[go: up one dir, main page]

JP3715735B2 - telescope lens - Google Patents

telescope lens Download PDF

Info

Publication number
JP3715735B2
JP3715735B2 JP01095597A JP1095597A JP3715735B2 JP 3715735 B2 JP3715735 B2 JP 3715735B2 JP 01095597 A JP01095597 A JP 01095597A JP 1095597 A JP1095597 A JP 1095597A JP 3715735 B2 JP3715735 B2 JP 3715735B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01095597A
Other languages
Japanese (ja)
Other versions
JPH10206729A (en
Inventor
英之 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mamiya OP Co Ltd
Original Assignee
Mamiya OP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mamiya OP Co Ltd filed Critical Mamiya OP Co Ltd
Priority to JP01095597A priority Critical patent/JP3715735B2/en
Publication of JPH10206729A publication Critical patent/JPH10206729A/en
Application granted granted Critical
Publication of JP3715735B2 publication Critical patent/JP3715735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、インナフォーカスタイプの望遠レンズに関する。
【0002】
【従来の技術】
従来よりレンズ系内部のレンズ群を光軸上に移動させて合焦を行うインナフォーカスタイプの望遠レンズが知られている。このような合焦方式のレンズ系では、合焦に際してレンズの全長が変化せず、且つ、レンズの全重量に対して比較的軽量な合焦群を少量だけ光軸方向に移動させればよいという機構上の長所があるが、合焦群の移動による収差変動が大きく、これを補正することが難しいという問題点があった。
【0003】
この種のインナフォーカスタイプの望遠レンズとして、従来例えば特公昭61−32651号公報に示されるようなものがある。これは、光学系を物体側から正,負,負の3群で構成し、第2負レンズ群を光軸上に移動させて合焦を行うものであるが、もっとも像側に負レンズ系を配置していることに加えて、画角2ωが6.3°、広くても8.5°と狹いため、このままの構成で画角を広げての使用は、歪曲収差を主とした諸収差が大きく発生することから不可能であった。
【0004】
【発明が解決しようとする課題】
このような問題点を解決するために提案された特開昭61−51117号公報に記載されている望遠レンズは、物体側から正,負,正の作用の3群で構成し、そのうち、第3群を3枚のレンズで構成することにより、より自由度の高い収差補正を行って、画角2ωを17.0°程度にまで広げている。
【0005】
それと同時に、その実施例3において、第3レンズ群を物体側から両凸の正レンズと両凹の負レンズの2枚で構成し、画角2ωを12.7°程度としたレンズ系も示されているが、移動レンズ群である第2レンズ群の有効径が大きく機構上不利となる。
また、例えば焦点距離の7倍程度の近距離に合焦した際、球面収差やコマ収差の変動が比較的大きくなるとともに、像面の倒れが球面収差の倒れと合っていないために、画面の中心から周辺にかけて、鮮鋭な像を得ることができず、最短撮影距離を焦点距離の7倍程度より短くすることができないという問題点があった。
この発明は上記の点に鑑みてなされたものであり、無限遠から近距離まで収差が良好に補正され、且つ合焦による収差変動が少ない望遠レンズを提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明は上記の目的を達成するため、物体側より順に収束性の第1レンズ群、発散性の第2レンズ群、収束性の第3レンズ群より構成され、上記第2レンズ群を光軸上像側へ移動させることによって、より近距離の物体への合焦を行う望遠レンズにおいて、上記第1レンズ群は、物体側より順に正,正,負,正の第1,第2,第3,第4レンズで構成され、上記第2レンズ群は、物体側より両凹の負の第5レンズと両面が物体側に凸のメニスカス正の第6レンズで構成され、上記第3レンズ群は、物体側より正の第7レンズと両面が像側に凸のメニスカス負の第8レンズで構成され、且つ、以下の条件を満足する望遠レンズを提供するものである。
(1)0.05<d10/d8<0.7
(2)r12>0
但し、d8:第4レンズと第5レンズとの面間隔
d10:第5レンズと第6レンズとの面間隔
r12:第6レンズの像側の面の曲率半径
【0007】
【発明の実施の形態】
以下、この発明の実施形態及び各実施例を図面に基づいて具体的に説明する。この発明による望遠レンズは、図1に示すように、物体側より順に収束性の第1レンズ群G1、発散性の第2レンズ群G2、収束性の第3レンズ群G3より構成されている。
【0008】
第1レンズ群G1は、物体側より順に正,正,負,正の第1,第2,第3,第4のレンズL1,L2,L3,L4で構成され、第2レンズ群G2は、物体側より順に両凹の負の第5レンズL5と両面が物体側に凸のメニスカス正の第6レンズL6で構成され、第3レンズ群G3は、物体側より順に正の第7レンズL7と両面が像側に凸のメニスカス負の第8レンズL8で構成され、第2レンズ群G2を光軸上像側へ移動させることにより、より近距離の物体の合焦を行うものである。
【0009】
以上のような構成からなる望遠レンズは、絞りDに対して比較的コンセントリックな面を多く配置させることにより、各レンズ群における収差発生量を小さく抑えるとともに、特に合焦レンズ群である第2レンズ群G2の移動による収差変動を少なくしている。
第2レンズ群G2は、すでに述べたように、光軸上を像側へ移動させることにより近距離側への合焦を行う役割を持ち、比較的軽量なレンズ群を少量移動させるだけで合焦を行うことが可能になる。
【0010】
しかし、第2レンズ群G2の屈折率が強くなりすぎると、合焦のための移動量は小さくできる反面、収差の変動が大きくなる。また、第2レンズ群G2の屈折率が弱くなりすぎると、単位移動量あたりの収差変動は小さくなるが、所要の最短撮影距離を得るための移動量が大きくなり、機構上の制約を受けることになる。したがって、この実施形態では第2レンズ群G2の焦点距離をf2、望遠レンズ全系の焦点距離をfとしたとき、
0.55<|f2|/f<0.8(f2<0)
を満たすようにするのが望ましい。
【0011】
次に、図1において、望遠比、すなわち焦点距離に対するレンズ全長(レンズ第1面から像面までの距離)を一定に保ちながら第2レンズ群G2を第1レンズ群G1に近付けていくと第2レンズ群G2の屈折率は弱くなり、その結果として第5レンズL5と第6レンズL6の面間隔d10が広がる。つまり、有効径も含めて第2レンズ群G2が大きくなるという機構上の問題と、第5レンズL5と第6レンズL6との面間隔d10が広がることにより、第5レンズL5から第6レンズL6へ入射する光線の光線高の変化が大きくなり、収差変動につながることから、d10/d8は0.7の上限を越えることはできない。
【0012】
同様に、望遠比を一定に保ちながら第2レンズ群G2を第1レンズ群G1から離していくと、第2レンズ群G2の屈折力は強くなり、その結果、第5レンズL5と第6レンズL6の面間隔d10は狹まる。つまり、第2レンズ群自体は小さくなるとともに合焦のための駆動量も小さくできて機構上有利となるが、第2レンズ群G2の屈折力が大きくなることによって、すでに述べたように合焦の際の収差変動が大きくなるため、d10/d8は0.05の下限を越えることはできない。さらに加えると、
0.1<d10/d8<0.35
の範囲であれば一層良好な性能を得ることができる。
【0013】
また、合焦レンズ群である第2レンズ群G2において、もっとも物体側の第5レンズL5の負の屈折力をもつ有効径の大きい面の曲率半径r9を大きくすることは、この面での諸収差の発生の原因となるばかりでなく、合焦の際の収差変動の原因となる。したがって、第5レンズL5の物体側の面の曲率半径r9を小さくしてこの面のもつ負の作用を小さくするために、第2レンズ群G2全体としての負の作用を、第5レンズL5の負の作用の像側の曲率半径r10の面及び負の作用の第6レンズL6の像側の曲率半径r12の面に負担させ、r12>0とした。
【0014】
さらに、第5レンズL5の物体側の曲率半径r9の面以外の第2レンズ群G2の各面を絞りDに対してコンセントリックな形状をもたせることにより、各面での光束主光線の急激な曲がりを極力なくして諸収差の発生量を少なくするとともに、合焦の際の第2レンズ群G2の移動による諸収差の変動、特に球面収差やコマ収差の変動を小さくした。また、第5レンズL5の像側の面と第6レンズL6の物体側の面で収差打消しの関係にもなっている。
【0015】
以上のような観点から、特にr12>0のように構成することは、第2レンズ群G2を射出していく光線に対して、合焦による射出角度変化を小さくできるため、諸収差の変動を少なくすることが可能になる。加えて、r12>0とすることにより、無限遠から近距離に合焦した際、曲率半径r12の面を通過する光線の光線高が低くなるため、この面における負の屈折作用が弱くなって球面収差がマイナス方向に倒れる結果となるが、同様の理由で像面もマイナス方向へ倒れ、両者の倒れが一致して画面の中心から周辺まで均等に鮮鋭な像を得ることができる。
【0016】
次に、第1レンズ群G1において、物体側から順に正,正,負,正の第1,第2,第3,第4レンズL1,L2,L3,L4からなるようにすることにより、負レンズをもっとも像側に配置する場合のように前側の正レンズ群からこの負レンズに入射する光線が強い屈折作用を受けて高次収差やコマ収差等が発生することを防止している。
【0017】
この発明の実施形態における第1レンズ群G1の焦点距離f1は、全系の焦点距離をfとしたとき、
0.5<f1/f<0.7
の範囲内にあることが望ましい。この下限を越えると第1レンズ群G1の屈折力が強くなり、望遠比は小さくできるが、球面収差やコマ収差が劣化する原因となり、上限を越えると第1レンズ群G1の屈折力が小さくなり、収差補正上は好都合であるが、望遠比が大きくなりレンズ全長が長くなる。
【0018】
また、一般に望遠レンズにおいては、図1に示す第1レンズ群G1の第2レンズL2の像側の曲率半径r4の面と第3レンズL3の物体側の曲率半径r5の面のように、光線が正レンズから負レンズに入射する際に、上記両面での高次収差を含めた諸収差の発生量が大きくなる。したがって、この実施形態では、これらの曲率半径r4,r5の面を絞りDに対して比較的コンセントリックな形状にするようにして、これらの面での収差発生量を小さくするとともに、第1レンズ群G1全体としての収差補正作用ももたせている。
【0019】
ここで、第3レンズL3の物体側の曲率半径r5の面の屈折力をφ5、第1レンズ群G1の焦点距離をf1とすると、
0.06<φ5・f1<0.23
とするのがよく、その下限を越えると第1群レンズG1の各面でのコンセントリックな形状が大きく崩れ、第2レンズL2の像側の面から第4レンズL4の物体側の面までの球面収差やコマ収差及び第2レンズL2の像側の面と第3レンズL3の物体側の面での非点収差補正上のバランスも崩れる。また、その上限を越えると第1レンズ群G1における第3レンズL3としての負のパワー負担を第3レンズL3の像側の面に大きく依存することになるので、この面での諸収差の発生原因となる。
【0020】
なお、第1群レンズG1の正の第2レンズL2と第4レンズL4にg線とd線に対する部分分散比θが1.22以上1.24以下で、アッベ数νdが80以上96以下の異常分散性をもつ光学材料を使用することにより、2次スペクトルを小さく補正している。同時にこのような異常分散性の光学材料は、温度変化による屈折率変化や熱膨張を起こしやすく、且つ軟らかくて傷が付きやすいので、外気に直接触れることになる物体側の正の第1レンズL1には、温度変化に強く、比較的硬くて傷の付きにくい光学材料を使用している。
【0021】
第3レンズ群G3は正の作用をもつため、通常望遠レンズで問題となる糸巻き型歪曲収差は特に問題とならないが、像側に負の作用をもつ第8レンズL8を配置することにより、糸巻き型歪曲収差が発生する可能性を考慮して、第8レンズL8の像側の面の曲率半径r16を
r16<0
すなわち、像側に凸となる正の屈折力をもたせるようにして糸巻き型歪曲収差の増大を防いでいる。実際、この実施形態程度の歪曲収差であれば実用上全く問題がない。
【0022】
また、第3レンズ群G3の第7レンズL7と第8レンズL8のレンズ間隔d14を小さくしすぎると、各レンズの屈折力が大きくなるため、特に負の第8レンズL8による糸巻き型歪曲収差が大きく発生する。逆に、レンズ間隔d14を大きくしすぎると、特にg線の色収差補正のバランスが崩れるので、
0.09<d14<0.16
の範囲とするのが望ましい。
【0023】
【実施例】
次に、この発明による望遠レンズの各実施例を示す。ここで
f:全系の焦点距離
fb:バックフォーカス
2ω:画角
r:曲率半径
d:面間隔
n:d線に対する屈折率
ν:d線に対するアッベ数
M:メリジオナル像面
S:サジタル像面
とし、以下の表1,表2,表3に実施例1,実施例2,実施例3のパラメータ値をそれぞれ示す。
【0024】
なお、以下の各実施例における近距離とは、被写体から像面までの距離が焦点距離のほぼ7倍となる距離を意味するものとする。
【0025】
【表1】

Figure 0003715735
【0026】
【表2】
Figure 0003715735
【0027】
【表3】
Figure 0003715735
【0028】
【発明の効果】
以上述べたように、この発明によれば、望遠レンズの合焦群である第2レンズ群の形状を比較的小さく構成することができ、無限遠から焦点距離の7倍程度の近距離までの合焦時の諸収差の変動を小さく抑えることが可能になる。また、近距離での球面収差の倒れと像面の倒れを合致させることにより、近距離においても画面の中心から周辺まで鮮鋭な像を得ることができ、さらに他の収差及びその合焦による変動も充分に小さく良好な性能を達成できた。これによってこの発明による望遠レンズは焦点距離の6倍程度まで最短撮影距離を短くすることが可能になった。
【図面の簡単な説明】
【図1】この発明による望遠レンズの光学系を無限遠に合焦した状態を示す構成図である。
【図2】同じく近距離に合焦した状態を示す構成図である。
【図3】この発明の実施例1における無限遠合焦時の縦の諸収差図である。
【図4】同じくその近距離合焦時の縦の諸収差図である。
【図5】この発明の実施例2における無限遠合焦時の縦の諸収差図である。
【図6】同じくその近距離合焦時の縦の諸収差図である。
【図7】この発明の実施例3における無限遠合焦時の縦の諸収差図である。
【図8】同じくその近距離合焦時の縦の諸収差図である。
【図9】この発明の実施例1のベスト像面における最大像高の7割の像高での横収差図であり、(A)は無限遠合焦時、(B)は近距離合焦時をそれぞれ示す。
【図10】この発明の実施例2のベスト像面における最大像高の7割の像高での横収差図であり、(A)は無限遠合焦時、(B)は近距離合焦時をそれぞれ示す。
【図11】この発明の実施例3のベスト像面における最大像高の7割の像高での横収差図であり、(A)は無限遠合焦時、(B)は近距離合焦時をそれぞれ示す。
【符号の説明】
G1:第1レンズ群 G2:第2レンズ群
G3:第3レンズ群 L1〜L8:第1〜第8レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner focus type telephoto lens.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an inner focus type telephoto lens that performs focusing by moving a lens group inside a lens system on an optical axis is known. In such a focusing type lens system, the entire length of the lens does not change during focusing, and a relatively light focusing group with respect to the total weight of the lens only needs to be moved in the optical axis direction by a small amount. However, there is a problem that it is difficult to correct the aberration variation due to the movement of the focusing group.
[0003]
An example of this type of inner focus type telephoto lens is shown in Japanese Patent Publication No. 61-32651. In this system, the optical system is composed of three groups of positive, negative, and negative from the object side, and the second negative lens group is moved on the optical axis for focusing, but the negative lens system is closest to the image side. In addition, the angle of view 2ω is 6.3 °, and it is 8.5 ° at most. It was impossible because of the large aberration.
[0004]
[Problems to be solved by the invention]
A telephoto lens described in Japanese Patent Application Laid-Open No. 61-51117 proposed to solve such problems is composed of three groups of positive, negative, and positive functions from the object side. By configuring the three groups with three lenses, aberration correction with a higher degree of freedom is performed, and the angle of view 2ω is expanded to about 17.0 °.
[0005]
At the same time, in Example 3, a lens system in which the third lens group is composed of a biconvex positive lens and a biconcave negative lens from the object side and the angle of view 2ω is about 12.7 ° is also shown. However, the effective diameter of the second lens group which is a moving lens group is large, which is disadvantageous in terms of mechanism.
In addition, for example, when focusing on a short distance of about 7 times the focal length, the variation of spherical aberration and coma aberration becomes relatively large, and the tilt of the image plane does not match the tilt of the spherical aberration. There is a problem that a sharp image cannot be obtained from the center to the periphery, and the shortest shooting distance cannot be made shorter than about seven times the focal length.
The present invention has been made in view of the above points, and an object of the present invention is to provide a telephoto lens in which aberrations are favorably corrected from infinity to a short distance and aberration fluctuation due to focusing is small.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises, in order from the object side, a converging first lens group, a diverging second lens group, and a converging third lens group. In a telephoto lens that focuses on an object at a shorter distance by moving to the upper image side, the first lens group includes positive, positive, negative, positive first, second, and second in order from the object side. The second lens group includes a negative fifth lens that is biconcave from the object side, and a sixth meniscus positive lens that is convex on the object side on both sides, and the third lens group. Provides a telephoto lens that is composed of a positive seventh lens from the object side and a negative meniscus eighth lens having both surfaces convex toward the image side, and satisfies the following conditions.
(1) 0.05 <d10 / d8 <0.7
(2) r12> 0
Where d8: the distance between the fourth lens and the fifth lens d10: the distance between the fifth lens and the sixth lens r12: the radius of curvature of the image side surface of the sixth lens
DETAILED DESCRIPTION OF THE INVENTION
Embodiments and examples of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 1, the telephoto lens according to the present invention includes a first lens group G1, a divergent second lens group G2, and a third lens group G3 that are convergent in order from the object side.
[0008]
The first lens group G1 includes positive, positive, negative, positive first, second, third, and fourth lenses L1, L2, L3, and L4 in order from the object side, and the second lens group G2 includes: A negative fifth lens L5 that is biconcave in order from the object side and a sixth meniscus positive lens L6 that is convex on both sides toward the object side. The third lens group G3 includes a positive seventh lens L7 in order from the object side. A double-sided meniscus eighth lens L8 is convex on the image side, and the second lens group G2 is moved to the image side on the optical axis to focus an object at a shorter distance.
[0009]
The telephoto lens having the above-described configuration suppresses the amount of aberration generated in each lens group by disposing a relatively large number of relatively concentric surfaces with respect to the stop D, and in particular the second focusing lens group. Aberration fluctuation due to movement of the lens group G2 is reduced.
As described above, the second lens group G2 has a role of focusing on the short distance side by moving the optical axis to the image side, and only requires a small amount of movement of the relatively light lens group. It becomes possible to focus.
[0010]
However, if the refractive index of the second lens group G2 becomes too strong, the amount of movement for focusing can be reduced, but the variation in aberration increases. Also, if the refractive index of the second lens group G2 becomes too weak, the aberration fluctuation per unit moving amount becomes small, but the moving amount for obtaining the required shortest shooting distance becomes large, which is subject to mechanical limitations. become. Therefore, in this embodiment, when the focal length of the second lens group G2 is f2, and the focal length of the entire telephoto lens system is f,
0.55 <| f2 | / f <0.8 (f2 <0)
It is desirable to satisfy.
[0011]
Next, in FIG. 1, the second lens group G2 is moved closer to the first lens group G1 while keeping the telephoto ratio, that is, the total lens length with respect to the focal length (distance from the first lens surface to the image plane) constant. The refractive index of the second lens group G2 becomes weak, and as a result, the surface distance d10 between the fifth lens L5 and the sixth lens L6 increases. That is, the mechanical problem that the second lens group G2 including the effective diameter becomes large, and the surface distance d10 between the fifth lens L5 and the sixth lens L6 increases, so that the fifth lens L5 to the sixth lens L6. D10 / d8 cannot exceed the upper limit of 0.7 because the change in the height of the light ray incident on the light beam increases and aberration fluctuations occur.
[0012]
Similarly, when the second lens group G2 is moved away from the first lens group G1 while keeping the telephoto ratio constant, the refractive power of the second lens group G2 increases, and as a result, the fifth lens L5 and the sixth lens The surface distance d10 of L6 is increased. That is, the second lens group itself can be reduced and the driving amount for focusing can be reduced, which is advantageous in terms of mechanism. However, as the refractive power of the second lens group G2 is increased, focusing is performed as described above. Since the aberration fluctuation at this time becomes large, d10 / d8 cannot exceed the lower limit of 0.05. In addition,
0.1 <d10 / d8 <0.35
If it is in the range, better performance can be obtained.
[0013]
Further, in the second lens group G2, which is the focusing lens group, increasing the radius of curvature r9 of the surface having a large effective diameter and having the negative refractive power of the fifth lens L5 closest to the object side is various on this surface. This not only causes aberrations, but also causes aberration fluctuations during focusing. Therefore, in order to reduce the radius of curvature r9 of the object side surface of the fifth lens L5 and reduce the negative action of this surface, the negative action of the second lens group G2 as a whole is reduced. The negative-acting image-side curvature radius surface r10 and the negative-acting sixth lens L6 on the image-side curvature radius surface r12 were loaded, and r12> 0.
[0014]
Further, by giving each surface of the second lens group G2 other than the object-side curvature radius r9 surface of the fifth lens L5 to a concentric shape with respect to the stop D, the principal ray of the light beam on each surface abruptly increases. As much as possible, the amount of aberrations is reduced by minimizing the bending, and the fluctuations of various aberrations caused by the movement of the second lens group G2 during focusing, particularly the fluctuations of spherical aberration and coma aberration, are reduced. In addition, aberration cancellation is achieved between the image side surface of the fifth lens L5 and the object side surface of the sixth lens L6.
[0015]
From the viewpoint as described above, the configuration of r12> 0 in particular makes it possible to reduce the change in the emission angle due to focusing with respect to the light beam emitted from the second lens group G2, and thus the fluctuation of various aberrations. It becomes possible to reduce. In addition, by setting r12> 0, when focusing from infinity to a short distance, the ray height of the light beam passing through the surface with the radius of curvature r12 becomes low, so that the negative refraction action on this surface becomes weak and the spherical surface Although the aberration is tilted in the minus direction, the image plane is also tilted in the minus direction for the same reason, and the both tilts coincide with each other, so that a sharp image can be obtained uniformly from the center to the periphery of the screen.
[0016]
Next, in the first lens group G1, positive, positive, negative, positive first, second, third, and fourth lenses L1, L2, L3, and L4 are arranged in order from the object side, thereby making negative. As in the case where the lens is arranged closest to the image side, the light incident on the negative lens from the positive lens group on the front side is prevented from being subjected to a strong refraction and causing high-order aberrations, coma aberration, and the like.
[0017]
In the embodiment of the present invention, the focal length f1 of the first lens group G1 is set so that the focal length of the entire system is f.
0.5 <f1 / f <0.7
It is desirable to be within the range. If this lower limit is exceeded, the refractive power of the first lens group G1 will become stronger and the telephoto ratio can be reduced, but this will cause the spherical aberration and coma aberration to deteriorate, and if the upper limit is exceeded, the refractive power of the first lens group G1 will become smaller. Although it is convenient in terms of aberration correction, the telephoto ratio increases and the total lens length increases.
[0018]
In general, in a telephoto lens, a light ray such as a surface having a radius of curvature r4 on the image side of the second lens L2 of the first lens group G1 and a surface having a radius of curvature r5 on the object side of the third lens L3 shown in FIG. Is incident on the negative lens from the positive lens, the amount of various aberrations including high-order aberrations on both sides increases. Therefore, in this embodiment, the surfaces of these radii of curvature r4 and r5 are formed in a relatively concentric shape with respect to the stop D to reduce the amount of aberration generated on these surfaces, and the first lens. The aberration correction function of the entire group G1 is also provided.
[0019]
Here, when the refractive power of the surface of the third lens L3 having the radius of curvature r5 on the object side is φ5 and the focal length of the first lens group G1 is f1,
0.06 <φ5 · f1 <0.23
If the lower limit is exceeded, the concentric shape on each surface of the first lens group G1 is greatly broken, and the surface from the image side surface of the second lens L2 to the object side surface of the fourth lens L4. The balance of spherical aberration, coma aberration, and astigmatism correction on the image side surface of the second lens L2 and the object side surface of the third lens L3 is also lost. If the upper limit is exceeded, the negative power burden of the third lens L3 in the first lens group G1 largely depends on the image-side surface of the third lens L3, and various aberrations occur on this surface. Cause.
[0020]
In the first lens group G1, the positive second lens L2 and the fourth lens L4 have a partial dispersion ratio θ with respect to the g-line and d-line of 1.22 to 1.24, and an Abbe number νd of 80 to 96. By using an optical material having anomalous dispersion, the secondary spectrum is corrected to be small. At the same time, such an anomalous dispersion optical material is likely to cause a refractive index change or thermal expansion due to a temperature change, and is soft and easily damaged. Therefore, the positive first lens L1 on the object side that directly touches the outside air. Uses optical materials that are resistant to temperature changes, are relatively hard, and are not easily damaged.
[0021]
Since the third lens group G3 has a positive action, the pincushion distortion that is usually a problem in the telephoto lens is not particularly problematic. However, by arranging the eighth lens L8 having a negative action on the image side, the pincushion can be obtained. In consideration of the possibility of mold distortion, the curvature radius r16 of the image side surface of the eighth lens L8 is set to r16 <0.
In other words, the pincushion distortion is prevented from increasing by providing a positive refractive power convex toward the image side. In fact, there is no problem in practical use if the distortion is as large as this embodiment.
[0022]
Further, if the lens distance d14 between the seventh lens L7 and the eighth lens L8 of the third lens group G3 is made too small, the refractive power of each lens becomes large, so that the pincushion distortion due to the negative eighth lens L8 is particularly large. It occurs greatly. Conversely, if the lens interval d14 is too large, the balance of chromatic aberration correction for the g-line will be lost.
0.09 <d14 <0.16
It is desirable to be in the range.
[0023]
【Example】
Next, each embodiment of the telephoto lens according to the present invention will be shown. Where f: focal length of the entire system fb: back focus 2ω: angle of view r: radius of curvature d: surface spacing n: refractive index for d-line ν: Abbe number for d-line M: meridional image plane S: sagittal image plane Table 1, Table 2, and Table 3 below show the parameter values of Example 1, Example 2, and Example 3, respectively.
[0024]
Note that the short distance in each of the following embodiments means a distance in which the distance from the subject to the image plane is approximately seven times the focal length.
[0025]
[Table 1]
Figure 0003715735
[0026]
[Table 2]
Figure 0003715735
[0027]
[Table 3]
Figure 0003715735
[0028]
【The invention's effect】
As described above, according to the present invention, the shape of the second lens group, which is the focusing group of the telephoto lens, can be configured to be relatively small. It becomes possible to suppress fluctuations of various aberrations during the focusing. Also, by matching the fall of spherical aberration at the short distance with the fall of the image plane, a sharp image can be obtained from the center to the periphery of the screen even at a short distance, and other aberrations and fluctuations due to focusing It was small enough to achieve good performance. As a result, the telephoto lens according to the present invention can shorten the shortest shooting distance to about six times the focal length.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a state where an optical system of a telephoto lens according to the present invention is focused at infinity.
FIG. 2 is a configuration diagram showing a state in which the camera is focused on a short distance.
FIG. 3 is a diagram showing various aberrations when focusing on infinity in Example 1 of the present invention.
FIG. 4 is also a vertical aberration diagram when focusing on the short distance.
FIG. 5 is a diagram showing various aberrations when focusing on infinity in Example 2 of the present invention.
FIG. 6 is a diagram showing various aberrations when focusing at a short distance.
FIG. 7 is a diagram showing various aberrations when focusing on infinity in Example 3 of the present invention.
FIG. 8 is a graph showing various aberrations when focusing at a short distance.
FIGS. 9A and 9B are lateral aberration diagrams at an image height that is 70% of the maximum image height in the best image plane according to Example 1 of the present invention, in which FIG. Show each time.
FIGS. 10A and 10B are lateral aberration diagrams at an image height that is 70% of the maximum image height on the best image plane according to Example 2 of the present invention, in which FIG. Show each time.
FIGS. 11A and 11B are lateral aberration diagrams at an image height that is 70% of the maximum image height on the best image plane according to the third embodiment of the present invention, in which FIG. Show each time.
[Explanation of symbols]
G1: First lens group G2: Second lens group G3: Third lens group L1 to L8: First to eighth lenses

Claims (1)

物体側より順に収束性の第1レンズ群、発散性の第2レンズ群、収束性の第3レンズ群より構成され、上記第2レンズ群を光軸上像側へ移動させることによって、より近距離の物体への合焦を行う望遠レンズにおいて、
上記第1レンズ群は、物体側より順に正,正,負,正の第1,第2,第3,第4レンズで構成され、
上記第2レンズ群は、物体側より両凹の負の第5レンズと両面が物体側に凸のメニスカス正の第6レンズで構成され、
上記第3レンズ群は、物体側より正の第7レンズと両面が像側に凸のメニスカス負の第8レンズで構成され、
且つ、以下の条件を満足することを特徴とする望遠レンズ。
(1)0.05<d10/d8<0.7
(2)r12>0
但し、d8:第4レンズと第5レンズとの面間隔
d10:第5レンズと第6レンズとの面間隔
r12:第6レンズの像側の面の曲率半径
The first lens group that is convergent, the second lens group that is divergent, and the third lens group that is convergent in order from the object side, and by moving the second lens group toward the image side on the optical axis, In a telephoto lens that focuses on an object at a distance,
The first lens group includes positive, positive, negative, positive first, second, third, and fourth lenses in order from the object side.
The second lens group includes a negative fifth lens that is biconcave from the object side, and a sixth meniscus positive lens that is convex on both sides of the object side,
The third lens group includes a positive seventh lens from the object side and a negative meniscus eighth lens whose both surfaces are convex on the image side.
A telephoto lens characterized by satisfying the following conditions.
(1) 0.05 <d10 / d8 <0.7
(2) r12> 0
Where d8: the distance between the fourth lens and the fifth lens d10: the distance between the fifth lens and the sixth lens r12: the radius of curvature of the image side surface of the sixth lens
JP01095597A 1997-01-24 1997-01-24 telescope lens Expired - Lifetime JP3715735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01095597A JP3715735B2 (en) 1997-01-24 1997-01-24 telescope lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01095597A JP3715735B2 (en) 1997-01-24 1997-01-24 telescope lens

Publications (2)

Publication Number Publication Date
JPH10206729A JPH10206729A (en) 1998-08-07
JP3715735B2 true JP3715735B2 (en) 2005-11-16

Family

ID=11764624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01095597A Expired - Lifetime JP3715735B2 (en) 1997-01-24 1997-01-24 telescope lens

Country Status (1)

Country Link
JP (1) JP3715735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077641A (en) * 2019-12-04 2020-04-28 瑞声通讯科技(常州)有限公司 Camera optics

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505099B2 (en) * 1999-02-04 2004-03-08 ペンタックス株式会社 Medium telephoto lens
JP2001108896A (en) * 1999-10-08 2001-04-20 Mamiya Op Co Ltd Telephoto lens
JP3746942B2 (en) 2000-08-09 2006-02-22 ペンタックス株式会社 telescope lens
JP4624534B2 (en) * 2000-09-27 2011-02-02 富士フイルム株式会社 Inner focus lens
JP4624581B2 (en) 2001-03-15 2011-02-02 富士フイルム株式会社 Inner focus lens
JP5200564B2 (en) * 2008-02-04 2013-06-05 株式会社ニコン Inner focus optical system, imaging device, and focusing method
JP6255704B2 (en) * 2013-04-17 2018-01-10 株式会社ニコン PHOTOGRAPHIC LENS, OPTICAL DEVICE, AND MANUFACTURING METHOD
CN106950682B (en) * 2017-04-28 2023-02-10 深圳市东正光学技术股份有限公司 Medium-long focal length lens
CN107884912B (en) * 2017-12-11 2020-04-21 福建福光股份有限公司 Fixed-magnification double-telecentric optical system
CN107884916B (en) * 2017-12-11 2020-04-21 福建福光股份有限公司 Fixed-focus bilateral telecentric optical lens
CN108107557B (en) * 2018-01-10 2024-01-16 佛山华国光学器材有限公司 High-magnification double-side telecentric lens with long working distance
CN108873255B (en) 2018-07-09 2023-08-25 浙江舜宇光学有限公司 optical imaging system
CN109343205B (en) * 2018-12-14 2024-07-26 浙江舜宇光学有限公司 Optical imaging lens
WO2021127867A1 (en) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 Camera optical lens
CN113031233B (en) * 2019-12-25 2024-12-03 深圳市安华光电技术股份有限公司 Lenses, imaging systems and electronic devices
CN111965799B (en) * 2020-10-21 2020-12-25 常州市瑞泰光电有限公司 Image pickup optical lens
CN112230386B (en) * 2020-10-30 2021-09-24 诚瑞光学(苏州)有限公司 Image pickup optical lens
CN113433656B (en) * 2021-06-11 2023-11-07 江西欧菲光学有限公司 Imaging system, lens module and electronic equipment
CN113534407B (en) * 2021-06-30 2023-11-07 江西晶超光学有限公司 Optical lens, camera module and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048011B2 (en) * 1979-03-12 1985-10-24 旭光学工業株式会社 Telephoto lens with low telephoto ratio
JPS5882217A (en) * 1981-11-11 1983-05-17 Asahi Optical Co Ltd Bright telephoto lens
JPS6151117A (en) * 1984-08-21 1986-03-13 Asahi Optical Co Ltd Telephoto lens
JPH0711628B2 (en) * 1985-11-11 1995-02-08 キヤノン株式会社 Shooting system with soft focus function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077641A (en) * 2019-12-04 2020-04-28 瑞声通讯科技(常州)有限公司 Camera optics
CN111077641B (en) * 2019-12-04 2021-12-24 诚瑞光学(常州)股份有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JPH10206729A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
JP3715735B2 (en) telescope lens
JP3769373B2 (en) Bright wide-angle lens
JP2830418B2 (en) Zoom lens with simple configuration
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JP3728680B2 (en) Compact wide-angle zoom lens
US5652678A (en) Zoom lens system with function for reducing vibration
JP3725284B2 (en) Compact wide-angle lens
JP2000338397A (en) Zoom lens
JP3746942B2 (en) telescope lens
JPH06308385A (en) Wide-angle lens
JPH11271614A (en) Variable focus distance lens system
JP3288746B2 (en) telescope lens
JP2526923B2 (en) Zoom lenses
JP4550970B2 (en) Floating photography lens
JP3093850B2 (en) Wide-angle zoom lens
JP2000028919A (en) Middle telephotographic lens
JP2975696B2 (en) Ultra-compact ultra-wide-angle lens
JPH116958A (en) Zoom lens
JP3072157B2 (en) Zoom finder
JPH05127082A (en) Small-sized zoom lens
JPH085907A (en) Telephoto lens optical system
JPH10104519A (en) Small variable power optical system
JP4171942B2 (en) Zoom lens
JP3883142B2 (en) Zoom lens
JPH07253561A (en) Optical system for compensating image position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term