[go: up one dir, main page]

JP3718865B2 - Manufacturing method of lightweight can with excellent bottom pressure strength - Google Patents

Manufacturing method of lightweight can with excellent bottom pressure strength Download PDF

Info

Publication number
JP3718865B2
JP3718865B2 JP30209094A JP30209094A JP3718865B2 JP 3718865 B2 JP3718865 B2 JP 3718865B2 JP 30209094 A JP30209094 A JP 30209094A JP 30209094 A JP30209094 A JP 30209094A JP 3718865 B2 JP3718865 B2 JP 3718865B2
Authority
JP
Japan
Prior art keywords
less
value
steel
thickness
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30209094A
Other languages
Japanese (ja)
Other versions
JPH08155565A (en
Inventor
章男 登坂
俊之 加藤
久々湊英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP30209094A priority Critical patent/JP3718865B2/en
Publication of JPH08155565A publication Critical patent/JPH08155565A/en
Application granted granted Critical
Publication of JP3718865B2 publication Critical patent/JP3718865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として飲料缶に用いられる軽量缶、中でもDI(Drawn and WallIroned)缶の製造方法に関するものである。
【0002】
【従来の技術】
DI缶は、所定の素材から、大きく分けて2つのプロセスからなる加工を経て製造されるのが一般的である。
例えば350 ml缶は、素材となる板材から120 mm径程度の円板を打ち抜き、引き続き絞り加工を施して、約30〜35mmの深さでボトム(底)の径が約90mmの、いわゆるファーストカップと呼ばれる、浅底の中間段階のカップを製造する第1の工程、そして得られたファーストカップに再絞り加工および3段程度のしごき加工を連続して施す第2の工程にて、製造される。なお、第2の工程である再絞り加工およびしごき加工は、1プロセスで極めて高能率で行われており、ここで使用する装置はボディメーカーと呼称される、完成度の高い装置である。
【0003】
上記製缶方法は、主としてJIS H4000 における合金番号3004程度のアルミ材、T3−BA(調質度T3の箱焼鈍材)およびT3−CA(調質度T3の連続焼鈍材)を素材とする場合に限定して適用され、缶用鋼板に多用される硬質な低炭素アルミキルド鋼を素材とする場合には適用されていない。なぜなら、低炭素アルミキルド鋼は加工性に乏しく、上記製缶方法に耐えることができないからである。
【0004】
ところが、近年の鉄鋼技術の進歩により鋼の極低炭素化が可能になり、これによって低炭素アルミキルド鋼の問題である加工性の劣化を補えるようになったため、DI缶への極低炭素鋼の適用が検討されている(特開平4−280926号および特開昭58−197224号各公報参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、極低炭素化によって鋼板の加工性は向上したものの、強度の低下、特に加工して得られた缶におけるボトム耐圧強度に代表される缶体強度の低下が不可避に生じることが問題として残されており、さらに、DI缶に適用するには、絞り加工が行われた際の耳の発生が少ない特性、すなわちノンイヤリング性の改善、そして製缶後に缶径を縮小する加工、すなわちネックイン成形性の改善がそれぞれ必須であった。
【0006】
従って、当初は主として自動車用鋼板として開発された、この種鋼板をそのまま缶用鋼板に適用するには、未だ多くの改善が不可欠であった。
そこで、本発明は極低炭素鋼を素材とした鋼板( 以下、表面処理材も含む。)缶用鋼板に適用する場合にも、上記の不利を招くことなしに、DI缶の製造を可能とする手法について提案することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、加工性に優れた鋼板、中でも高い平均r値を有する鋼板について、特にDI缶に要求されるノンイヤリング性およびネックイン成形性などの特性を含めて、種々の検討を行ったところ、ネックイン成形性の改善に有効である鋼板を開発するに到ったが、この鋼板においても強度が低いため缶体の強度は実用に耐えないものであった。さらに、この問題を解消するため、DI缶の成形工程、中でも従来はあまり検討されていないファーストカップの成形工程に着目し、この工程での諸条件を詳細に検討したところ、実用に耐える缶体強度が得られる手法を見出し本発明を完成するに到った。
【0008】
すなわち、本発明の要旨構成は次のとおりである。
(1) C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、Al:0.005〜0.100wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。
【0009】
(2) C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、Al:0.005〜0.100 wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含み、さらにNi:0.05〜0.50wt%、Cr0.05〜0.50wt%およびCu:0.05〜0.50wt%のいずれか少なくとも1種を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。
【0010】
(3) C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、 Al:0.005〜0.100wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含み、さらにTi:0.005〜0.0100wt%を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。
【0011】
本発明は、まず加工性、耐時効性を改善すべく、C量を0.0005〜0.0050wt%に低減するとともに、その他の不純物成分を低減し、またNbを適正範囲で含有することによって、最終冷延焼鈍板の集合組織を適宜制御した鋼板を製造する。次いで、得られた鋼板を打ち抜き加工後に、DI缶製造の最初の工程であるファーストカップの成形に当たり、用いる鋼板の加工性が向上したことによる、従来鋼板対比での成形範囲の大幅な拡大を利用して、絞り比を1.80以上とするとともに、ボトム部の減厚率、すなわち加工前の板厚に対するボトム部の板厚減少率をボトム部全面の平均で10%以上とすることによって、従来の成形条件では、ほとんど歪みの付与されない部分に積極的に伸び歪みを付与して加工硬化させ、特にボトム部の耐圧強度を増加するのである。
【0012】
【作用】
以下に、本発明における各限定理由について、成分組成から順に述べる。
C:0.0005〜0.0050wt%
C量は、伸びおよびr値の向上の観点から低減することが望ましいが、0.0005wt%未満では粒径の著しい粗大化によって加工後の表面に肌荒れ、いわゆるオレンジピール現象が顕在化して外観不良のトラブルをまねく危険性がある。一方、0.0050wt%をこえると、r値が低下傾向を示す上、耐時効性の劣化が顕著になる。なお、加工性の向上をはかるには、0.0030wt%以下に制限することが好ましい。
【0013】
Si:0.20wt%以下
Siは、0.20wt%をこえて含有すると、表面処理性の劣化が顕著になるため、0.20wt%以下、より好ましくは0.02wt%以下に限定する。なお、下限は製鋼工程でのSi低減コストと関係するため特に制限しない。
【0014】
Mn:0.05〜1.00wt%
Mnは、鋼の赤熱脆性を防止するために、不可避的に混入するS量に応じて含有する必要があるが、少なくとも0.05wt%以上を含有することで赤熱脆性を防止できる。また、Mnの含有によって、高強度化をはかることが可能である。この高強度化の機構の詳細は明らかではないが、変態点の低下に関連していると考えられる。すなわち、Mn自体の固溶強化能はさほど大きいものではないが、組織の微細化が促進されて、缶用鋼板に必要な耐肌荒れ性が改善され、同時に細粒化による強化も期待できる。さらに、Mnの含有によって、冷間圧延後の焼鈍工程における再結晶温度が低下し、操業条件の規制を緩和することができる。この機構も詳細は明らかではないが、析出物の均一粗大化によるものと考えられる。
一方、Mn含有量が1.00wt%をこえると、平均r値の低下に代表される、加工性の劣化が顕著になるため、1.00wt%以下、さらに高いr値を得るには0.60wt%以下、より望ましくは0.30wt%以下に制限することが好ましい。
【0015】
Al:0.005 〜0.100 wt%
Alは、従来鋼と同様に鋼の脱酸材として含有させ、また鋼中の非金属介在物量を低下して、これら介在物に起因するフランジ部のクラック発生を防止し、さらに鋼中のNを固定安定化する効果や平均r値を向上させる観点からも必須の成分であり、0.005 wt%以上は必要である。一方、0.100 wt%をこえると、鋼板表面にアルミナクラスターなどが生成して表面欠陥の原因となりやすいため、0.100 wt%以下とする。特に、熱間圧延時の鋼板エッジ割れの発生率を低減するには、望ましくは0.020 〜0.060 wt%の範囲とすることが好ましい。
【0016】
Nb:0.003 〜0.020 wt%
Nbは、鋼板の面内異方性および平均r値をそれぞれ改善し、また結晶粒の細粒化および成形時の肌荒れ防止に対しても有効であるところから、0.003 wt%以上は必要である。一方、0.020 wt%をこえると、再結晶温度が上昇して冷間圧延後の焼鈍工程が有効に作用しなくなり、また本発明で対象とする極薄缶用鋼板の製造過程ではΔrの劣化が特に顕著となるため、0.020 wt%以下とする。なお、熱間圧延条件をはじめとする製造条件の規制緩和および成分コストの抑制をはかるのには、0.015 wt%以下にすることが好ましい。
【0017】
P:0.100 wt%以下、
Pは、Siと同様に固溶強化能が大きいため補助的に利用する成分であるが、多量の含有は耐食性の劣化や材料の脆化などをまねく上、再結晶温度の上昇をまねくことから、0.100 wt%以下に限定する。なお、好ましくは0.005 〜0.040 wt%とすることが好ましい。
【0018】
S:0.010 wt%以下
S量を低減することにより、鋼中の介在物が減少し加工性が向上するため、0.010 wt%以下に抑制する。特にゲージダウン化(鋼板板厚の減少)が進行した場合は、このS量の低減による効果は顕著である。より望ましくは、0.005 wt%以下にすると、さらに加工性、中でも剪断部の伸びフランジ特性や耐食性において有効である。
【0019】
N:0.0050wt%以下
Nは、多量に残留すると、鋼板の時効によりネックイン成形性が悪化し、また平均r値も低下するため、0.0050wt%以下、より望ましくは0.0030wt%以下に抑制する。さらに一層厳格な用途には、0.0015wt%以下とするのが望ましい。
【0020】
また、本発明においては、上記基本成分に加え、Ni、CrおよびCuのいずれか少なくとも1種を、それぞれ0.05〜0.50wt%の範囲で添加することが可能である。
Ni、CrおよびCuはいずれも、固溶強化能は比較的小さいものの細粒化強化機構により缶体強度を高めることが可能である。このような細粒化強化は、ネックイン成形性を阻害しない点でも有利である。また、組織の細粒化は耐肌荒れ性の向上にも有効である。これらの効果は、単独添加または複合添加に係わりなく、いずれか1種または2種以上の添加量が0.05wt%以上であれば期待することができる。一方、0.50wt%をこえて添加しても、単にコスト上昇をまねくため、0.50wt%以下に限定する。
【0021】
さらに、本発明においては、上記基本成分に加え、Tiを0.005 〜0.010wt %の範囲で添加することが可能である。
Tiは、鋼板の平均r値をより高い水準に引き上げる効果があり、少なくとも0.005 wt%以上の添加が必要であるが、0.010wt %をこえると効果が飽和する上、表面性状が劣化するから、0.010wt %以下に限定する。特に、良好な表面性状が厳格に要求される場合は、上限を0.008wt %にすることが好ましい。
【0022】
本発明に従う缶用鋼板は、上記成分組成に成るスラブを熱間圧延後に冷間圧延を施し、次いで焼鈍を行い、その後必要に応じて調質圧延を施して得られるが、得られた鋼板における、平均r値を1.50以上でかつΔr値の絶対値を0.30以下に調整することが肝要である。
すなわち、鋼板の平均r値を高くすることによって、ファーストカップの成形工程における絞り比を大きくするとともに、しわ抑え圧力を大きくとり、ボトム部の加工硬化量を従来法に比較して大きくし、ボトム部の耐圧強度を増加するのである。従って、鋼板のr値を高くする必要があり、鋼板の降伏応力との相関もあるが、平均r値を1.50以上にすることによって、ファーストカップの成形工程における絞り比を大きくすることが可能である。特に、上記成形工程を安定させるには、平均r値を1.80以上にすることが好ましい。
【0023】
また、深絞り成形における耳の発生(イヤリング不良)を防止するには、鋼板のΔr値を小さくすることが有効であり、Δr値の絶対値で0.30以下、望ましくは0.15以下とする。
【0024】
ここで、平均r値、Δr値は、鋼板の圧延方向、圧延方向に対して45°の方向、圧延方向に対して90°の各方向からJIS5号試験片を採取し、この試験片に5〜15%の単軸引張予歪を与えた時の幅方向ひずみおよび板厚ひずみの比から各方向のランクフォード値を測定し、次式によって求めた。
r=(rL +2rD +rT )/4
Δr=(rL −2rD + rT )/2
ただし、rL 、rD およびrT は、それぞれ圧延方向、圧延方向に対して45°の方向、圧延方向に対して90°の方向のランクフォード値を表す。
なお、鋼板の均一伸びが小さく上記方法で測定できない場合は、JISG3135にある固有振動法によって求めた。
【0025】
なお、鋼板の平均r値を1.50以上、かつΔr値を絶対値で0.30以下に調整する具体的手法としては、上述した成分組成の鋼を用いて熱間圧延仕上げ温度を概ねAr3 ±50℃の範囲に、巻取温度を概ね540 〜680 ℃とし、一次冷延圧下率を85〜90%、二次冷延圧下率を40%未満とすることによって達成される。
【0026】
また、本発明による効果は、鋼板の厚みが薄くなるに従って顕著になるため、板厚が0.30mm以下、望ましくは0.25mm以下の鋼板を、製缶の素材とすることが 実施に当たり有利である。
【0027】
上記の鋼板はそのまま、あるいはこの鋼板を原板として表面処理を施してから、製缶工程へ供される。なお、表面処理としては、通常の電気すずめっき、クロムめっきおよびその他のめっき処理、各種の塗装処理が有利に適合する。
【0028】
なお、鋼板の製造工程における条件は特に限定されないが、以下に示す条件下で製造することができる。
・スラブ再加熱温度:1150〜1300℃
・仕上げ圧延温度:(Ar3変態点−30℃)〜(Ar3変態点+100 ℃)
・巻取り温度:450 〜650 ℃
・冷間圧延圧下率:83%以上
・焼鈍温度:700 〜800 ℃
・焼鈍後の調質圧延圧下率:1%以上(焼鈍ままの状態では降伏点伸びが存在して材質が安定しないため、特殊な用途以外は1%以上の調質圧延が必要)
【0029】
かくして得られた鋼板は、円板に打ち抜き加工後に、次に示す各条件下で製缶されることになる。
すなわち、ファーストカップの成形工程では、その絞り比を1.80以上、より好ましくは1.85以上とすることが肝要である。従来、この工程での条件は、加工性の低いアルミニウム材を基準に設定していたこともあって、1.40〜1.50程度の低い絞り比で行われていた。しかし、本発明ではr値が高く延性も良好な鋼板が絞り加工の対象となるため、高い絞り比での成形が可能である。例えば、同一のブランク径を採用する場合でもパンチ径をより小さくして、絞り比を大きくすることによって、ボトム部の歪みを大きくして缶体、中でもボトム部の耐圧強度を高めるのである。このような手法の適用は、素材である鋼板に高いr値と良好な延性を付与して初めて実現するものである。
【0030】
また、ボトム部の減厚率を10%以上とすることによって、加工硬化を期待できるため、ボトム部の耐圧強度をさらに上昇することができる。同時に、ボトム部の減厚率を高くすることは、実質的な缶体の薄肉化につながり、缶の軽量化にも有効である。以上の効果は、ボトム部の減厚率を15%以上とすることによって、さらなる拡大を期待できる。
ここで、ボトム部の減厚率を高める具体的手法としては、しわ抑えの強化とパンチの肩部半径の増加が有効である。
【0031】
かくして得られたファーストカップは、引き続き再絞り加工およびしごき加工に供する。この再絞り加工における絞り比を高めることによって、上記と同様の効果が得られるが、この再絞り加工では、しわ抑え力の制御が困難であり、現行の装置においては適用が困難である。しかし、しわ抑え力の制御が可能であれば、ボトム部の耐圧強度を増加することは可能である。
【0032】
従って、再絞り加工およびしごき加工は、通常の条件、例えば、140 mmφにブランク→77mmφパンチでファーストカップ成形→68mmφパンチでリドロー加工→3段のしごき加工で行えばよい。
【0033】
【実施例】
・実施例1
表1に示す成分組成の鋼を転炉にて溶製した後、得られたスラブを1250℃に再加熱して860 〜950 ℃の温度範囲で熱間仕上げ圧延を終了した。なお、仕上げ圧延温度は、各々の鋼組成に応じて、(Ar3変態点−20℃)〜(Ar3変態点+50℃)の範囲に収まるように制御した。次に、巻取り温度:640 ℃で巻取ってから酸洗を施し、その後圧下率:90%の冷間圧延を施して0.22mmの冷延板とした。
【0034】
さらに、各冷延板に連続焼鈍炉にて760 ℃,30sの焼鈍を施したのち、30℃/sec の冷却速度で340 ℃まで急速冷却し、2〜6%の軽圧下を施した。
その後、ハロゲンタイプの電気錫めっきラインにて♯25錫めっき処理を連続的に施して、ぶりき板とした。得られたぶりき板の引張特性について調査した結果を表2に示す。なお、引張特性はJIS5号試験片を用いた試験にて評価した。
【0035】
次に、各ぶりき板にて350 ml缶を製造した。すなわち、ファーストカップの成形は絞り比:1.95〜2.05で、具体的には、ブランク径を138 〜143 mmおよびパンチ径を71〜86mmの範囲で変化して絞り加工を行った。また、カップのボトム部の減厚率が13〜18%となるように、しわ抑え力を調整した。その後、パンチ径:68mmで再絞り加工および3段のしごき加工を連続して行った。
【0036】
かくして得られた缶のボトム部耐圧強度に関する調査結果を、再絞り加工におけるノンイヤリング性およびネックイン成形性についての調査結果とともに、表2に併記する。
【0037】
ここで、ボトム部耐圧強度は、缶内に静水圧を負荷し、ボトムが座屈する限界圧力にて評価した。
また、ノンイヤリング性は、ファーストカッピングを行い、カップ底からの山部の高さと谷部の高さの各平均値から差を求めてその大小で比較し、現行の材料との比較により劣っているものをNG、同等もしくは優れているものをOKとして評価した。
さらに、ネックイン成形性は、4段ネックで211 mm径から206 mm径までネックイン加工を行い、そのときの成形荷重の大小を比較することによって評価し、現行材料より成形荷重の高いものをNG、同等もしくは低いものをOKとした。
【0038】
【表1】

Figure 0003718865
【0039】
【表2】
Figure 0003718865
【0040】
表2に示した結果から、本発明法に従って製缶を行えば、他の特性を犠牲にすることなしに、十分に高いボトム部耐圧強度が得られたことがわかる。また、得られた缶を観察したところ、本発明に従って得られた缶は、その表面性状および耐食性は良好であり、さらに途中工程の冷間圧延性も良好であることを確認した。
【0041】
・実施例2
表3に示す成分組成の鋼を転炉にて溶製した後、表4に示す製造条件にて薄鋼板および錫めっき鋼板を製造し、その後実施例1と同様の手順で諸特性を評価した結果について表5に示す。なお、表4に示す条件で製造された鋼板の平均r値は1.85およびΔr値は絶対値で0.05であった。
【0042】
【表3】
Figure 0003718865
【0043】
【表4】
Figure 0003718865
【0044】
【表5】
Figure 0003718865
【0045】
表5に示した結果から、本発明に従って製缶することによって、他の特性を犠牲にすることなしに、十分に高いボトム部耐圧強度が得られたことがわかる。また、再絞り加工およびしごき加工の工程を詳細に観察したところ、本発明に従う工程では、成形時のパンチからの抜け性、いわゆるストリッピング性も改善されていた。この点を詳細に実験した結果、抜け性不良の発生率は従来法対比で1/3に減少したことも判明した。
【0046】
【発明の効果】
本発明法によれば、極低炭素鋼板の良好な成形性を生かしたDI缶成形が可能となり、かつ、十分に高いボトム耐圧強度が達成できる。しかも本発明法によれば、ノンイヤリング性、ネックイン成形性およびストリッピング性などの他の製缶特性も優れている。
このため、自動車用に製造された特定の極低炭素鋼を素材とし、製造条件を最適化することにより、DI缶を製造できるので、製鋼工程での鋼種数を減少でき、製造原価が低減できる。[0001]
[Industrial application fields]
The present invention relates to a method for producing a lightweight can, particularly a DI (Drawn and Wall Ironed) can used mainly in beverage cans.
[0002]
[Prior art]
In general, a DI can is manufactured from a predetermined material through a process roughly divided into two processes.
For example, a 350 ml can is a so-called first cup with a diameter of about 30-35mm and a bottom diameter of about 90mm. In the first step for producing a shallow intermediate cup, and the second step in which the obtained first cup is continuously subjected to redrawing and ironing in about three stages. . In addition, the redrawing process and the ironing process, which are the second process, are performed with extremely high efficiency in one process, and the apparatus used here is a highly complete apparatus called a body maker.
[0003]
The above-mentioned can-making method is mainly made of aluminum material having an alloy number of about 3004 in JIS H4000, T3-BA (box annealing material with tempering degree T3) and T3-CA (continuous annealing material with tempering degree T3). It is not applied when the hard low carbon aluminum killed steel is used as a material. This is because low carbon aluminum killed steel has poor workability and cannot withstand the above-mentioned can-making method.
[0004]
However, due to recent advances in steel technology, it has become possible to reduce the carbon of steel, and this has made it possible to compensate for the deterioration of workability, which is a problem of low-carbon aluminum killed steel. Application has been studied (see Japanese Patent Application Laid-Open Nos. 4-280926 and 58-197224).
[0005]
[Problems to be solved by the invention]
However, although the workability of the steel sheet has been improved due to the extremely low carbon, it remains a problem that a reduction in strength, in particular a reduction in the strength of the can body represented by the bottom pressure strength in the can obtained by processing, inevitably occurs. Furthermore, for application to DI cans, the characteristics of generating less ears when drawing is performed, that is, the improvement of non-earring properties, and the process of reducing the can diameter after canning, that is, neck-in Each improvement in formability was essential.
[0006]
Accordingly, many improvements have been indispensable in order to apply this seed steel plate, which was originally developed mainly as a steel plate for automobiles, to a steel plate for cans as it is.
Therefore, the present invention enables the production of DI cans without incurring the above disadvantages even when applied to steel plates (hereinafter also including surface treatment materials) made of ultra-low carbon steel. It aims at proposing about the technique to do.
[0007]
[Means for Solving the Problems]
The inventors have made various studies on steel sheets having excellent workability, particularly steel sheets having a high average r value, including characteristics such as non-earring properties and neck-in formability required for DI cans. However, a steel sheet effective for improving the neck-in formability has been developed, but the strength of the can body cannot withstand practical use because this steel sheet has low strength. Furthermore, in order to solve this problem, we focused on the DI can molding process, especially the first cup molding process that has not been studied so far, and examined the conditions in this process in detail. A technique for obtaining strength was found and the present invention was completed.
[0008]
That is, the gist configuration of the present invention is as follows.
(1) C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S : 0.010wt% or less and N: 0.0050wt% or less, the balance has a chemical composition consisting of Fe and inevitable impurities, the average r value is adjusted to 1.50 or more, and the Δr value is adjusted to an absolute value of 0.30 or less Using a steel plate with a thickness of 0.30 mm or less as a raw material, after punching the material, drawing is performed under the conditions of drawing ratio: 1.80 or more and bottom thickness reduction ratio: 10% or more, then redrawing And a method for producing a lightweight can excellent in bottom pressure strength, characterized by performing ironing.
[0009]
(2) C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S : Containing 0.010 wt% or less and N: 0.0050 wt% or less, further containing at least one of Ni: 0.05 to 0.50 wt%, Cr 0.05 to 0.50 wt% and Cu: 0.05 to 0.50 wt%, the balance Has a chemical composition consisting of Fe and unavoidable impurities, with an average r value of 1.50 or more and a Δr value adjusted to an absolute value of 0.30 or less, and a steel plate having a thickness of 0.30 mm or less, and punching the material. After processing, drawing is performed under the conditions of drawing ratio: 1.80 or more, bottom thickness reduction ratio: 10% or more, then redrawing and ironing, and light weight with excellent bottom pressure strength A method for manufacturing cans.
[0010]
(3) C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S : Containing 0.010 wt% or less and N: 0.0050 wt% or less, further containing Ti: 0.005 to 0.0100 wt%, the balance having a chemical composition consisting of Fe and inevitable impurities, with an average r value of 1.50 or more, In addition, a steel sheet with a thickness of 0.30 mm or less, whose Δr value is adjusted to an absolute value of 0.30 or less, is used as a raw material. A method for producing a lightweight can excellent in bottom pressure strength, characterized by being applied under the above conditions and then performing redrawing and ironing.
[0011]
In the present invention, in order to improve the workability and aging resistance, the amount of C is reduced to 0.0005 to 0.0050 wt%, other impurity components are reduced, and Nb is contained in an appropriate range to achieve the final cooling. A steel sheet is produced by appropriately controlling the texture of the annealed sheet. Next, after punching the obtained steel sheet, the first process of DI can production is the first step of forming the first cup. Utilizing the significant expansion of the forming range compared to the conventional steel sheet due to the improved workability of the steel sheet used In addition, the drawing ratio is 1.80 or more and the bottom portion thickness reduction rate, that is, the bottom thickness reduction rate with respect to the plate thickness before processing is 10% or more on the average of the entire bottom portion, Under the molding conditions, an elongation strain is positively imparted to a portion to which almost no strain is imparted and work hardening is performed, and in particular, the pressure strength of the bottom portion is increased.
[0012]
[Action]
Below, each limitation reason in this invention is described in an order from a component composition.
C: 0.0005-0.0050wt%
The amount of C is preferably reduced from the viewpoint of improvement in elongation and r value. However, if it is less than 0.0005 wt%, the surface after processing becomes rough due to marked coarsening of the particle size, so-called orange peel phenomenon becomes obvious and the appearance is poor. There is a risk of causing trouble. On the other hand, if it exceeds 0.0050 wt%, the r value tends to decrease and the deterioration of aging resistance becomes remarkable. In order to improve the workability, it is preferably limited to 0.0030 wt% or less.
[0013]
Si: 0.20wt% or less
When Si is contained in an amount exceeding 0.20 wt%, the surface treatment property deteriorates remarkably, so it is limited to 0.20 wt% or less, more preferably 0.02 wt% or less. The lower limit is not particularly limited because it is related to the Si reduction cost in the steelmaking process.
[0014]
Mn: 0.05-1.00wt%
In order to prevent red hot brittleness of steel, it is necessary to contain Mn according to the amount of S inevitably mixed in, but by containing at least 0.05 wt%, red hot brittleness can be prevented. Further, it is possible to increase the strength by containing Mn. The details of the mechanism for increasing the strength are not clear, but are thought to be related to the lowering of the transformation point. That is, although the solid solution strengthening ability of Mn itself is not so great, the refinement of the structure is promoted, the rough skin resistance necessary for the steel plate for cans is improved, and at the same time, strengthening by fine graining can be expected. Furthermore, the inclusion of Mn reduces the recrystallization temperature in the annealing process after cold rolling, and can relax the regulation of operating conditions. Although the details of this mechanism are not clear, it is thought to be due to uniform coarsening of precipitates.
On the other hand, if the Mn content exceeds 1.00 wt%, the deterioration of workability, which is represented by a decrease in the average r value, becomes remarkable. Therefore, it is 1.00 wt% or less, and 0.60 wt% or less to obtain a higher r value. More preferably, it is preferably limited to 0.30 wt% or less.
[0015]
Al: 0.005 to 0.100 wt%
Al is contained as a deoxidizing material for steel as in the case of conventional steel, and the amount of non-metallic inclusions in the steel is reduced to prevent cracks in the flange due to these inclusions. It is an essential component from the viewpoint of fixing and stabilizing and improving the average r value, and 0.005 wt% or more is necessary. On the other hand, if the amount exceeds 0.100 wt%, alumina clusters and the like are likely to be generated on the surface of the steel sheet and cause surface defects. In particular, in order to reduce the rate of occurrence of steel sheet edge cracking during hot rolling, it is preferable that the range be 0.020 to 0.060 wt%.
[0016]
Nb: 0.003 to 0.020 wt%
Nb is required to improve the in-plane anisotropy and average r value of the steel sheet, and is also effective for preventing grain roughening and roughening during forming, so 0.003 wt% or more is necessary. . On the other hand, if it exceeds 0.020 wt%, the recrystallization temperature will rise and the annealing process after cold rolling will not work effectively, and in the manufacturing process of the steel sheet for ultrathin cans targeted in the present invention, Δr will deteriorate. Since it becomes especially remarkable, it is 0.020 wt% or less. In order to ease the regulation of manufacturing conditions including hot rolling conditions and reduce component costs, 0.015 wt% or less is preferable.
[0017]
P: 0.100 wt% or less,
P is a component that is used as a supplement because it has a high solid-solution strengthening ability like Si, but a large amount causes deterioration of corrosion resistance and embrittlement of the material, and also raises the recrystallization temperature. , 0.100 wt% or less. In addition, Preferably it is 0.005 to 0.040 wt%.
[0018]
S: 0.010 wt% or less By reducing the amount of S, inclusions in the steel are reduced and workability is improved, so the content is suppressed to 0.010 wt% or less. In particular, when the gauge down (reduction in the thickness of the steel plate) proceeds, the effect of the reduction in the amount of S is remarkable. More desirably, if it is 0.005 wt% or less, it is more effective in workability, particularly in stretch flange characteristics and corrosion resistance of the sheared portion.
[0019]
N: 0.0050 wt% or less N, if remaining in large amounts, the neck-in formability deteriorates due to the aging of the steel sheet, and the average r value also decreases, so it is suppressed to 0.0050 wt% or less, more preferably 0.0030 wt% or less. . For even more stringent applications, it is desirable to make it 0.0015 wt% or less.
[0020]
In the present invention, in addition to the above basic components, at least one of Ni, Cr and Cu can be added in the range of 0.05 to 0.50 wt%.
Although Ni, Cr and Cu all have relatively small solid solution strengthening ability, the strength of the can can be increased by the fine grain strengthening mechanism. Such refinement of grain refinement is advantageous in that it does not impair neck-in moldability. In addition, the refinement of the structure is effective for improving the rough skin resistance. These effects can be expected if the addition amount of one or more of them is 0.05 wt% or more regardless of whether they are added individually or in combination. On the other hand, even if it is added over 0.50 wt%, it simply increases the cost, so it is limited to 0.50 wt% or less.
[0021]
Furthermore, in the present invention, in addition to the above basic components, Ti can be added in the range of 0.005 to 0.010 wt%.
Ti has the effect of raising the average r value of the steel sheet to a higher level, and at least 0.005 wt% or more is necessary. However, if it exceeds 0.010 wt%, the effect is saturated and the surface properties deteriorate. Limited to 0.010 wt% or less. In particular, when good surface properties are strictly required, the upper limit is preferably 0.008 wt%.
[0022]
The steel plate for cans according to the present invention is obtained by subjecting the slab having the above composition to cold rolling after hot rolling, then annealing, and then subjecting to temper rolling as necessary. It is important to adjust the average r value to 1.50 or more and the absolute value of Δr value to 0.30 or less.
That is, by increasing the average r value of the steel sheet, the drawing ratio in the first cup forming process is increased, the wrinkle suppressing pressure is increased, and the work hardening amount of the bottom portion is increased as compared with the conventional method. This increases the pressure resistance of the part. Therefore, it is necessary to increase the r value of the steel sheet, and there is a correlation with the yield stress of the steel sheet, but it is possible to increase the drawing ratio in the first cup forming process by setting the average r value to 1.50 or more. is there. In particular, in order to stabilize the molding process, the average r value is preferably 1.80 or more.
[0023]
In order to prevent the occurrence of ears (earring defects) in deep drawing, it is effective to reduce the Δr value of the steel sheet, and the absolute value of the Δr value is 0.30 or less, preferably 0.15 or less.
[0024]
Here, the average r value and Δr value were obtained by collecting JIS No. 5 test pieces from the rolling direction of the steel sheet, the direction of 45 ° with respect to the rolling direction, and the direction of 90 ° with respect to the rolling direction. The Rankford value in each direction was measured from the ratio of the strain in the width direction and the thickness strain when uniaxial tensile prestrain of ˜15% was applied, and was determined by the following equation.
r = (r L + 2r D + r T ) / 4
Δr = (r L −2r D + r T ) / 2
Here, r L , r D, and r T represent the Rankford values in the rolling direction, the direction of 45 ° with respect to the rolling direction, and the direction of 90 ° with respect to the rolling direction, respectively.
In addition, when the uniform elongation of the steel plate was small and could not be measured by the above method, it was obtained by the natural vibration method in JIS G3135.
[0025]
In addition, as a specific method for adjusting the average r value of the steel sheet to 1.50 or more and the Δr value to 0.30 or less in absolute value, the hot rolling finish temperature is approximately Ar 3 ± 50 ° C. using the steel having the above composition. In this range, the coiling temperature is approximately 540 to 680 ° C., the primary cold rolling reduction ratio is 85 to 90%, and the secondary cold rolling reduction ratio is less than 40%.
[0026]
Further, since the effect of the present invention becomes more prominent as the thickness of the steel plate becomes thinner, it is advantageous in practice to use a steel plate having a plate thickness of 0.30 mm or less, preferably 0.25 mm or less as a material for can manufacturing.
[0027]
The steel plate is used as it is or after being subjected to a surface treatment using the steel plate as an original plate, and then subjected to a can-making process. In addition, as surface treatment, normal electrotin plating, chromium plating, other plating treatments, and various coating treatments are advantageously adapted.
[0028]
In addition, although the conditions in the manufacturing process of a steel plate are not specifically limited, it can manufacture on the conditions shown below.
・ Slab reheating temperature: 1150 ~ 1300 ℃
-Finishing rolling temperature: (Ar 3 transformation point -30 ° C) to (Ar 3 transformation point + 100 ° C)
-Winding temperature: 450-650 ° C
・ Cold rolling reduction ratio: 83% or more ・ Annealing temperature: 700-800 ℃
-Temper rolling reduction after annealing: 1% or more (Yield point elongation exists in the annealed state and the material is not stable, so temper rolling of 1% or more is required except for special applications)
[0029]
The steel plate thus obtained is canned under the following conditions after being punched into a disc.
That is, in the first cup molding process, it is important that the drawing ratio is 1.80 or more, more preferably 1.85 or more. Conventionally, the conditions in this step have been set with a low drawing ratio of about 1.40 to 1.50, because the aluminum material having low workability has been set as a standard. However, in the present invention, a steel sheet having a high r value and good ductility is a target for drawing, so that forming with a high drawing ratio is possible. For example, even when the same blank diameter is adopted, by reducing the punch diameter and increasing the drawing ratio, the distortion of the bottom portion is increased to increase the pressure resistance of the can body, particularly the bottom portion. Application of such a technique is realized only when a high r value and good ductility are imparted to a steel plate as a material.
[0030]
Moreover, since the work hardening can be expected by setting the thickness reduction rate of the bottom part to 10% or more, the pressure resistance of the bottom part can be further increased. At the same time, increasing the thickness reduction rate of the bottom portion leads to substantial thinning of the can body, and is effective in reducing the weight of the can. The above effects can be expected to further expand by setting the thickness reduction rate of the bottom portion to 15% or more.
Here, as a specific method for increasing the thickness reduction rate of the bottom portion, it is effective to strengthen wrinkle suppression and increase the shoulder radius of the punch.
[0031]
The first cup thus obtained is subsequently subjected to redrawing and ironing. By increasing the drawing ratio in this redrawing process, the same effect as described above can be obtained. However, in this redrawing process, it is difficult to control the wrinkle restraining force, and it is difficult to apply in the current apparatus. However, if the wrinkle restraining force can be controlled, it is possible to increase the pressure resistance of the bottom portion.
[0032]
Accordingly, the redrawing and ironing may be performed under normal conditions, for example, blank → 140 mmφ → first cup forming with 77 mmφ punch → redrawing with 68 mmφ punch → three stages of ironing.
[0033]
【Example】
Example 1
After melting the steel having the component composition shown in Table 1 in a converter, the obtained slab was reheated to 1250 ° C. and hot finish rolling was completed in a temperature range of 860 to 950 ° C. The finish rolling temperature was controlled so as to fall within the range of (Ar 3 transformation point−20 ° C.) to (Ar 3 transformation point + 50 ° C.) according to each steel composition. Next, after winding at a winding temperature of 640 ° C., pickling was performed, and then cold rolling with a reduction ratio of 90% was performed to obtain a 0.22 mm cold-rolled sheet.
[0034]
Further, each cold-rolled sheet was annealed at 760 ° C. for 30 s in a continuous annealing furnace, rapidly cooled to 340 ° C. at a cooling rate of 30 ° C./sec, and subjected to light pressure of 2 to 6%.
Thereafter, # 25 tin plating treatment was continuously performed on a halogen-type electric tin plating line to obtain a cover plate. Table 2 shows the results of investigations on the tensile properties of the obtained cover plate. The tensile properties were evaluated by a test using a JIS No. 5 test piece.
[0035]
Next, 350 ml cans were produced with each tinplate. That is, the first cup was formed by drawing with a drawing ratio of 1.95 to 2.05. Specifically, the blank diameter was changed from 138 to 143 mm and the punch diameter was changed from 71 to 86 mm. Moreover, the wrinkle restraining force was adjusted so that the thickness reduction rate of the bottom part of the cup was 13 to 18%. Thereafter, redrawing and three-step ironing were continuously performed with a punch diameter of 68 mm.
[0036]
The results of investigation on the pressure resistance at the bottom of the can thus obtained are shown in Table 2 together with the results of investigation on non-earring property and neck-in formability in redrawing.
[0037]
Here, the bottom portion pressure resistance was evaluated based on the limit pressure at which the hydrostatic pressure was loaded into the can and the bottom buckled.
In addition, the non-earring performance is fast cupping, the difference between the height of the peak and the height of the valley from the cup bottom is obtained and compared in terms of size, and compared with the current material. The NG was evaluated as NG, and the same or superior one was evaluated as OK.
Furthermore, neck-in formability is evaluated by performing neck-in processing from 211 mm diameter to 206 mm diameter with a four-stage neck and comparing the molding load at that time, and those with higher molding load than the current material. NG, equivalent or low was set as OK.
[0038]
[Table 1]
Figure 0003718865
[0039]
[Table 2]
Figure 0003718865
[0040]
From the results shown in Table 2, it can be seen that if cans were made according to the method of the present invention, a sufficiently high bottom pressure resistance was obtained without sacrificing other characteristics. Moreover, when the obtained can was observed, it was confirmed that the can obtained according to the present invention had good surface properties and corrosion resistance, and also had good cold rolling properties in the intermediate process.
[0041]
Example 2
After melting the steel having the composition shown in Table 3 in a converter, a thin steel plate and a tin-plated steel plate were produced under the production conditions shown in Table 4, and then various characteristics were evaluated in the same procedure as in Example 1. The results are shown in Table 5. In addition, the average r value of the steel plate manufactured on the conditions shown in Table 4 was 1.85, and (DELTA) r value was 0.05 in absolute value.
[0042]
[Table 3]
Figure 0003718865
[0043]
[Table 4]
Figure 0003718865
[0044]
[Table 5]
Figure 0003718865
[0045]
From the results shown in Table 5, it can be seen that by making cans according to the present invention, a sufficiently high bottom pressure resistance was obtained without sacrificing other characteristics. Further, when the redrawing process and the ironing process were observed in detail, in the process according to the present invention, the removal from the punch during molding, so-called stripping, was also improved. As a result of detailed experiments on this point, it has also been found that the occurrence rate of dropout defects is reduced to 1/3 compared with the conventional method.
[0046]
【The invention's effect】
According to the method of the present invention, it is possible to form a DI can by taking advantage of the good formability of an ultra-low carbon steel sheet, and achieve a sufficiently high bottom pressure strength. In addition, according to the method of the present invention, other can-making characteristics such as non-earring property, neck-in formability and stripping property are also excellent.
For this reason, DI can can be manufactured by using specific ultra-low carbon steel manufactured for automobiles and optimizing the manufacturing conditions, so the number of steel types in the steel making process can be reduced and the manufacturing cost can be reduced. .

Claims (3)

C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、Al:0.005〜0.100wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S: 0.010 wt % or less and N: containing 0.0050% or less, the balance has a chemical composition consisting of Fe and unavoidable impurities, were adjusted with an average r value 1.50 or more, and the Δr value in absolute value to 0.30 or less thickness Using a steel sheet with a thickness of 0.30 mm or less as a material, after punching the material, drawing is performed under the conditions of drawing ratio: 1.80 or more and bottom thickness reduction: 10% or more, then redrawing and ironing A method for producing a lightweight can excellent in bottom pressure strength. C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、Al:0.005〜0.100wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含み、さらにNi:0.05〜0.50wt%、Cr0.05〜0.50wt%およびCu:0.05〜0.50wt%のいずれか少なくとも1種を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S: 0.010 wt % And N: 0.0050 wt% or less, further containing at least one of Ni: 0.05 to 0.50 wt%, Cr 0.05 to 0.50 wt% and Cu: 0.05 to 0.50 wt%, with the balance being Fe and A steel plate having a chemical composition composed of inevitable impurities, an average r value of 1.50 or more, and a Δr value adjusted to an absolute value of 0.30 or less and a thickness of 0.30 mm or less, after punching the material, A lightweight can with excellent bottom pressure resistance, which is drawn under the conditions of drawing ratio: 1.80 or more and thickness reduction ratio of the bottom: 10% or more, and then redrawing and ironing. Method. C:0.0005〜0.0050wt%、Si:0.20wt%以下、Mn:0.05〜1.00wt%、Al:0.005〜0.100wt%、Nb:0.003〜0.020wt%、P:0.100wt%以下、S:0.010wt%以下およびN:0.0050wt%以下を含み、さらにTi:0.005〜0.0100wt%を含有し、残部はFeおよび不可避的不純物からなる化学組成を有し、平均r値を1.50以上で、かつΔr値を絶対値で0.30以下に調整した板厚が 0.30mm 以下の鋼板を素材として、前記素材を打ち抜き加工後、絞り加工を、絞り比:1.80以上、ボトム部の減厚率:10%以上の条件下で施し、次いで再絞り加工およびしごき加工を行うことを特徴とするボトム耐圧強度に優れた軽量缶の製造方法。C: 0.0005 to 0.0050 wt%, Si: 0.20 wt% or less, Mn: 0.05 to 1.00 wt%, Al: 0.005 to 0.100 wt%, Nb: 0.003 to 0.020 wt%, P: 0.100 wt% or less, S: 0.010 wt% % And N: 0.0050 wt% or less, further containing Ti: 0.005 to 0.0100 wt%, the balance having a chemical composition consisting of Fe and inevitable impurities, an average r value of 1.50 or more, and a Δr value Using a steel sheet with a thickness of 0.30 mm or less adjusted to an absolute value of 0.30 or less as a raw material, after drawing the material, the drawing process is performed with the drawing ratio: 1.80 or more and the bottom thickness reduction ratio: 10% or more. A method for producing a lightweight can excellent in bottom pressure strength, characterized by being applied below, followed by redrawing and ironing.
JP30209094A 1994-12-06 1994-12-06 Manufacturing method of lightweight can with excellent bottom pressure strength Expired - Fee Related JP3718865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30209094A JP3718865B2 (en) 1994-12-06 1994-12-06 Manufacturing method of lightweight can with excellent bottom pressure strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30209094A JP3718865B2 (en) 1994-12-06 1994-12-06 Manufacturing method of lightweight can with excellent bottom pressure strength

Publications (2)

Publication Number Publication Date
JPH08155565A JPH08155565A (en) 1996-06-18
JP3718865B2 true JP3718865B2 (en) 2005-11-24

Family

ID=17904811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30209094A Expired - Fee Related JP3718865B2 (en) 1994-12-06 1994-12-06 Manufacturing method of lightweight can with excellent bottom pressure strength

Country Status (1)

Country Link
JP (1) JP3718865B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280089A (en) * 1997-04-03 1998-10-20 Kawasaki Steel Corp Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
JP4265574B2 (en) * 2005-06-20 2009-05-20 Jfeスチール株式会社 Steel plate for two-piece deformable can and manufacturing method thereof
JP5423092B2 (en) 2009-03-27 2014-02-19 Jfeスチール株式会社 Steel plate for cans with excellent surface properties after drawing and ironing and method for producing the same
JP6108044B2 (en) * 2015-03-31 2017-04-05 Jfeスチール株式会社 Steel plate for can lid and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08155565A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
KR960006584B1 (en) Method of producing high-strength steel sheet used for can
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
CN113774274A (en) Low-cost well-formed battery case steel and production method thereof
JP2001107186A (en) High strength steel sheet for can and its producing method
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP5316036B2 (en) Mother board for high-strength ultrathin cold-rolled steel sheet and manufacturing method thereof
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JPH093547A (en) Production of high strength steel sheet for can
JPS6056052A (en) Steel sheet for easy-to-open can having excellent opening property and production thereof
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3222239B2 (en) Hard surface-treated original sheet with high BH property and excellent workability
JP3471483B2 (en) Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same
JP2002003993A (en) High strength steel sheet and high strength galvanized steel sheet
JPS6330969B2 (en)
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JPH073395A (en) Thin steel sheet excellent in deep drawability and weldability and production thereof
JP3244947B2 (en) Method for producing steel sheet for two-piece can container with small in-plane anisotropy
JP3407531B2 (en) Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP3598550B2 (en) Method of manufacturing thin steel sheet for high-strength can with small anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees