JP3715277B2 - Active filter device - Google Patents
Active filter device Download PDFInfo
- Publication number
- JP3715277B2 JP3715277B2 JP2002378573A JP2002378573A JP3715277B2 JP 3715277 B2 JP3715277 B2 JP 3715277B2 JP 2002378573 A JP2002378573 A JP 2002378573A JP 2002378573 A JP2002378573 A JP 2002378573A JP 3715277 B2 JP3715277 B2 JP 3715277B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- commercial
- inverter
- detection signal
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 190
- 239000003990 capacitor Substances 0.000 claims description 38
- 230000002457 bidirectional effect Effects 0.000 description 32
- 101150110971 CIN7 gene Proteins 0.000 description 29
- 101150110298 INV1 gene Proteins 0.000 description 29
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 29
- 108091006418 SLC25A13 Proteins 0.000 description 18
- 102100036601 Aggrecan core protein Human genes 0.000 description 17
- 108091006419 SLC25A12 Proteins 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 101150112492 SUM-1 gene Proteins 0.000 description 11
- 101150096255 SUMO1 gene Proteins 0.000 description 11
- 238000007599 discharging Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- RYYVLZVUVIJVGH-UHFFFAOYSA-N trimethylxanthine Natural products CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、商用電源と負荷との間に挿入され、電流補償、力率改善などを行うアクティブフィルタ装置に関するものであり、特に、装置の構成が簡易であり、かつ、応答速度に優れたアクティブフィルタ装置に関するものである。
【0002】
【従来の技術】
最近の家電機器、例えば、パソコン、冷蔵庫、エアコン、照明器具などにおいては、その内部にインバータ電源が組み込まれている。このインバータ電源が組み込まれた機器は、50Hz/60Hzの切り換えが不要であるとか、静音、省電力といった特徴を有しているので、今後、さらに、利用が促進されて行くものと予想される。一方、このインバータ電源が組み込まれた機器は、負荷に流れる高調波電流によって、負荷の力率を悪化させ、電力の利用効率を低下させるといった弊害も問題視されている。
【0003】
これらの問題を解決する従来技術として、例えば、特許文献1に記載されたアクティブフィルタ装置がある。この文献に記載されたアクティブフィルタ装置は、補償能力判定器、力率改善補償電流制御回路、無効電流補償電流制御回路、補償電流制御回路などを備え、補償能力判定器が、インバータの直流側に接続された直流電源装置の電圧に基づいてインバータで発生可能な補償電流の余剰補償能力を判定し、力率改善補償電流制御回路が、補償能力判定器で判定された余剰補償能力に見合った力率改善補償電流を算出し、一方、無効電流補償電流制御回路が、その余剰補償能力に見合った無効電流補償電流を算出し、補償電流制御回路が、高調波補償電流と力率改善補償電流あるいは高調波補償電流と無効電流補償電流に基づいて補償電流を算出してインバータに制御指令を出すことで、高調波電流の補償や力率改善補償を行っている。
【0004】
【特許文献1】
特開平8−140267号公報(第3−5頁、図1)
【0005】
【発明が解決しようとする課題】
ところで、上述した従来技術のアクティブフィルタ装置では、電源系統に流れる基本波電流を検出する回路および高調波電流を検出する回路、電源電圧の位相信号と基本波電流とから運転力率を検出する回路、補償電流を発生させる回路、その他、位相反転回路、位相シフト回路、加算器、掛け算器等の多種多様の回路が用いられているので、装置構成が複雑であり、そのため、装置が高価であるという欠点を有していた。また、補償電流を発生させるために信号波形の波形解析が必須なので、応答速度が遅いという問題点があった。
【0006】
この発明は、上記に鑑みてなされたものであって、装置構成が簡単であり、波形解析等の手段を特に必要とせず応答速度に優れたアクティブフィルタ装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、この発明にかかるアクティブフィルタ装置は、商用電源に接続された負荷から発生する高調波電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、を備え、前記電流検出信号増幅器の出力信号と前記商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記インバータが制御され、前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われることを特徴とする。
【0008】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器が備えられ、電流検出信号増幅器の出力信号と商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいてインバータが制御され、インバータが行う補償電流の送出/引込制御が、補償電流に基づく電流検出信号増幅器の利得制御によって行われる。
【0013】
商用電源に接続された負荷から発生する高調波電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、を備え、前記電圧検出信号増幅器の出力信号と前記商用電流検出手段が検出した商用電流検出信号との合成信号に基づいて前記インバータが制御され、前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とする。
【0014】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器が備えられ、電圧検出信号増幅器の出力信号と商用電流検出手段が検出した商用電流検出信号との合成信号に基づいてインバータが制御され、補償電流供給手段の充電量の制御が、補償電流供給手段の端子電圧に基づいた電圧検出信号増幅器の利得制御によって行われる。
【0015】
商用電源に接続された負荷から発生する高調波電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、を備え、前記電流検出信号増幅器の出力信号と前記電圧検出信号増幅器の出力信号との合成信号に基づいて前記インバータが制御され、前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われ、前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とする。
【0016】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器とが備えられ、電流検出信号増幅器の出力信号と電圧検出信号増幅器の出力信号との合成信号に基づいてインバータが制御され、インバータが行う補償電流の送出/引込制御が、補償電流に基づく電流検出信号増幅器の利得制御によって行われるとともに、補償電流供給手段の充電量の制御が、補償電流供給手段の端子電圧に基づいた電圧検出信号増幅器の利得制御によって行われる。
【0017】
商用電源に接続された負荷から発生する位相遅れ/進み電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、を備え、前記電流検出信号増幅器の出力信号と前記商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記インバータが制御され、前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われることを特徴とする。
【0018】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器が備えられ、電流検出信号増幅器の出力信号と商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいてインバータが制御され、インバータが行う補償電流の送出/引込制御が、補償電流に基づく電流検出信号増幅器の利得制御によって行われる。
【0019】
商用電源に接続された負荷から発生する位相遅れ/進み電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、を備え、前記電圧検出信号増幅器の出力信号と前記商用電流検出手段が検出した商用電流検出信号との合成信号に基づいて前記インバータが制御され、前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とする。
【0020】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器が備えられ、電圧検出信号増幅器の出力信号と商用電流検出手段が検出した商用電流検出信号との合成信号に基づいてインバータが制御され、補償電流供給手段の充電量の制御が、補償電流供給手段の端子電圧に基づいた電圧検出信号増幅器の利得制御によって行われる。
【0021】
商用電源に接続された負荷から発生する位相遅れ/進み電流を補償するための補償電流の送出/引込を行うインバータと、該インバータの直流側に接続されて前記補償電流の供給源となる補償電流供給手段と、前記インバータを制御するための制御手段とを備えたアクティブフィルタ装置において、前記制御手段は、前記商用電源に流れる電流成分を検出する商用電流検出手段と、前記商用電源の電圧成分を検出する商用電圧検出手段と、前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、を備え、前記電流検出信号増幅器の出力信号と前記電圧検出信号増幅器の出力信号との合成信号に基づいて前記インバータが制御され、前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われ、前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とする。
【0022】
この発明によれば、商用電源に流れる電流成分を検出する商用電流検出手段と、商用電源の電圧成分を検出する商用電圧検出手段とを具備する制御手段には、商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器とが備えられ、電流検出信号増幅器の出力信号と電圧検出信号増幅器の出力信号との合成信号に基づいてインバータが制御され、インバータが行う補償電流の送出/引込制御が、補償電流に基づく電流検出信号増幅器の利得制御によって行われるとともに、補償電流供給手段の充電量の制御が、補償電流供給手段の端子電圧に基づいた電圧検出信号増幅器の利得制御によって行われる。
【0023】
前記補償電流供給手段は、コンデンサで構成されることを特徴とする。
【0024】
この発明によれば、コンデンサを用いてアクティブフィルタ装置を簡易に構成することができる。
【0025】
【発明の実施の形態】
以下、この発明にかかるアクティブフィルタ装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0026】
図1は、この発明の実施の形態にかかる回路構成を示す図である。同図において、入力端子と出力端子とをそれぞれ有したアクティブフィルタ装置10は、電圧トランスPT、電流トランスCT1、CT2、可変利得電圧制御アンプAGC1、AGC2、反転回路PR1、加算回路SUM1、双方向インバータINV1、ダイオードD1およびコンデンサC1、C2を備えている。アクティブフィルタ装置10の入力端子には商用電源が接続され、出力端子には負荷が接続されている。
【0027】
つぎに、実施の形態にかかるアクティブフィルタ装置10の回路構成について説明する。図1において、電圧トランスPTは、一次巻線および二次巻線を備えている。電圧トランスPTの一次巻線は、アクティブフィルタ装置10内の電源ラインに接続される。また、二次巻線は、反転回路PR1に接続される。電流トランスCT1は、アクティブフィルタ装置10内の電源ラインの一端上で、電源ラインに挿入させることなく電源ラインに流れる電流を検出するため、電源ライン(給電線)を挟み込んで接続される。加算回路SUM1は、入力側が電流トランスCT1に接続された可変利得電圧制御アンプAGC1と反転回路PR1に接続された可変利得電圧制御アンプAGC2とに接続され、出力側は双方向インバータINV1と接続される。
【0028】
双方向インバータINV1は、一対の直流側端子DT1、DT2と、一対の交流側端子AT1、AT2とを備えている。双方向インバータINV1の交流側端子AT1は、一方の電源ラインに接続され、交流側端子AT2は、他方の電源ラインに接続される。双方向インバータINV1の直流側端子DT1は、コンデンサC1の一端と接続され、直流側端子DT2は、コンデンサC1の他端(同時に回路グランドにも接地されている接地端)に接続される。また、双方向インバータINV1の直流側端子DT1と接続されたコンデンサC1の一端は、可変利得電圧制御アンプAGC2にも接続される。双方向インバータINV1の直流側端子DT1と一方の電源ラインとを接続するライン上には、ダイオードD1のアノードと接続された電流トランスCT2が、このラインを挟み込んで接続される。ダイオードD1のカソードは、可変利得電圧制御アンプAGC1に接続されるとともに、コンデンサC2の一端にも接続される。コンデンサC2の他端は、コンデンサC1と同様に回路グランドに設置される。
【0029】
つぎに、図1に示すアクティブフィルタ装置10の動作について説明する。同図に図示したI1、I2、I3は、それぞれ、商用電源側に流れる商用電流、双方向インバータINV1から出力されるインバータ電流、負荷側に流れる負荷電流を表している。ところで、同図からも明らかなように、商用電源と負荷との間には、商用電源を給電する電源ライン上に電流トランスCT1が存在するのみである。電流トランスCT1は、電源ラインに挿入されることなく、負荷に流れる電流を検出するものであり、商用電源と負荷との間の動作に影響を与えることはない。したがって、このアクティブフィルタ装置10が商用電源や負荷に対して何も作用しないとき、すなわち、インバータ電流I2が流れないときは、商用電流がそのまま負荷電流となる。
【0030】
図1において、電圧トランスPTは、商用電源が供給した電源電圧Vinを検出し、電流トランスCT1は、電源ラインに流れる商用電流I1を検出する。電圧トランスPTで検出された電圧信号は、反転回路PR1で反転され、可変利得電圧制御アンプAGC2に入力される。一方、電流トランスCT1で検出された電流信号は、そのまま可変利得電圧制御アンプAGC1に入力される。これらの信号は、可変利得電圧制御アンプAGC1、AGC2によって増幅され、加算回路SUM1で加算され、双方向インバータINV1への入力信号として加算回路SUM1から出力される。
【0031】
双方向インバータINV1の直流側端子DT1、DT2に接続されたコンデンサC1は、所定の直流電圧を保持するためのものである。また、コンデンサC1は、双方向インバータINV1が電源ラインに流すインバータ電流I2の供給源である。コンデンサC1では、インバータ電流I2の流れる方向に応じた充電動作と放電動作とが交互に行われる。すなわち、インバータ電流I2が図1に示す向きの場合(商用電流I1に対してインバータ電流I2を供給するように動作する場合)には、コンデンサC1は放電動作を行う。インバータ電流I2が図1に示す向きと逆の場合(商用電流I1からインバータ電流I2を引き込むように動作する場合)には、コンデンサC1は充電動作を行う。
【0032】
双方向インバータINV1の交流側端子AT1、AT2には加算回路SUM1から出力される出力信号に基づいた所定の電圧が発生し、交流側端子AT1から所定のインバータ電流I2が流れ、電源ラインに供給される。図1から明らかなように、商用電流I1、インバータ電流I2および負荷電流I3との間には、I3=I1+I2の関係がある。この式が意味するところは、商用電源と双方向インバータINV1とが負荷に供給する電流を分配するということにある。ところで、負荷には、負荷自体に依存した多様な電流が流れる。例えば、負荷には高調波が重畳した電流や位相遅れ/進みの電流が流れるが、これらの高調波電流や位相遅れ/進み電流の補償をインバータ電流I2が受け持つことによって、商用電源に流れる商用電流I1の波形を改善することができる。この作用により、商用電源側の力率を改善したり利用効率を向上させることができるのである。なお、このインバータ電流I2が供給される動作については後述する。
【0033】
電流トランスCT2は、双方向インバータINV1が供給するインバータ電流I2の電流を検出する。この検出電流は、ダイオードD1を通じてコンデンサC2に充電される。コンデンサC2に充電された電圧は、可変利得電圧制御アンプAGC1の制御信号として用いられる。この制御信号は、インバータ電流I2の電流垂下用制御信号として、すなわち、インバータ電流I2が双方向インバータINV1が供給できる許容能力を超えた場合にインバータ電流I2を急激に遮断(電源ラインに供給しない)するためのものである。したがって、コンデンサC2に充電された電圧が所定の電圧値を越えた場合には、可変利得電圧制御アンプAGC1の利得が下げられ、加算回路SUM1への供給信号は小さくなる。なお、コンデンサC2に充電された電圧は、コンデンサC2の容量値や、図示しない抵抗、可変利得電圧制御アンプAGC1の入力インピーダンスなどによって決まる時定数に基づき、所定の周期ごと(例えば、商用電源の1周期ごと)に放電される。
【0034】
一方、コンデンサC1に充電された電圧は、可変利得電圧制御アンプAGC2の制御信号として用いられる。この制御信号は、コンデンサC1に充電されている充電量の制御のために可変利得電圧制御アンプAGC2に供給されるものである。後述するインバータ電流I2の動作説明で明らかにするが、加算回路SUM1からの出力が負の場合にはコンデンサC1が充電され、逆に、加算回路SUM1からの出力が正の場合には、コンデンサC1から放電電流が流れる。したがって、コンデンサC1の電圧が大きいときには、可変利得電圧制御アンプAGC2の利得が下がるように制御され、逆に、コンデンサC1の電圧が小さいときには、可変利得電圧制御アンプAGC2の利得が上がるように制御される。また、可変利得電圧制御アンプAGC1の利得がコンデンサC2の電圧に基づいて急激に制御されるのに対し、可変利得電圧制御アンプAGC2の利得は、コンデンサC1の端子電圧に応じて連続的に制御される。
【0035】
図2(a)はアクティブフィルタ装置10の主要部の電圧信号または電流信号の波形を示す図であり、(b)は双方向インバータINV1への入力信号の波形を示す図である。同図(a)において、細い実線で示した部分、すなわち信号K1は、電圧トランスPTによって検出された商用電源の電圧信号である。また、太い実線で示した部分、すなわち信号K2は、電流トランスCT1で検出された電流信号である。また、この電流信号である信号K2のうち、信号K3の部分は、負荷に生じた高調波電流によるものである。一方、破線で示した部分、すなわち信号K4は、反転回路PR1によって反転された反転波形である。
【0036】
信号K2が可変利得電圧制御アンプAGC1に入力され、信号K4が可変利得電圧制御アンプAGC2に入力され、可変利得電圧制御アンプAGC1および可変利得電圧制御アンプAGC2がそれぞれ所定の利得に設定されると、加算回路SUM1から同図(b)に示す信号が出力される。このとき、双方向インバータINV1の通常の機能によって、この信号が正のときは、同図(b)に示す電流に比例したインバータ電流I2が双方向インバータINV1から電源ラインに向かって供給される。逆に、この信号が負のときは、同図(b)に示す電流に比例したインバータ電流I2が電源ラインから双方向インバータINV1側に引き抜かれる。同図(b)を用いて説明すると、網掛けのL1の部分では電流が引き抜かれ、網掛けのL2の部分では電流が供給される。これらの動作に連動して、コンデンサC1は、充電または放電の動作をそれぞれ行う。すなわち、L1の部分では、電源ラインから引き抜かれたインバータ電流I2によってコンデンサC1が充電され、L2の部分では、コンデンサC2から放電される電流により、電源ラインに向かうインバータ電流I2が供給される。
【0037】
図3は、負荷に高調波を含んだ負荷電流が流れた場合に双方向インバータINV1の補償電流によって商用電流が改善される様子を示す説明図であり、(a)は電源電圧(Vin)の波形を示す図であり、(b)は(a)の電源電圧の反転信号の波形を示す図であり、(c)は高調波を含んだ負荷電流の波形を示す図であり、(d)は双方向インバータINV1から抽出された補償電流の波形を示す図であり、(e)は最終的な商用電流の波形を示す図である。
【0038】
電圧トランスPTは、図3(a)に示す信号を検出し、反転回路PR1は、同図(b)に示す信号を生成する。一方、電流トランスCT1は、同図(c)に示す信号を検出する。この検出信号は、高調波を含んだ負荷電流I3が商用電源側を流れた瞬間の商用電流I1を検出したものである。これらの同図(b)および同図(c)に示す信号が、可変利得電圧制御アンプAGC2および可変利得電圧制御アンプAGC1にそれぞれ入力され、可変利得電圧制御アンプAGC1および可変利得電圧制御アンプAGC2のそれぞれの利得が適正に制御されることで、上述した動作に従って、双方向インバータINV1から同図(d)に示す補償電流(インバータ電流I2)が電源ラインに供給される。このように、高調波電流を含んだ負荷電流I3が負荷に流れ、この高調波電流が商用電源側に流れたとき、商用電源側の商用電流I1の変化が検出され、この変化成分がインバータ電流I2によって補償される。その結果、商用電流I1は、同図(e)に示すような正弦波形の電流が流れるようになる。
【0039】
図4は、負荷に位相が遅れた位相遅れ電流が流れた場合に双方向インバータINV1の補償電流によって位相遅れが改善される様子を示す説明図であり、(a)は電源電圧(Vin)の波形を示す図であり、(b)は(a)の電源電圧の反転信号の波形を示す図であり、(c)は遅れ電流の波形を示す図であり、(d)は双方向インバータINV1から抽出された補償電流の波形を示す図であり、(e)は最終的な商用電流の波形を示す図である。
【0040】
この場合においても、商用電源側に高調波電流が流れたときと全く同じ動作が行われ、双方向インバータINV1の補償電流によって、商用電源側の波形が改善される。この波形改善は、双方向インバータINV1の補償電流によって行われるので、負荷に流れる電流がどのような波形の電流であっても構わない。例えば、負荷に流れる電流が、進み電流であっても、また、高調波電流と遅れ電流または進み電流が同時に発生する場合であっても、商用電流の波形を改善することができる。
【0041】
このように、負荷に発生した高調波電流や遅れ/進み電流が商用電源側に流れるときに、商用電源側に流れたこれらの電流を検出し、これらの電流を双方向インバータINV1が補償するように動作するので、商用電源側に流れる電流信号の高調波成分を除去するとともに、遅れ/進み電流を補償することができ、商用電流の波形を改善することができる。また、コンデンサC1は、充電または放電を交互に行うように動作するので、大容量のコンデンサを用いることなく回路を実現することができる。また、コンデンサC1およびコンデンサC2の電圧に基づいて、それぞれ、可変利得電圧制御アンプAGC2および可変利得電圧制御アンプAGC1の利得を制御するようにしているので、双方向インバータINV1の能力に応じた適正なインバータ電流I2を電源ラインに供給することができる。
【0042】
以上説明したように、この実施の形態によれば、商用電源に接続された負荷から発生する高調波電流を補償するための補償電流の送出/引込を行うインバータと、インバータの直流側に接続されて補償電流の供給源となる補償電流供給手段と、インバータを制御するための商用電流検出手段および商用電圧検出手段を備えた制御手段とが備えられ、商用電流検出手段が検出した商用電流検出信号と商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいてインバータを制御するようにしているので、負荷に流れる電流によって商用電源側にどのような波形の電流が流れたとしても、商用電流の波形を改善することができるという効果を奏する。
【0043】
また、この実施の形態によれば、制御手段は、インバータの直流側に接続された補償電流供給手段の端子電圧の変化に基づいて補償電流供給手段の充電/放電を制御するようにしているので、補償電流供給手段の供給能力に応じた補償電流の制御が実現できるという効果を奏する。
【0044】
また、この実施の形態によれば、商用電流検出信号を増幅する第1の増幅器と、商用電圧検出信号を増幅する第2の増幅器とを備えた制御手段は、電流供給手段の端子電圧に基づいた第2の増幅器の利得を制御することにより、電流供給手段の充電量の制御を行うとともに、補償電流に基づいた第1の増幅器の利得制御により、インバータが行う補償電流の送出/引込の制御を行うようにしているので、波形解析等を行う必要がなく、応答速度に優れるとともに、装置が簡単かつ安価に構成できるという効果を奏する。
【0045】
なお、ここでいうところの制御手段は、電圧トランスPT、電流トランスCT1、CT2、可変利得アンプAGC1、AGC2、反転回路PR1、加算回路SUM1、コンデンサC1、ダイオードD1により実現される。
【0046】
また、ここでいうところの、商用電流検出手段は電流トランスCT1に対応する。同様に、商用電圧検出手段は電圧トランスPTに対応し、補償電流供給手段はコンデンサC1に対応し、第1の増幅器は可変利得アンプAGC2に対応し、第2の増幅器は可変利得アンプAGC1に対応する。
【0047】
【発明の効果】
以上説明したように、この発明によれば、インバータを制御するための商用電流検出手段および商用電圧検出手段を備えた制御手段とが備えられ、商用電流検出手段が検出した商用電流検出信号と商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいてインバータを制御するようにしているので、負荷に流れる電流によって商用電源側にどのような波形の電流が流れたとしても、商用電流の波形を改善することができるという効果を奏する。
【0048】
また、この発明によれば、商用電流検出信号を増幅する第1の増幅器と、商用電圧検出信号を増幅する第2の増幅器とを備えた制御手段によって、電流供給手段の端子電圧に基づいた第2の増幅器の利得制御によって電流供給手段の充電量が制御され、また、補償電流に基づいた第1の増幅器の利得制御によってインバータが行う補償電流の送出/引込の制御が行われるので、商用電流や負荷電流の波形解析等を行う必要がなく、応答速度に優れるとともに、装置を簡単かつ安価に構成できるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の実施の形態にかかる回路構成を示す図である。
【図2】(a)はアクティブフィルタ装置の主要部の電圧信号または電流信号の波形を示す図であり、(b)は双方向インバータへの入力信号の波形を示す図である。
【図3】(a)は電源電圧の波形を示す図であり、(b)は(a)の電源電圧の反転信号の波形を示す図であり、(c)は高調波を含んだ負荷電流の波形を示す図であり、(d)は双方向インバータから抽出された補償電流の波形を示す図であり、(e)は最終的な商用電流の波形を示す図である。
【図4】(a)は電源電圧の波形を示す図であり、(b)は(a)の電源電圧の反転信号の波形を示す図であり、(c)は遅れ電流の波形を示す図であり、(d)は双方向インバータから抽出された補償電流の波形を示す図であり、(e)は最終的な商用電流の波形を示す図である。
【符号の説明】
10 アクティブフィルタ装置
AGC1,AGC2 可変利得アンプ
AT1,AT2 交流側端子
C1,C2 コンデンサ
CT1,CT2 電流トランス
D1 ダイオード
DT1,DT2 直流側端子
I1 商用電流
I2 インバータ電流
I3 負荷電流
INV1 双方向インバータ
K1,K2,K3,K4 信号
PR1 反転回路
PT 電圧トランス
SUM1 加算回路
Vin 電源電圧[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active filter device that is inserted between a commercial power source and a load and performs current compensation, power factor improvement, and the like. In particular, the active filter device has a simple configuration and excellent response speed. The present invention relates to a filter device.
[0002]
[Prior art]
In recent home appliances such as a personal computer, a refrigerator, an air conditioner, and a lighting fixture, an inverter power supply is incorporated therein. Since the device incorporating this inverter power supply does not require switching of 50 Hz / 60 Hz, or has features such as quietness and power saving, it is expected that the use will be further promoted in the future. On the other hand, a device in which this inverter power supply is incorporated is also regarded as a problem that the power factor of the load is deteriorated due to the harmonic current flowing in the load, and the power use efficiency is lowered.
[0003]
As a conventional technique for solving these problems, for example, there is an active filter device described in Patent Document 1. The active filter device described in this document includes a compensation capability determination unit, a power factor correction compensation current control circuit, a reactive current compensation current control circuit, a compensation current control circuit, and the like, and the compensation capability determination unit is provided on the DC side of the inverter. Based on the voltage of the connected DC power supply, the surplus compensation capability of the compensation current that can be generated by the inverter is judged, and the power factor improvement compensation current control circuit is a force that matches the surplus compensation capability judged by the compensation capability judgment unit. On the other hand, the reactive current compensation current control circuit calculates the reactive current compensation current commensurate with the surplus compensation capability, and the compensation current control circuit calculates the harmonic compensation current and the power factor correction compensation current or Compensation of the harmonic current and power factor improvement compensation are performed by calculating a compensation current based on the harmonic compensation current and the reactive current compensation current and issuing a control command to the inverter.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-140267 (page 3-5, FIG. 1)
[0005]
[Problems to be solved by the invention]
By the way, in the above-described conventional active filter device, a circuit for detecting the fundamental wave current flowing in the power supply system, a circuit for detecting the harmonic current, and a circuit for detecting the driving power factor from the phase signal of the power supply voltage and the fundamental wave current. Since a wide variety of circuits such as a circuit for generating a compensation current, a phase inversion circuit, a phase shift circuit, an adder, and a multiplier are used, the device configuration is complicated, and thus the device is expensive. Had the disadvantages. Further, since waveform analysis of the signal waveform is indispensable for generating the compensation current, there is a problem that the response speed is slow.
[0006]
The present invention has been made in view of the above, and an object of the present invention is to obtain an active filter device that has a simple device configuration, does not particularly require means such as waveform analysis, and has excellent response speed.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, an active filter device according to the present invention is an inverter that sends / leads compensation current for compensating harmonic current generated from a load connected to a commercial power source. When,TheIn an active filter device comprising compensation current supply means connected to the DC side of an inverter and serving as a supply source of the compensation current, and control means for controlling the inverter, the control means flows to the commercial power source Commercial current detection means for detecting current components; commercial voltage detection means for detecting voltage components of the commercial power supply;A current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection means, and a combined signal of the output signal of the current detection signal amplifier and the commercial voltage detection signal detected by the commercial voltage detection means The inverter is controlled based on the control signal, and the compensation current sending / pulling control performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current.
[0008]
According to this invention,A commercial current detection signal detected by the commercial current detection means is amplified in a control means having a commercial current detection means for detecting a current component flowing in the commercial power supply and a commercial voltage detection means for detecting a voltage component of the commercial power supply. A current detection signal amplifier is provided, the inverter is controlled based on a composite signal of the output signal of the current detection signal amplifier and the commercial voltage detection signal detected by the commercial voltage detection means, and the compensation current sending / pulling control performed by the inverter is controlled. The gain control of the current detection signal amplifier based on the compensation current is performed.
[0013]
An inverter for sending / withdrawing a compensation current for compensating for a harmonic current generated from a load connected to a commercial power source, and a compensation current supply means connected to the DC side of the inverter and serving as the supply source of the compensation current And a control means for controlling the inverter, wherein the control means detects a commercial current detection means for detecting a current component flowing in the commercial power supply, and detects a voltage component of the commercial power supply A commercial voltage detection means; and a voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means, and the commercial current detection detected by the output signal of the voltage detection signal amplifier and the commercial current detection means The inverter is controlled based on a combined signal with the signal, and the charge amount of the compensation current supply means is controlled by the terminal voltage of the compensation current supply means. Characterized in that it is performed by the gain control of the voltage detection signal amplifier based.
[0014]
According to this invention,The control means having the commercial current detection means for detecting the current component flowing in the commercial power supply and the commercial voltage detection means for detecting the voltage component of the commercial power supply amplifies the commercial voltage detection signal detected by the commercial voltage detection means. A voltage detection signal amplifier is provided, the inverter is controlled based on a combined signal of the output signal of the voltage detection signal amplifier and the commercial current detection signal detected by the commercial current detection means, and the charge amount control of the compensation current supply means is controlled, This is done by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
[0015]
An inverter for sending / withdrawing a compensation current for compensating for a harmonic current generated from a load connected to a commercial power source, and a compensation current supply means connected to the DC side of the inverter and serving as the supply source of the compensation current And a control means for controlling the inverter, wherein the control means detects a commercial current detection means for detecting a current component flowing in the commercial power supply, and detects a voltage component of the commercial power supply A commercial voltage detection unit; a current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection unit; and a voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection unit. The inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier; The compensation current sending / withdrawing control performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current, and the charge amount of the compensation current supply means is controlled by a terminal of the compensation current supply means. It is performed by gain control of the voltage detection signal amplifier based on voltage.
[0016]
According to this invention,A commercial current detection signal detected by the commercial current detection means is amplified in a control means having a commercial current detection means for detecting a current component flowing in the commercial power supply and a commercial voltage detection means for detecting a voltage component of the commercial power supply. A current detection signal amplifier; and a voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means, and is based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier The inverter is controlled, and the compensation current sending / withdrawing control performed by the inverter is performed by the gain control of the current detection signal amplifier based on the compensation current, and the charge amount control of the compensation current supply means is controlled by the compensation current supply means. This is performed by controlling the gain of the voltage detection signal amplifier based on the terminal voltage.
[0017]
An inverter for sending / withdrawing a compensation current for compensating for a phase lag / lead current generated from a load connected to a commercial power supply, and a compensation current connected to the DC side of the inverter and serving as a supply source of the compensation current In an active filter device comprising a supply means and a control means for controlling the inverter, the control means comprises a commercial current detection means for detecting a current component flowing through the commercial power supply, and a voltage component of the commercial power supply. A commercial voltage detecting means for detecting, and a current detection signal amplifier for amplifying the commercial current detection signal detected by the commercial current detecting means, and the commercial signal detected by the output signal of the current detection signal amplifier and the commercial voltage detecting means The inverter is controlled based on a combined signal with the voltage detection signal, and the compensation current sending / withdrawing control performed by the inverter is the compensation signal. Characterized in that it is performed by the gain control of the current detection signal amplifier based on flow.
[0018]
According to this invention,A commercial current detection signal detected by the commercial current detection means is amplified in a control means having a commercial current detection means for detecting a current component flowing in the commercial power supply and a commercial voltage detection means for detecting a voltage component of the commercial power supply. A current detection signal amplifier is provided, the inverter is controlled based on a composite signal of the output signal of the current detection signal amplifier and the commercial voltage detection signal detected by the commercial voltage detection means, and the compensation current sending / pulling control performed by the inverter is controlled. The gain control of the current detection signal amplifier based on the compensation current is performed.
[0019]
An inverter for sending / withdrawing a compensation current for compensating for a phase lag / lead current generated from a load connected to a commercial power supply, and a compensation current connected to the DC side of the inverter and serving as a supply source of the compensation current In an active filter device comprising a supply means and a control means for controlling the inverter, the control means comprises a commercial current detection means for detecting a current component flowing through the commercial power supply, and a voltage component of the commercial power supply. A commercial voltage detection means for detecting; and a voltage detection signal amplifier for amplifying a commercial voltage detection signal detected by the commercial voltage detection means, wherein the commercial signal detected by the output signal of the voltage detection signal amplifier and the commercial current detection means The inverter is controlled based on a combined signal with a current detection signal, and the charge amount of the compensation current supply means is controlled by the compensation current supply means. Characterized in that it is performed by the gain control of the voltage detection signal amplifier based on the child voltage.
[0020]
According to this invention,The control means having the commercial current detection means for detecting the current component flowing in the commercial power supply and the commercial voltage detection means for detecting the voltage component of the commercial power supply amplifies the commercial voltage detection signal detected by the commercial voltage detection means. A voltage detection signal amplifier is provided, the inverter is controlled based on a combined signal of the output signal of the voltage detection signal amplifier and the commercial current detection signal detected by the commercial current detection means, and the charge amount control of the compensation current supply means is controlled, This is done by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
[0021]
An inverter for sending / withdrawing a compensation current for compensating for a phase lag / lead current generated from a load connected to a commercial power supply, and a compensation current connected to the DC side of the inverter and serving as a supply source of the compensation current In an active filter device comprising a supply means and a control means for controlling the inverter, the control means comprises a commercial current detection means for detecting a current component flowing through the commercial power supply, and a voltage component of the commercial power supply. A commercial voltage detection means for detecting, a current detection signal amplifier for amplifying the commercial current detection signal detected by the commercial current detection means, a voltage detection signal amplifier for amplifying the commercial voltage detection signal detected by the commercial voltage detection means, And the inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier. The compensation current sending / withdrawing control performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current, and the charge amount of the compensation current supply means is controlled by the compensation current supply. It is performed by gain control of the voltage detection signal amplifier based on the terminal voltage of the means.
[0022]
According to this invention,A commercial current detection signal detected by the commercial current detection means is amplified in a control means having a commercial current detection means for detecting a current component flowing in the commercial power supply and a commercial voltage detection means for detecting a voltage component of the commercial power supply. A current detection signal amplifier; and a voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means, and is based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier The inverter is controlled, and the compensation current sending / withdrawing control performed by the inverter is performed by the gain control of the current detection signal amplifier based on the compensation current, and the charge amount control of the compensation current supply means is controlled by the compensation current supply means. This is performed by controlling the gain of the voltage detection signal amplifier based on the terminal voltage.
[0023]
The compensation current supply means is constituted by a capacitor.
[0024]
According to the present invention, an active filter device can be simply configured using a capacitor.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an active filter device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0026]
FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention. In the figure, an
[0027]
Next, a circuit configuration of the
[0028]
The bidirectional inverter INV1 includes a pair of DC side terminals DT1 and DT2 and a pair of AC side terminals AT1 and AT2. The AC side terminal AT1 of the bidirectional inverter INV1 is connected to one power supply line, and the AC side terminal AT2 is connected to the other power supply line. The DC-side terminal DT1 of the bidirectional inverter INV1 is connected to one end of the capacitor C1, and the DC-side terminal DT2 is connected to the other end of the capacitor C1 (a ground end that is also grounded to the circuit ground at the same time). One end of the capacitor C1 connected to the DC side terminal DT1 of the bidirectional inverter INV1 is also connected to the variable gain voltage control amplifier AGC2. A current transformer CT2 connected to the anode of the diode D1 is connected across the line on the line connecting the DC side terminal DT1 of the bidirectional inverter INV1 and one power supply line. The cathode of the diode D1 is connected to the variable gain voltage control amplifier AGC1, and is also connected to one end of the capacitor C2. The other end of the capacitor C2 is installed on the circuit ground in the same manner as the capacitor C1.
[0029]
Next, the operation of the
[0030]
In FIG. 1, a voltage transformer PT detects a power supply voltage Vin supplied by a commercial power supply, and a current transformer CT1 detects a commercial current I1 flowing through the power supply line. The voltage signal detected by the voltage transformer PT is inverted by the inverter circuit PR1 and input to the variable gain voltage control amplifier AGC2. On the other hand, the current signal detected by the current transformer CT1 is directly input to the variable gain voltage control amplifier AGC1. These signals are amplified by the variable gain voltage control amplifiers AGC1 and AGC2, added by the adder circuit SUM1, and output from the adder circuit SUM1 as an input signal to the bidirectional inverter INV1.
[0031]
The capacitor C1 connected to the DC side terminals DT1 and DT2 of the bidirectional inverter INV1 is for holding a predetermined DC voltage. The capacitor C1 is a supply source of the inverter current I2 that the bidirectional inverter INV1 passes through the power supply line. In the capacitor C1, a charging operation and a discharging operation corresponding to the direction in which the inverter current I2 flows are alternately performed. That is, when the inverter current I2 is in the direction shown in FIG. 1 (when the inverter current I2 operates so as to supply the inverter current I2 with respect to the commercial current I1), the capacitor C1 performs a discharging operation. When the inverter current I2 is opposite to the direction shown in FIG. 1 (when operating so as to draw the inverter current I2 from the commercial current I1), the capacitor C1 performs a charging operation.
[0032]
A predetermined voltage based on the output signal output from the adder circuit SUM1 is generated at the AC side terminals AT1 and AT2 of the bidirectional inverter INV1, and a predetermined inverter current I2 flows from the AC side terminal AT1 and is supplied to the power supply line. The As is apparent from FIG. 1, there is a relationship of I3 = I1 + I2 among the commercial current I1, the inverter current I2, and the load current I3. This equation means that the commercial power supply and the bidirectional inverter INV1 distribute the current supplied to the load. By the way, various currents depend on the load itself. For example, a current in which harmonics are superimposed or a phase lag / lead current flows in the load, and the inverter current I2 is responsible for compensation of these harmonic currents or phase lag / lead currents, so that the commercial current flowing in the commercial power source The waveform of I1 can be improved. With this action, the power factor on the commercial power source side can be improved and the utilization efficiency can be improved. The operation for supplying the inverter current I2 will be described later.
[0033]
The current transformer CT2 detects the current of the inverter current I2 supplied from the bidirectional inverter INV1. This detection current is charged to the capacitor C2 through the diode D1. The voltage charged in the capacitor C2 is used as a control signal for the variable gain voltage control amplifier AGC1. This control signal is a control signal for drooping the inverter current I2, that is, when the inverter current I2 exceeds the allowable capacity that the bidirectional inverter INV1 can supply, the inverter current I2 is suddenly cut off (not supplied to the power supply line). Is to do. Therefore, when the voltage charged in the capacitor C2 exceeds a predetermined voltage value, the gain of the variable gain voltage control amplifier AGC1 is lowered, and the supply signal to the adding circuit SUM1 becomes small. Note that the voltage charged in the capacitor C2 is based on a time constant determined by a capacitance value of the capacitor C2, a resistor (not shown), an input impedance of the variable gain voltage control amplifier AGC1, and the like (for example, 1 of the commercial power supply). Discharged every cycle).
[0034]
On the other hand, the voltage charged in the capacitor C1 is used as a control signal for the variable gain voltage control amplifier AGC2. This control signal is supplied to the variable gain voltage control amplifier AGC2 in order to control the amount of charge charged in the capacitor C1. As will be apparent from the description of the operation of the inverter current I2 described later, when the output from the adder circuit SUM1 is negative, the capacitor C1 is charged. Conversely, when the output from the adder circuit SUM1 is positive, the capacitor C1 is charged. Discharge current flows from. Therefore, when the voltage of the capacitor C1 is large, the gain of the variable gain voltage control amplifier AGC2 is controlled to decrease. Conversely, when the voltage of the capacitor C1 is small, the gain of the variable gain voltage control amplifier AGC2 is controlled to increase. The In addition, the gain of the variable gain voltage control amplifier AGC1 is rapidly controlled based on the voltage of the capacitor C2, whereas the gain of the variable gain voltage control amplifier AGC2 is continuously controlled according to the terminal voltage of the capacitor C1. The
[0035]
2A is a diagram showing the waveform of the voltage signal or current signal of the main part of the
[0036]
When the signal K2 is input to the variable gain voltage control amplifier AGC1, the signal K4 is input to the variable gain voltage control amplifier AGC2, and the variable gain voltage control amplifier AGC1 and the variable gain voltage control amplifier AGC2 are set to predetermined gains, The adder circuit SUM1 outputs a signal shown in FIG. At this time, when this signal is positive due to the normal function of the bidirectional inverter INV1, an inverter current I2 proportional to the current shown in FIG. 5B is supplied from the bidirectional inverter INV1 toward the power supply line. Conversely, when this signal is negative, an inverter current I2 proportional to the current shown in FIG. 5B is drawn from the power supply line to the bidirectional inverter INV1 side. Explaining with reference to FIG. 2B, the current is drawn in the shaded portion L1, and the current is supplied in the shaded portion L2. In conjunction with these operations, the capacitor C1 performs a charging or discharging operation. That is, in the portion L1, the capacitor C1 is charged by the inverter current I2 drawn from the power supply line, and in the portion L2, the inverter current I2 toward the power supply line is supplied by the current discharged from the capacitor C2.
[0037]
FIG. 3 is an explanatory diagram showing how the commercial current is improved by the compensation current of the bidirectional inverter INV1 when a load current containing harmonics flows in the load. FIG. 3A is a diagram illustrating the power supply voltage (Vin). It is a figure which shows a waveform, (b) is a figure which shows the waveform of the inversion signal of the power supply voltage of (a), (c) is a figure which shows the waveform of the load current containing a harmonic, (d) FIG. 6 is a diagram showing a waveform of a compensation current extracted from the bidirectional inverter INV1, and FIG. 5E is a diagram showing a final waveform of a commercial current.
[0038]
The voltage transformer PT detects the signal shown in FIG. 3A, and the inverting circuit PR1 generates the signal shown in FIG. On the other hand, the current transformer CT1 detects the signal shown in FIG. This detection signal is obtained by detecting the commercial current I1 at the moment when the load current I3 including harmonics flows through the commercial power supply side. These signals shown in FIG. 5B and FIG. 6C are input to the variable gain voltage control amplifier AGC2 and the variable gain voltage control amplifier AGC1, respectively, and the variable gain voltage control amplifier AGC1 and the variable gain voltage control amplifier AGC2 By appropriately controlling the respective gains, the compensation current (inverter current I2) shown in FIG. 4D is supplied from the bidirectional inverter INV1 to the power supply line in accordance with the above-described operation. As described above, when the load current I3 including the harmonic current flows to the load and this harmonic current flows to the commercial power supply side, a change in the commercial current I1 on the commercial power supply side is detected, and this change component becomes the inverter current. Compensated by I2. As a result, a sine waveform current as shown in FIG.
[0039]
FIG. 4 is an explanatory diagram showing how the phase lag is improved by the compensation current of the bidirectional inverter INV1 when a phase lag current flowing in the load flows through the load. FIG. 4A is a diagram illustrating the power supply voltage (Vin). It is a figure which shows a waveform, (b) is a figure which shows the waveform of the inversion signal of the power supply voltage of (a), (c) is a figure which shows the waveform of a delay current, (d) is a bidirectional | two-way inverter INV1. It is a figure which shows the waveform of the compensation current extracted from (e), and (e) is a figure which shows the waveform of the final commercial current.
[0040]
Even in this case, the same operation as when the harmonic current flows to the commercial power supply side is performed, and the waveform on the commercial power supply side is improved by the compensation current of the bidirectional inverter INV1. Since the waveform improvement is performed by the compensation current of the bidirectional inverter INV1, the current flowing through the load may be any waveform. For example, the waveform of the commercial current can be improved even when the current flowing through the load is a leading current, or when a harmonic current and a lagging current or a leading current are generated simultaneously.
[0041]
As described above, when the harmonic current or the lag / lead current generated in the load flows to the commercial power source side, these currents flowing to the commercial power source side are detected, and these currents are compensated by the bidirectional inverter INV1. Therefore, the harmonic component of the current signal flowing to the commercial power source side can be removed, the delay / lead current can be compensated, and the commercial current waveform can be improved. Further, since the capacitor C1 operates so as to alternately perform charging or discharging, a circuit can be realized without using a large-capacitance capacitor. Further, since the gains of the variable gain voltage control amplifier AGC2 and the variable gain voltage control amplifier AGC1 are controlled based on the voltages of the capacitor C1 and the capacitor C2, respectively, an appropriate value according to the capability of the bidirectional inverter INV1 is obtained. The inverter current I2 can be supplied to the power supply line.
[0042]
As described above, according to this embodiment, the inverter is connected to the inverter for sending / withdrawing the compensation current for compensating the harmonic current generated from the load connected to the commercial power source, and the DC side of the inverter. Compensation current supply means serving as a supply source of compensation current, and control means including commercial current detection means and commercial voltage detection means for controlling the inverter, and a commercial current detection signal detected by the commercial current detection means And the commercial voltage detection signal detected by the commercial voltage detection means, the inverter is controlled, so that no matter what waveform current flows to the commercial power source due to the current flowing through the load, There is an effect that the waveform of the commercial current can be improved.
[0043]
Further, according to this embodiment, the control means controls charging / discharging of the compensation current supply means based on a change in the terminal voltage of the compensation current supply means connected to the DC side of the inverter. The compensation current can be controlled according to the supply capability of the compensation current supply means.
[0044]
According to this embodiment, the control means including the first amplifier that amplifies the commercial current detection signal and the second amplifier that amplifies the commercial voltage detection signal is based on the terminal voltage of the current supply means. Further, the charge amount of the current supply means is controlled by controlling the gain of the second amplifier, and the compensation current is sent and drawn by the inverter by the gain control of the first amplifier based on the compensation current. Therefore, there is no need to perform waveform analysis or the like, and the response speed is excellent, and the apparatus can be configured easily and inexpensively.
[0045]
The control means mentioned here is realized by a voltage transformer PT, current transformers CT1 and CT2, variable gain amplifiers AGC1 and AGC2, an inverting circuit PR1, an adding circuit SUM1, a capacitor C1, and a diode D1.
[0046]
Further, the commercial current detecting means mentioned here corresponds to the current transformer CT1. Similarly, the commercial voltage detection means corresponds to the voltage transformer PT, the compensation current supply means corresponds to the capacitor C1, the first amplifier corresponds to the variable gain amplifier AGC2, and the second amplifier corresponds to the variable gain amplifier AGC1. To do.
[0047]
【The invention's effect】
As described above, according to the present invention, the commercial current detection means for controlling the inverter and the control means including the commercial voltage detection means are provided, and the commercial current detection signal detected by the commercial current detection means and the commercial current are detected. Since the inverter is controlled based on the combined signal with the commercial voltage detection signal detected by the voltage detection means, no matter what waveform current flows to the commercial power source due to the current flowing through the load, the commercial current There is an effect that the waveform can be improved.
[0048]
Further, according to the present invention, the control means including the first amplifier that amplifies the commercial current detection signal and the second amplifier that amplifies the commercial voltage detection signal, the first amplifier based on the terminal voltage of the current supply means. Since the charge amount of the current supply means is controlled by the gain control of the amplifier 2 and the compensation current is sent / drawn by the inverter by the gain control of the first amplifier based on the compensation current, the commercial current There is no need to perform waveform analysis of the load current or the like, and the response speed is excellent, and the apparatus can be configured easily and inexpensively.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration according to an embodiment of the present invention.
2A is a diagram showing a waveform of a voltage signal or a current signal of a main part of the active filter device, and FIG. 2B is a diagram showing a waveform of an input signal to a bidirectional inverter.
3A is a diagram illustrating a waveform of a power supply voltage, FIG. 3B is a diagram illustrating a waveform of an inverted signal of the power supply voltage of FIG. 3A, and FIG. 3C is a load current including harmonics; (D) is a figure which shows the waveform of the compensation current extracted from the bidirectional | two-way inverter, (e) is a figure which shows the waveform of the final commercial current.
4A is a diagram showing a waveform of a power supply voltage, FIG. 4B is a diagram showing a waveform of an inverted signal of the power supply voltage in FIG. 4A, and FIG. 4C is a diagram showing a waveform of a delayed current; (D) is a figure which shows the waveform of the compensation current extracted from the bidirectional | two-way inverter, (e) is a figure which shows the waveform of the final commercial current.
[Explanation of symbols]
10 Active filter device
AGC1, AGC2 variable gain amplifier
AT1, AT2 AC side terminal
C1, C2 capacitors
CT1, CT2 Current transformer
D1 diode
DT1, DT2 DC side terminal
I1 Commercial current
I2 Inverter current
I3 Load current
INV1 bidirectional inverter
K1, K2, K3, K4 signals
PR1 Inversion circuit
PT voltage transformer
SUM1 addition circuit
Vin power supply voltage
Claims (7)
前記制御手段は、
前記商用電源に流れる電流成分を検出する商用電流検出手段と、
前記商用電源の電圧成分を検出する商用電圧検出手段と、
前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、
を備え、
前記電流検出信号増幅器の出力信号と前記商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記インバータが制御され、
前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。An inverter for performing sending / pull compensation current for compensating the harmonic current generated from a load connected to a commercial power source, is connected to the DC side of the inverter becomes a source of said compensation current compensating current supplying means And an active filter device comprising control means for controlling the inverter,
The control means includes
Commercial current detection means for detecting a current component flowing in the commercial power supply;
Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
A current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection means ;
With
The inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the commercial voltage detection signal detected by the commercial voltage detection means ,
The active filter device , wherein the compensation current sending / withdrawing control performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current .
前記制御手段は、 The control means includes
前記商用電源に流れる電流成分を検出する商用電流検出手段と、 Commercial current detection means for detecting a current component flowing in the commercial power supply;
前記商用電源の電圧成分を検出する商用電圧検出手段と、 Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、 A voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means;
を備え、 With
前記電圧検出信号増幅器の出力信号と前記商用電流検出手段が検出した商用電流検出信号との合成信号に基づいて前記インバータが制御され、 The inverter is controlled based on a combined signal of the output signal of the voltage detection signal amplifier and the commercial current detection signal detected by the commercial current detection means,
前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。 An active filter device characterized in that the charge amount of the compensation current supply means is controlled by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
前記制御手段は、
前記商用電源に流れる電流成分を検出する商用電流検出手段と、
前記商用電源の電圧成分を検出する商用電圧検出手段と、
前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、
前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、
を備え、
前記電流検出信号増幅器の出力信号と前記電圧検出信号増幅器の出力信号との合成信号に基づいて前記インバータが制御され、
前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われ、
前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。An inverter for performing sending / pull compensation current for compensating the harmonic current generated from a load connected to a commercial power source, is connected to the DC side of the inverter becomes a source of said compensation current compensating current supplying means And an active filter device comprising control means for controlling the inverter,
The control means includes
Commercial current detection means for detecting a current component flowing in the commercial power supply;
Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
A current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection means;
A voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means;
With
The inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier,
Sending / withdrawing the compensation current performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current,
An active filter device characterized in that the charge amount of the compensation current supply means is controlled by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
前記制御手段は、
前記商用電源に流れる電流成分を検出する商用電流検出手段と、
前記商用電源の電圧成分を検出する商用電圧検出手段と、
前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、
を備え、
前記電流検出信号増幅器の出力信号と前記商用電圧検出手段が検出した商用電圧検出信号との合成信号に基づいて前記インバータが制御され、
前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。An inverter for sending / withdrawing a compensation current for compensating a phase lag / lead current generated from a load connected to a commercial power source, and a compensation current connected to the DC side of the inverter and serving as a supply source of the compensation current In an active filter device comprising supply means and control means for controlling the inverter,
The control means includes
Commercial current detection means for detecting a current component flowing in the commercial power supply;
Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
A current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection means;
With
The inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the commercial voltage detection signal detected by the commercial voltage detection means,
The active filter device, wherein the compensation current sending / withdrawing control performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current.
前記制御手段は、 The control means includes
前記商用電源に流れる電流成分を検出する商用電流検出手段と、 Commercial current detection means for detecting a current component flowing in the commercial power supply;
前記商用電源の電圧成分を検出する商用電圧検出手段と、 Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、 A voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means;
を備え、 With
前記電圧検出信号増幅器の出力信号と前記商用電流検出手段が検出した商用電流検出信号との合成信号に基づいて前記インバータが制御され、 The inverter is controlled based on a combined signal of the output signal of the voltage detection signal amplifier and the commercial current detection signal detected by the commercial current detection means,
前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。 An active filter device characterized in that the charge amount of the compensation current supply means is controlled by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
前記制御手段は、
前記商用電源に流れる電流成分を検出する商用電流検出手段と、
前記商用電源の電圧成分を検出する商用電圧検出手段と、
前記商用電流検出手段が検出した商用電流検出信号を増幅する電流検出信号増幅器と、
前記商用電圧検出手段が検出した商用電圧検出信号を増幅する電圧検出信号増幅器と、
を備え、
前記電流検出信号増幅器の出力信号と前記電圧検出信号増幅器の出力信号との合成信号に基づいて前記インバータが制御され、
前記インバータが行う前記補償電流の送出/引込制御が、該補償電流に基づいた前記電流検出信号増幅器の利得制御によって行われ、
前記補償電流供給手段の充電量の制御が、該補償電流供給手段の端子電圧に基づいた前記電圧検出信号増幅器の利得制御によって行われることを特徴とするアクティブフィルタ装置。An inverter for sending / withdrawing a compensation current for compensating a phase lag / lead current generated from a load connected to a commercial power source, and a compensation current connected to the DC side of the inverter and serving as a supply source of the compensation current In an active filter device comprising supply means and control means for controlling the inverter,
The control means includes
Commercial current detection means for detecting a current component flowing in the commercial power supply;
Commercial voltage detecting means for detecting a voltage component of the commercial power supply;
A current detection signal amplifier that amplifies the commercial current detection signal detected by the commercial current detection means;
A voltage detection signal amplifier that amplifies the commercial voltage detection signal detected by the commercial voltage detection means;
With
The inverter is controlled based on a combined signal of the output signal of the current detection signal amplifier and the output signal of the voltage detection signal amplifier,
Sending / withdrawing the compensation current performed by the inverter is performed by gain control of the current detection signal amplifier based on the compensation current,
An active filter device characterized in that the charge amount of the compensation current supply means is controlled by gain control of the voltage detection signal amplifier based on the terminal voltage of the compensation current supply means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002378573A JP3715277B2 (en) | 2002-12-26 | 2002-12-26 | Active filter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002378573A JP3715277B2 (en) | 2002-12-26 | 2002-12-26 | Active filter device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004215324A JP2004215324A (en) | 2004-07-29 |
JP3715277B2 true JP3715277B2 (en) | 2005-11-09 |
Family
ID=32815362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002378573A Expired - Fee Related JP3715277B2 (en) | 2002-12-26 | 2002-12-26 | Active filter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3715277B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009007503A1 (en) | 2009-02-05 | 2010-08-12 | E:Cue Control Gmbh | lighting arrangement |
JP2017169253A (en) * | 2016-03-14 | 2017-09-21 | 日立マクセル株式会社 | Power factor improvement device, and power storage device including the same |
-
2002
- 2002-12-26 JP JP2002378573A patent/JP3715277B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004215324A (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6686718B2 (en) | Control loop and method for variable speed drive ride-through capability improvement | |
JP4774987B2 (en) | Switching power supply | |
US7446511B2 (en) | Active power conditioner for AC load characteristics | |
TW201545457A (en) | Frequency-converting and speed regulating system and method of the same | |
EP2544328A2 (en) | Power supply system | |
JP2011511609A (en) | Multistage switching power supply | |
WO2024217114A1 (en) | Electric energy conversion circuit, electric energy conversion method and electric energy conversion device | |
JPWO2003065560A1 (en) | Power supply device and method for creating switching signal for on / off control of switching element of converter section constituting power supply device | |
JP3715277B2 (en) | Active filter device | |
US11557972B2 (en) | Power conversion device | |
WO2005112219A1 (en) | Active filter | |
RU2280934C1 (en) | Method for reactive power correction device | |
CN107800313A (en) | A kind of primary side feedback control method and device for cable pressure drop | |
JPS62200413A (en) | Control device for power converter | |
KR101023316B1 (en) | Power unit | |
JP4653727B2 (en) | Uninterruptible power system | |
JP2003032897A (en) | Solar generator | |
JP2003324847A (en) | Voltage flicker compensation method and apparatus | |
JPH11313449A (en) | Single conversion UPS | |
JP2013153547A (en) | Power leveling device | |
JP3758578B2 (en) | Power control method for power converter connected with discharge tube load | |
JP4263037B2 (en) | DC chopper device | |
JP4932604B2 (en) | Voltage compensator | |
JP2004135409A (en) | Grid-connected inverter control device | |
JP5579036B2 (en) | DC / DC power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050824 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080902 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130902 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |