JP3720609B2 - Antireflection film and optical system provided with the same - Google Patents
Antireflection film and optical system provided with the same Download PDFInfo
- Publication number
- JP3720609B2 JP3720609B2 JP00392499A JP392499A JP3720609B2 JP 3720609 B2 JP3720609 B2 JP 3720609B2 JP 00392499 A JP00392499 A JP 00392499A JP 392499 A JP392499 A JP 392499A JP 3720609 B2 JP3720609 B2 JP 3720609B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- film
- antireflection film
- substrate
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 25
- 239000010408 film Substances 0.000 claims description 88
- 239000000758 substrate Substances 0.000 claims description 28
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 9
- 239000010436 fluorite Substances 0.000 claims description 9
- 239000010453 quartz Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000012788 optical film Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 7
- 230000003667 anti-reflective effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- 229910005690 GdF 3 Inorganic materials 0.000 description 1
- 229910004379 HoF 3 Inorganic materials 0.000 description 1
- 229910017768 LaF 3 Inorganic materials 0.000 description 1
- 101000574352 Mus musculus Protein phosphatase 1 regulatory subunit 17 Proteins 0.000 description 1
- 229910009518 YbF Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、反射防止膜及びそれを施した光学系に関し、特に蛍石や石英等の光学素子基板の表面に所定の屈折率層を複数積層し、例えばArFエキシマレーザーから放射される波長193nm、及びその近傍の紫外光領域の反射防止を行った、半導体デバイス製造用の各種の光学系に適用したときに有効なものである。
【0002】
【従来の技術】
従来より紫外光用の反射防止膜としてAl2 O3 膜を含む高屈折率層とSiO2 を含む低屈折率層を透明基板面に交互に複数積層した反射防止膜が、例えば特開平7−218701号公報で提案されている。
【0003】
又、フッ化物膜を用いた反射防止膜が、例えば特開平7−244205号公報や特開平7−244217号公報で提案されている。
【0004】
【発明が解決しようとする課題】
波長193nm近傍の紫外光用の反射防止膜として特開平7−218701号公報で提案されているAl2 O3 膜とSiO2 膜を用いた反射防止膜は反射防止帯域幅(波長幅)が比較的狭い傾向があった。
【0005】
一般に反射防止帯域幅が狭いと製造上の膜厚制御の誤差により、対象とする波長幅が変動してきたりする。又レンズ等の曲面に反射防止膜を形成した場合、光の入射角の違いにより反射率、透過率等の光学特性が大きく変動してくる場合があった。
【0006】
特開平7−244205号公報や特開平7−244217号公報で提案されているフッ化物膜を用いた反射防止膜は対象とする波長域において反射率を0.2%以下という低反射率にすることが難しく、又フッ化物膜の耐環境性が酸化物(Al2 O3 ,SiO2 )に比べて劣るという問題点があった。
【0007】
本発明は、所定の屈折率を有する透明基板上に高屈折率層と低屈折率層とを適切な光学的膜厚で積層することによって波長193nm近傍の紫外領域において良好なる反射防止を行った耐環境性に優れた反射防止膜及びそれを施した光学系の提供を目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明の反射防止膜は、透明な基板上に該基板側から空気側へ順にAl2 O3 を含む高屈折率層とSiO2を含む低屈折率層を交互に積層し、全体として8層設け、波長193nmの光に対する該低屈折率層と該高屈折率層の屈折率をそれぞれns,naとした場合、
1.560≦ns≦1.57
1.68≦na≦1.763
を満足し、
波長180nmから波長200nmの範囲に設計中心波長λ0をもち、前述の各層の光学的膜厚(屈折率×幾何学的膜厚)を前記基板側から数えて第1層から第8層まで順にd1,d2,d3,d4,d5,d6,d7,d8と表すとき、
0.02×λ0≦d1≦0.16×λ0
0.95×λ0≦d2≦1.20×λ0
0.30×λ0≦d3≦0.50×λ0
0.22×λ0≦d4≦0.38×λ0
0.22×λ0≦d5≦0.27×λ0
0.24×λ0≦d6≦0.30×λ0
0.23×λ0≦d7≦0.27×λ0
0.23×λ0≦d8≦0.29×λ0
を満たすことを特徴としている。
【0009】
請求項2の発明は、請求項1の発明において、前記基板が石英又は蛍石であることを特徴としている。
【0010】
請求項3の発明の光学系は、請求項1又は2の反射防止膜を施したレンズを備えることを特徴としている。
【0011】
請求項4の発明の露光装置は、請求項3の光学系により原版のパターンを基板上に結像することを特徴としている。
【0012】
請求項5の発明のデバイスの製造方法は、請求項4の露光装置を用いて原版のパターンを基板上に転写する工程を有することを特徴としている。
【0013】
【発明の実施の形態】
図1は本発明の反射防止膜の実施形態の要部断面概略図である。本実施形態の反射防止膜は石英や蛍石等の透明な基板G面上にAl2 O3 を含む高屈折率層とSiO2 を含む低屈折率層を交互に積層し、全体として8層積層した多層膜より成っている。そして基板Gとして、その屈折率が低屈折率層の屈折率よりも低い蛍石やそれよりも僅かに高い合成石英等を用いている。
【0014】
図1に示す反射防止膜の8層は基板G側から空気層側にかけて順に数えたとき第1,第3,第5,第7層がAl2 O3 を含む高屈折率層(H)、第2,第4,第6,第8層がSiO2 を含む低屈折率層(L)で構成している。そして高屈折率層Hと低屈折率層L、波長193nmの光に対する屈折率を各々na,nsとしたとき、
1.560≦ns≦1.57
1.68 ≦na≦1.763
を満足するようにしている。
【0015】
又、本実施形態では、波長180nmから波長200nmの範囲に設計中心波長λ0をもち、前述の各層の光学的膜厚(屈折率×幾何学的膜厚)を前記基板側から数えて第1層から第8層まで順にd1,d2,d3,d4,d5,d6,d7,d8と表すとき、
0.02×λ0≦d1≦0.16×λ0
0.95×λ0≦d2≦1.20×λ0
0.30×λ0≦d3≦0.50×λ0
0.22×λ0≦d4≦0.38×λ0
0.22×λ0≦d5≦0.27×λ0
0.24×λ0≦d6≦0.30×λ0
0.23×λ0≦d7≦0.27×λ0
0.23×λ0≦d8≦0.29×λ0
を満たすように各層を設定している。
【0016】
次に本発明の反射防止膜の各実施例の具体的な数値について説明する。
【0017】
実施例1
波長193nmでの屈折率1.713のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表1に示した。合成石英の基板を用い、表1の膜厚で真空蒸着法を用いて反射防止膜を製作し、その反射特性を測定した。図2に反射率光学特性測定結果を示す。反射率0.2%以下の特性が得られた。
【0018】
【表1】
【0019】
実施例2
波長193nmでの屈折率1.713のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表2に示した。蛍石の基板を用い、表2の膜厚でスパッタリング法を用いて反射防止膜を製作し、その反射特性を測定した。図3に反射率光学特性測定結果を示す。反射率0.2%以下の特性であることが確認された。
【0020】
【表2】
【0021】
実施例3
波長193nmでの屈折率1.733のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表3に示した。合成石英の基板を用い、表3の膜厚でスパッタリング法を用いて反射防止膜を製作し、その反射特性を測定した。図4に反射率光学特性測定結果を示す。反射率0.2%以下の特性であることが確認された。
【0022】
【表3】
【0023】
実施例4
波長193nmでの屈折率1.733のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表4に示した。蛍石の基板を用い、表4の膜厚で真空蒸着法を用いて反射防止膜を製作し、その反射特性を測定した。図5に反射率光学特性測定結果を示す。反射率0.2%以下の特性であることが確認された。
【0024】
【表4】
【0025】
実施例5
波長193nmでの屈折率1.763のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表5に示した。合成石英の基板を用い、表5の膜厚でスパッタリング法を用いて反射防止膜を製作し、その反射特性を測定した。図6に反射率光学特性測定結果を示す。反射率0.2%以下の特性であることが確認された。
【0026】
【表5】
【0027】
実施例6
波長193nmでの屈折率1.763のAl2 O3 膜と屈折率1.560のSiO2 膜を用いて、設計中心波長λ0=193nmの紫外光に対する反射防止膜の構成を表6に示した。蛍石の基板を用い、表6の膜厚で真空蒸着法を用いて反射防止膜を製作し、その反射特性を測定した。図7に反射率光学特性測定結果を示す。反射率0.2%以下の特性であることが確認された。
【0028】
【表6】
【0029】
比較例
表1〜6の反射防止膜とフッ化物膜を用いた反射防止膜及びフッ化物単層膜とSiO2 ,Al2 O3 単層膜の耐環境性を比較する為、60℃−相対湿度90%の環境下に1000時間放置し、外観、密着性の比較を行った。フッ化物膜は、高屈折率膜として、NdF3 ,LaF3 ,GdF3 ,HoF3 ,YbF3 、低屈折率膜としてAlF3 ,Na3 AlF6 ,MgF2 を用いた。
【0030】
60℃−相対湿度90%の環境下に1000時間放置した結果は、単層膜サンプル及び反射防止膜サンプルともフッ化物を用いたサンプルはすべて、外観に曇りや剥がれが見られ、テープ試験の密着性にもSiO2 ,Al2 O3 に比べ劣っていることが確認された。
【0031】
本発明では前述した構成の反射防止膜を各レンズ面やミラー面等に適用した光学系を紫外光領域を対象とした各種の装置に用いている。例えば、前述した構成の反射防止膜を施した光学系を半導体デバイスを製造するときに回路パターンが形成されているレチクル面を照明するときの照明装置やレチクル面上のパターンをウエハ面上に投影露光するときの露光装置等に用いている。又このときの露光装置によって得られたウエハを現像処理工程を介してデバイスを製造するようにしている。
【0032】
図8は本発明の反射防止膜を備える光学系を用いた半導体デバイス製造用の露光装置の要部概略図である。
【0033】
図中1はエキシマレーザ等の紫外光を放射する光源である。2は照明装置であり、光源1からの光束でレチクル4を照明している。3はミラー面である。5は投影光学系であり、レチクル4面上のパターンをウエハ6に投影している。
【0034】
本実施形態ではミラー3、そして照明装置2や投影光学系5に使われているレンズ等の光学要素には本発明の反射防止膜が施されている。これによって光束の各面での反射防止を図りフレアーやゴーストの発生を防止して良好なる投影パターン像を得ている。
【0035】
次に上記説明した露光装置を利用した半導体デバイスの製造方法の実施例を説明する。
【0036】
図9は半導体デバイス(ICやLSI等の半導体チップ、或は液晶パネルやCCD等)の製造のフローチャートである。
【0037】
本実施例においてステップ1(回路設計)では半導体デバイスの回路設計を行なう。ステップ2(マスク製作)では設計した回路パターンを形成したマスクを製作する。
【0038】
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、前記用意したマスクとウエハを用いてリソグラフィ技術によってウエハ上に実際の回路を形成する。
【0039】
次のステップ5(組立)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。
【0040】
ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行なう。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
【0041】
図10は上記ステップ4のウエハプロセスの詳細なフローチャートである。まずステップ11(酸化)ではウエハの表面を酸化させる。ステップ12(CVD)ではウエハ表面に絶縁膜を形成する。
【0042】
ステップ13(電極形成)ではウエハ上に電極を蒸着によって形成する。ステップ14(イオン打込み)ではウエハにイオンを打ち込む。ステップ15(レジスト処理)ではウエハに感光剤を塗布する。ステップ16(露光)では前記説明した露光装置によってマスクの回路パターンをウエハに焼付露光する。
【0043】
ステップ17(現像)では露光したウエハを現像する。ステップ18(エッチング)では現像したレジスト以外の部分を削り取る。ステップ19(レジスト剥離)ではエッチングがすんで不要となったレジストを取り除く。これらのステップを繰り返し行なうことによってウエハ上に多重に回路パターンが形成される。
【0044】
尚本実施形態の製造方法を用いれば高集積度の半導体デバイスを容易に製造することができる。
【0045】
【発明の効果】
本発明によれば以上のように、所定の屈折率を有する透明基板上に高屈折率層と低屈折率層とを適切な光学的膜厚で積層することによって波長193nm近傍の紫外領域において良好なる反射防止を行った耐環境性に優れた反射防止膜及びそれを施した光学系を達成することができる。
【0046】
特に本発明によれば、フッ化物膜の真空紫外用の反射防止膜より耐環境性の優れたSiO2 ,Al2 O3 膜を用いて真空紫外(ArFエキシマレーザー光)用の反射防止膜を提供することができる。又、膜構成を最適化することにより、石英基板及び蛍石基板上に8層構造で低反射率の紫外用の反射防止膜を提供することができる。
【図面の簡単な説明】
【図1】 本発明の反射防止膜の実施形態の要部断面概略図
【図2】 本発明の反射防止膜の実施形態1の反射特性図
【図3】 本発明の反射防止膜の実施形態2の反射特性図
【図4】 本発明の反射防止膜の実施形態3の反射特性図
【図5】 本発明の反射防止膜の実施形態4の反射特性図
【図6】 本発明の反射防止膜の実施形態5の反射特性図
【図7】 本発明の反射防止膜の実施形態6の反射特性図
【図8】 本発明の露光装置の要部概略図
【図9】 本発明のデバイスの製造方法のフローチャート
【図10】 本発明のデバイスの製造方法のフローチャート
【符号の説明】
G 基板
1 光源
2 照明装置
3 ミラー
4,R レチクル
5 投影光学系
6,W ウエハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antireflection film and an optical system provided with the antireflection film, and in particular, a plurality of predetermined refractive index layers are laminated on the surface of an optical element substrate such as fluorite and quartz, and a wavelength of 193 nm emitted from, for example, an ArF excimer laser, In addition, it is effective when applied to various optical systems for manufacturing semiconductor devices, in which the reflection of the ultraviolet light region in the vicinity thereof is prevented.
[0002]
[Prior art]
Conventionally, an antireflection film in which a plurality of high refractive index layers including an Al 2 O 3 film and low refractive index layers including SiO 2 are alternately laminated on a transparent substrate surface as an antireflection film for ultraviolet light is disclosed in, for example, This is proposed in Japanese Patent No. 218701.
[0003]
Further, an antireflection film using a fluoride film has been proposed in, for example, Japanese Patent Application Laid-Open Nos. 7-244205 and 7-244217.
[0004]
[Problems to be solved by the invention]
An antireflection film using an Al 2 O 3 film and an SiO 2 film proposed in Japanese Patent Laid-Open No. 7-218701 as an antireflection film for ultraviolet light in the vicinity of a wavelength of 193 nm has a comparison in antireflection bandwidth (wavelength width). There was a narrow tendency.
[0005]
In general, when the antireflection bandwidth is narrow, the target wavelength width may fluctuate due to an error in film thickness control in manufacturing. In addition, when an antireflection film is formed on a curved surface of a lens or the like, optical characteristics such as reflectance and transmittance may fluctuate greatly due to differences in the incident angle of light.
[0006]
The antireflection film using a fluoride film proposed in Japanese Patent Laid-Open Nos. 7-244205 and 7-244217 has a low reflectivity of 0.2% or less in the target wavelength range. In addition, the environmental resistance of the fluoride film is inferior to that of oxides (Al 2 O 3 , SiO 2 ).
[0007]
In the present invention, a high refractive index layer and a low refractive index layer are laminated with an appropriate optical film thickness on a transparent substrate having a predetermined refractive index, thereby achieving good antireflection in the ultraviolet region near a wavelength of 193 nm. An object is to provide an antireflection film excellent in environmental resistance and an optical system provided with the same.
[0008]
[Means for Solving the Problems]
The antireflection film of the invention of
1.560 ≦ ns ≦ 1.57
1.68 ≦ na ≦ 1.763
Satisfied ,
The design center wavelength λ0 is in the range of
0.02 × λ0 ≦ d1 ≦ 0.16 × λ0
0.95 × λ0 ≦ d2 ≦ 1.20 × λ0
0.30 × λ0 ≦ d3 ≦ 0.50 × λ0
0.22 × λ0 ≦ d4 ≦ 0.38 × λ0
0.22 × λ0 ≦ d5 ≦ 0.27 × λ0
0.24 × λ0 ≦ d6 ≦ 0.30 × λ0
0.23 × λ0 ≦ d7 ≦ 0.27 × λ0
0.23 × λ0 ≦ d8 ≦ 0.29 × λ0
It is characterized in the less than Succoth.
[0009]
The invention of
[0010]
An optical system according to a third aspect of the invention is characterized by comprising a lens provided with the antireflection film according to the first or second aspect.
[0011]
An exposure apparatus according to a fourth aspect of the invention is characterized in that the pattern of the original is imaged on the substrate by the optical system of the third aspect.
[0012]
According to a fifth aspect of the present invention, there is provided a device manufacturing method comprising the step of transferring an original pattern onto a substrate using the exposure apparatus according to the fourth aspect.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic cross-sectional view of an essential part of an embodiment of the antireflection film of the present invention. The antireflective film of this embodiment is formed by alternately laminating a high-refractive index layer containing Al 2 O 3 and a low-refractive index layer containing SiO 2 on a transparent substrate G surface such as quartz or fluorite. It consists of laminated multilayer films. As the substrate G, fluorite whose refractive index is lower than that of the low refractive index layer or synthetic quartz slightly higher than that is used.
[0014]
When the eight layers of the antireflection film shown in FIG. 1 are counted in order from the substrate G side to the air layer side, the first, third, fifth and seventh layers have a high refractive index layer (H) containing Al 2 O 3 , The second, fourth, sixth and eighth layers are composed of a low refractive index layer (L) containing SiO 2 . Then, when the refractive indexes for the high refractive index layer H, the low refractive index layer L, and the light with a wavelength of 193 nm are na and ns, respectively.
1.560 ≦ ns ≦ 1.57
1.68 ≦ na ≦ 1.763
To be satisfied.
[0015]
In the present embodiment, the design center wavelength λ0 is in the wavelength range of 180 nm to 200 nm, and the optical thickness (refractive index × geometric thickness) of each layer is counted from the substrate side as the first layer. To d8, d2, d3, d4, d5, d6, d7, d8 in order,
0.02 × λ0 ≦ d1 ≦ 0.16 × λ0
0.95 × λ0 ≦ d2 ≦ 1.20 × λ0
0.30 × λ0 ≦ d3 ≦ 0.50 × λ0
0.22 × λ0 ≦ d4 ≦ 0.38 × λ0
0.22 × λ0 ≦ d5 ≦ 0.27 × λ0
0.24 × λ0 ≦ d6 ≦ 0.30 × λ0
0.23 × λ0 ≦ d7 ≦ 0.27 × λ0
0.23 × λ0 ≦ d8 ≦ 0.29 × λ0
Each layer is set to satisfy.
[0016]
Next, specific numerical values of the respective examples of the antireflection film of the present invention will be described.
[0017]
Example 1
Table 1 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength λ0 = 193 nm, using an Al 2 O 3 film having a refractive index of 1.713 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a synthetic quartz substrate, an antireflection film was manufactured using the vacuum deposition method with a film thickness shown in Table 1, and the reflection characteristics were measured. FIG. 2 shows the measurement results of the reflectance optical characteristics. A characteristic with a reflectance of 0.2% or less was obtained.
[0018]
[Table 1]
[0019]
Example 2
Table 2 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength λ0 = 193 nm using an Al 2 O 3 film having a refractive index of 1.713 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a fluorite substrate, an antireflective film was fabricated using the sputtering method with a film thickness shown in Table 2, and the reflection characteristics were measured. FIG. 3 shows the measurement results of the reflectance optical characteristics. It was confirmed that the reflectance was 0.2% or less.
[0020]
[Table 2]
[0021]
Example 3
Table 3 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength λ0 = 193 nm using an Al 2 O 3 film having a refractive index of 1.733 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a synthetic quartz substrate, an antireflection film was manufactured by sputtering using the film thickness shown in Table 3, and the reflection characteristics were measured. FIG. 4 shows the measurement results of the reflectance optical characteristics. It was confirmed that the reflectance was 0.2% or less.
[0022]
[Table 3]
[0023]
Example 4
Table 4 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength of λ0 = 193 nm using an Al 2 O 3 film having a refractive index of 1.733 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a fluorite substrate, an antireflection film was produced using the vacuum deposition method with a film thickness shown in Table 4, and the reflection characteristics were measured. FIG. 5 shows the measurement results of the reflectance optical characteristics. It was confirmed that the reflectance was 0.2% or less.
[0024]
[Table 4]
[0025]
Example 5
Table 5 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength of λ0 = 193 nm using an Al 2 O 3 film having a refractive index of 1.763 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a synthetic quartz substrate, an antireflective film was fabricated using the sputtering method with a film thickness shown in Table 5, and the reflection characteristics were measured. FIG. 6 shows the measurement results of the reflectance optical characteristics. It was confirmed that the reflectance was 0.2% or less.
[0026]
[Table 5]
[0027]
Example 6
Table 6 shows the configuration of an antireflection film for ultraviolet light having a design center wavelength λ0 = 193 nm using an Al 2 O 3 film having a refractive index of 1.763 and a SiO 2 film having a refractive index of 1.560 at a wavelength of 193 nm. . Using a fluorite substrate, an antireflective film was fabricated using the vacuum deposition method with a film thickness shown in Table 6, and the reflection characteristics were measured. FIG. 7 shows the measurement results of the reflectance optical characteristics. It was confirmed that the reflectance was 0.2% or less.
[0028]
[Table 6]
[0029]
Comparative Example In order to compare the antireflection film of Tables 1 to 6 and the antireflection film using a fluoride film and the environmental resistance of a fluoride single layer film and a SiO 2 , Al 2 O 3 single layer film, 60 ° C.-relative The sample was left in an environment of 90% humidity for 1000 hours, and the appearance and adhesion were compared. As the fluoride film, NdF 3 , LaF 3 , GdF 3 , HoF 3 , YbF 3 were used as the high refractive index film, and AlF 3 , Na 3 AlF 6 , MgF 2 were used as the low refractive index film.
[0030]
As a result of leaving it in an environment of 60 ° C. and 90% relative humidity for 1000 hours, both the single-layer film sample and the anti-reflection film sample were found to be cloudy or peeled in appearance, and the adhesion of the tape test It was confirmed that the properties were inferior to those of SiO 2 and Al 2 O 3 .
[0031]
In the present invention, an optical system in which the antireflection film having the above-described configuration is applied to each lens surface, mirror surface, and the like is used in various apparatuses for the ultraviolet region. For example, when manufacturing an optical system with an antireflection film having the above-described configuration when a semiconductor device is manufactured, the illumination device for illuminating the reticle surface on which the circuit pattern is formed and the pattern on the reticle surface are projected onto the wafer surface. It is used in an exposure apparatus for exposure. In addition, a device obtained from the wafer obtained by the exposure apparatus is manufactured through a development process.
[0032]
FIG. 8 is a schematic view of the essential part of an exposure apparatus for manufacturing semiconductor devices using an optical system provided with the antireflection film of the present invention.
[0033]
In the figure,
[0034]
In the present embodiment, the antireflection film of the present invention is applied to the
[0035]
Next, an embodiment of a semiconductor device manufacturing method using the above-described exposure apparatus will be described.
[0036]
FIG. 9 is a flowchart for manufacturing a semiconductor device (a semiconductor chip such as an IC or LSI, or a liquid crystal panel or CCD).
[0037]
In this embodiment, in step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask production), a mask on which the designed circuit pattern is formed is produced.
[0038]
On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer.
[0039]
The next step 5 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer manufactured in
[0040]
In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in
[0041]
FIG. 10 is a detailed flowchart of the wafer process in
[0042]
In step 13 (electrode formation), an electrode is formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. In step 15 (resist process), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern of the mask is printed on the wafer by exposure using the exposure apparatus described above.
[0043]
In step 17 (development), the exposed wafer is developed. In step 18 (etching), portions other than the developed resist are removed. In step 19 (resist stripping), the resist that has become unnecessary after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
[0044]
If the manufacturing method of this embodiment is used, a highly integrated semiconductor device can be easily manufactured.
[0045]
【The invention's effect】
As described above, according to the present invention, a high refractive index layer and a low refractive index layer are laminated with an appropriate optical film thickness on a transparent substrate having a predetermined refractive index, so that it is favorable in the ultraviolet region near a wavelength of 193 nm. It is possible to achieve an antireflection film excellent in environmental resistance that has undergone antireflection and an optical system provided with the antireflection film.
[0046]
In particular, according to the present invention, an antireflective film for vacuum ultraviolet (ArF excimer laser light) is used by using a SiO 2 and Al 2 O 3 film having better environmental resistance than the antireflective film for vacuum ultraviolet of a fluoride film. Can be provided. Further, by optimizing the film structure, an antireflection film for ultraviolet rays having an 8-layer structure and a low reflectance can be provided on a quartz substrate and a fluorite substrate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an essential part of an embodiment of the antireflection film of the present invention. FIG. 2 is a reflection characteristic diagram of
Claims (5)
1.560≦ns≦1.57
1.68≦na≦1.763
を満足し、
波長180nmから波長200nmの範囲に設計中心波長λ0をもち、前述の各層の光学的膜厚(屈折率×幾何学的膜厚)を前記基板側から数えて第1層から第8層まで順にd1,d2,d3,d4,d5,d6,d7,d8と表すとき、
0.02×λ0≦d1≦0.16×λ0
0.95×λ0≦d2≦1.20×λ0
0.30×λ0≦d3≦0.50×λ0
0.22×λ0≦d4≦0.38×λ0
0.22×λ0≦d5≦0.27×λ0
0.24×λ0≦d6≦0.30×λ0
0.23×λ0≦d7≦0.27×λ0
0.23×λ0≦d8≦0.29×λ0
を満たすことを特徴とする反射防止膜。On the transparent substrate, a high refractive index layer containing Al 2 O 3 and a low refractive index layer containing SiO 2 are alternately laminated in this order from the substrate side to the air side. When the refractive indexes of the low refractive index layer and the high refractive index layer are ns and na, respectively,
1.560 ≦ ns ≦ 1.57
1.68 ≦ na ≦ 1.763
Satisfied ,
The design center wavelength λ0 is in the range of wavelength 180 nm to wavelength 200 nm, and the optical film thickness (refractive index × geometric film thickness) of each of the aforementioned layers is counted from the substrate side in order from the first layer to the eighth layer d1. , D2, d3, d4, d5, d6, d7, d8,
0.02 × λ0 ≦ d1 ≦ 0.16 × λ0
0.95 × λ0 ≦ d2 ≦ 1.20 × λ0
0.30 × λ0 ≦ d3 ≦ 0.50 × λ0
0.22 × λ0 ≦ d4 ≦ 0.38 × λ0
0.22 × λ0 ≦ d5 ≦ 0.27 × λ0
0.24 × λ0 ≦ d6 ≦ 0.30 × λ0
0.23 × λ0 ≦ d7 ≦ 0.27 × λ0
0.23 × λ0 ≦ d8 ≦ 0.29 × λ0
The satisfy antireflection film characterized by Succoth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00392499A JP3720609B2 (en) | 1999-01-11 | 1999-01-11 | Antireflection film and optical system provided with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00392499A JP3720609B2 (en) | 1999-01-11 | 1999-01-11 | Antireflection film and optical system provided with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000206304A JP2000206304A (en) | 2000-07-28 |
JP3720609B2 true JP3720609B2 (en) | 2005-11-30 |
Family
ID=11570704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00392499A Expired - Lifetime JP3720609B2 (en) | 1999-01-11 | 1999-01-11 | Antireflection film and optical system provided with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3720609B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4065530B2 (en) | 2002-05-22 | 2008-03-26 | キヤノン株式会社 | Antireflection film, optical element and optical system having antireflection film |
AU2003289007A1 (en) * | 2002-12-10 | 2004-06-30 | Nikon Corporation | Optical device and projection exposure apparatus using such optical device |
US7087936B2 (en) | 2003-04-30 | 2006-08-08 | Cree, Inc. | Methods of forming light-emitting devices having an antireflective layer that has a graded index of refraction |
CN100440432C (en) | 2003-08-26 | 2008-12-03 | 株式会社尼康 | Optical element and exposure device |
EP2261740B1 (en) * | 2003-08-29 | 2014-07-09 | ASML Netherlands BV | Lithographic apparatus |
JP4423119B2 (en) * | 2004-06-16 | 2010-03-03 | キヤノン株式会社 | Antireflection film and optical element using the same |
-
1999
- 1999-01-11 JP JP00392499A patent/JP3720609B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000206304A (en) | 2000-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7492510B2 (en) | Optical element having antireflection film, and exposure apparatus | |
US5885712A (en) | Anti-reflection film and optical system using the same | |
US5661596A (en) | Antireflection film and exposure apparatus using the same | |
JP5311757B2 (en) | Reflective optical element, exposure apparatus, and device manufacturing method | |
JP4423119B2 (en) | Antireflection film and optical element using the same | |
TW200908083A (en) | Exposure apparatus and semiconductor device fabrication method | |
JP2004302113A (en) | Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film | |
JP3720609B2 (en) | Antireflection film and optical system provided with the same | |
WO2002050612A2 (en) | Method and system for improving stability of photomasks | |
JPS63113502A (en) | Reflection preventive film | |
JP3526207B2 (en) | Antireflection film and optical system provided with the same | |
JPS63113501A (en) | Reflection preventing film | |
JP3943740B2 (en) | Antireflection film and optical system provided with the same | |
JP4415523B2 (en) | Multilayer reflector, method for manufacturing the same, X-ray exposure apparatus, method for manufacturing semiconductor device, and X-ray optical system | |
JP3323673B2 (en) | Antireflection film, optical system provided with the antireflection film, and exposure apparatus and device manufacturing method using the optical system | |
US8179520B2 (en) | Optical element, projection optical system, exposure apparatus, and device fabrication method | |
JP2002189101A (en) | Antireflection film, optical element and exposure device | |
JPH07218701A (en) | Antireflection film | |
JPH06160602A (en) | Two-wavelength antireflection film | |
JP2002311209A (en) | Antireflection film, optical element and aligner mounting the same | |
JP3667260B2 (en) | Antireflection film, optical system including the antireflection film, and exposure apparatus and device manufacturing method using the optical system | |
JPH1164604A (en) | Anti-reflection film and optical system provided with it | |
JP2005257769A (en) | Optical thin film, optical element, exposure apparatus using same, and exposure method | |
JP2000199802A (en) | Antireflection film and optical system applied with the same | |
JP2002311206A (en) | Antireflection film, optical element and aligner mounting the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |