat conductive sheet and a flexible heat radiating spacer.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat conductive resin molding of the present invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. FIG. 3 is a cross-sectional view in the thickness direction of a conventional heat conductive sheet.
1 Thermally Conductive Resin Molded
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28223998A JP3721272B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing thermally conductive resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28223998A JP3721272B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing thermally conductive resin molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000108220A JP2000108220A (en) | 2000-04-18 |
JP3721272B2 true JP3721272B2 (en) | 2005-11-30 |
Family
ID=17649877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28223998A Expired - Fee Related JP3721272B2 (en) | 1998-10-05 | 1998-10-05 | Method for producing thermally conductive resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3721272B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4137288B2 (en) * | 1999-06-02 | 2008-08-20 | 電気化学工業株式会社 | Method for producing thermally conductive silicone molding |
JP2002111210A (en) * | 2000-09-28 | 2002-04-12 | Kyocera Corp | Wiring board and method of manufacturing the same |
JP2003060134A (en) | 2001-08-17 | 2003-02-28 | Polymatech Co Ltd | Heat conductive sheet |
JP2009094110A (en) * | 2007-10-03 | 2009-04-30 | Denki Kagaku Kogyo Kk | Heat dissipation member, sheet thereof, and method for manufacturing the same |
KR101672068B1 (en) * | 2009-05-05 | 2016-11-02 | 파커-한니핀 코포레이션 | Thermally conductive foam product |
JP5330910B2 (en) * | 2009-07-03 | 2013-10-30 | 電気化学工業株式会社 | Resin composition and use thereof |
US8921458B2 (en) | 2010-08-26 | 2014-12-30 | Denki Kagaku Kogyo Kabushiki Kaisha | Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material |
JP2015092534A (en) * | 2013-09-30 | 2015-05-14 | 積水化学工業株式会社 | Silicone heat conduction sheet |
WO2018190233A1 (en) * | 2017-04-12 | 2018-10-18 | デンカ株式会社 | Heat-conductive sheet and method for manufacturing same |
JP7279522B2 (en) * | 2019-05-31 | 2023-05-23 | 株式会社アイシン | Thermally conductive sheet and method for manufacturing thermally conductive sheet |
-
1998
- 1998-10-05 JP JP28223998A patent/JP3721272B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000108220A (en) | 2000-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9966324B2 (en) | Thermally conductive sheet, method for producing same, and semiconductor device | |
EP2871204B1 (en) | Method for producing thermally conductive sheet | |
EP2871674B1 (en) | Thermally conductive sheet | |
WO2010047278A1 (en) | Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same | |
JP3721272B2 (en) | Method for producing thermally conductive resin molding | |
TWI714804B (en) | Thermally conductive sheet and semiconductor device | |
JP3568401B2 (en) | High thermal conductive sheet | |
JPH1177795A (en) | Production of rubber sheet | |
WO2022044724A1 (en) | Thermally conductive sheet and method for manufacturing thermally conductive sheet | |
JP4446514B2 (en) | Thermally conductive silicone molded body heat dissipation member | |
JP2025085723A (en) | Thermally conductive sheet and method for manufacturing the thermally conductive sheet | |
JP3585385B2 (en) | Method for producing thermally conductive silicone molded article | |
JP4514344B2 (en) | Thermally conductive resin molding and its use | |
JP3531785B2 (en) | Manufacturing method of heat dissipating member for electronic parts | |
JP4545246B2 (en) | Method for producing thermally conductive silicone molded body | |
JP3558548B2 (en) | Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same | |
US20240120254A1 (en) | Thermally-conductive sheet and electronic device | |
JP3606767B2 (en) | High thermal conductive silicone molding and its use | |
JP3464752B2 (en) | Molded polymer material and its use | |
JP2000344919A (en) | Method for producing thermally conductive silicone molding | |
JP4137288B2 (en) | Method for producing thermally conductive silicone molding | |
JP3933341B2 (en) | Thermally conductive spacer | |
JP7701793B2 (en) | Thermally conductive sheet and method for manufacturing the same | |
JP2004363272A (en) | Heat dissipation member | |
JP4313920B2 (en) | High thermal conductivity spacer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050912 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |