[go: up one dir, main page]

JP3711905B2 - Optical fiber grating strain sensor and strain measurement method - Google Patents

Optical fiber grating strain sensor and strain measurement method Download PDF

Info

Publication number
JP3711905B2
JP3711905B2 JP2001253169A JP2001253169A JP3711905B2 JP 3711905 B2 JP3711905 B2 JP 3711905B2 JP 2001253169 A JP2001253169 A JP 2001253169A JP 2001253169 A JP2001253169 A JP 2001253169A JP 3711905 B2 JP3711905 B2 JP 3711905B2
Authority
JP
Japan
Prior art keywords
mounting plate
fiber grating
optical fiber
strain
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001253169A
Other languages
Japanese (ja)
Other versions
JP2003065730A (en
Inventor
達也 熊谷
渉 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001253169A priority Critical patent/JP3711905B2/en
Publication of JP2003065730A publication Critical patent/JP2003065730A/en
Application granted granted Critical
Publication of JP3711905B2 publication Critical patent/JP3711905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバグレーティングの反射波長変化を利用した歪計測に係り、特に、被計測物への固定が簡単で、複雑な補正計算や特殊光ファイバが不要な光ファイバグレーティング歪センサ及び歪計測方法に関するものである。
【0002】
【従来の技術】
光ファイバグレーティング(以下、FBGと言う)は、光ファイバコアの紫外光誘起屈折率変化を用いて光ファイバコアにブラッグ回折格子を形成したもので、非常に狭帯域な特性を持つ反射型フィルタとして機能することが知られている。その形成方法や原理は、「ファイバグレーティングとその応用」指宿康弘ほか、社団法人電子通信学会、信学技報TECNICAL REPORT OF IEICE PS98-9.OFT98-10(1998-06) (以下、文献1という)に示されているので、ここでは省略する。
【0003】
このFBGの性質を利用して種々の物理量を計測できることが知られている。その計測技術については、例えば、「光ファイバグレーティングを用いたセンシング」飯山宏一、オプトロニュース(1999)No.6 p29-31 (以下、文献2という)や「光ファイバグレーティングによる精密計測技術」石川真二、応用物理第69巻第6号(2000)(以下、文献3という)に紹介されている。
【0004】
FBGは、温度と歪との2つの変位に影響されて反射波長が変化する。文献2にあるように、温度に関しては約0.01nm/℃、歪に関しては約0.001nm/μεの変化率を有するので、歪計測においては温度変化による影響が大きく、補正などの対策が必要となる。文献2には、
▲1▼複数のセンサ(温度計)の信号から特定の物理量(歪)を計算により求める
▲2▼ガラスの線膨張係数と屈折率温度係数とを設計することにより、温度−反射波長特性を平坦にした特殊光ファイバを使用する
などの例が紹介されている。
【0005】
また、▲3▼として、FBGに歪が加わらないように被計測物にFBGを固定し、歪計測用FBGの波長変化と前記歪が加わらないFBGの波長変化とを差し引き、被計測物の線膨張係数とガラスの線膨張係数との差を補正して先の波長変化から歪を計算する方法も考えられる。
【0006】
【発明が解決しようとする課題】
▲1▼の場合には、温度計が別計測系として必要になり、効率が悪く、また、複雑な補正計算が必要になる。
【0007】
▲2▼の場合には、特殊な光ファイバを製造する必要があり、システムが高価になる。
【0008】
▲3▼の場合には、FBGに歪を加えない固定方法が必要であり、また、複雑な補正計算が必要になる。
【0009】
そこで、本発明の目的は、上記課題を解決し、被計測物への固定が簡単で、複雑な補正計算や特殊光ファイバが不要な光ファイバグレーティング歪センサ及び歪計測方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明の光ファイバグレーティング歪センサは、歪計測方向の複数箇所に被計測物への固定箇所を有する第一取付板と、この第一取付板に歪計測方向に沿わせて固定された第一光ファイバグレーティングと、線膨張係数が被計測物と同じ第二取付板と、この第二取付板の線膨張方向に沿わせて固定された第二光ファイバグレーティングとを備えたものである。
【0011】
第一ファイバグレーティングと第二ファイバグレーティングとが直列に接続されている場合には、第一ファイバグレーティングの反射波長と、第二ファイバグレーティングの反射波長とを異ならせる必要がある。
【0012】
第一取付板のヤング率と断面積との積は被計測物のヤング率と断面積との積よりも十分小さくてもよい。
【0013】
また、本発明の歪計測方法は、歪計測方向の複数箇所に被計測物への固定箇所を有する第一取付板を被計測物に固定し、この第一取付板に歪計測方向に沿わせて固定された第一光ファイバグレーティングにより反射波長変化を検出し、線膨張係数が被計測物と同じ第二取付板を前記第一取付板の近傍に設置し、この第二取付板の線膨張方向に沿わせて固定された第二光ファイバグレーティングにより反射波長変化を検出し、第一光ファイバグレーティングの反射波長変化から第二光ファイバグレーティングの反射波長変化を差し引いて被計測物の歪による反射波長変化とするものである。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0015】
図1に本発明のFBG歪センサの取り付け構造を示す。また、図2に歪計測部の構造を示す。
【0016】
図1及び図2に示されるように、第一取付板1は、歪計測方向に伸びた直線部2と長手方向の2箇所に形成されたフランジ部3とからなる。フランジ部3は、被計測物(この例では鋼材)Tへの固定に使用される。両フランジ部3にはそれぞれ2つの固定穴4が設けられている。各固定穴4にボルト5を挿通し、これらのボルト5を被計測物Tに形成したナット又は被計測物Tの裏側に設けたナット(図示せず)に締結させることにより、第一取付板1が被計測物Tに固定される。このとき、被計測物Tの歪計測方向への伸縮に第一取付板1の直線部2の伸縮が一致するよう堅固に固定される。ここでは、第一取付板1をアルミで構成するが、第一取付板1を取り付けたことによって被計測物Tの歪が緩和されないよう、第一取付板1のヤング率及び断面積を被計測物Tに比べて十分小さくしてある。即ち、第一取付板1のヤング率と断面積との積が被計測物Tのヤング率と断面積との積よりも十分小さい。
【0017】
この第一取付板1に歪計測方向に沿わせて第一FBG6が樹脂(接着剤)7により固定されている。FBGは光ファイバの長手方向に波長オーダの周期的な屈折率変化部を形成したものである。第一FBG7は光ファイバ8の途中の一部に形成されており、この光ファイバ8の図示しない遠隔の一端には、光源及び反射波長を計測する波長計測器が設けられている。これにより、第一FBG7における反射波長変化を検出することができる。第一取付板1に第一FBG7を固定したものを歪計測部(又は歪計測用モジュール)9と呼ぶ。
【0018】
温度計測部は、図1の歪計測部9と類似の構造であるため図2に括弧で符号を示す。第二取付板11は、線膨張係数が被計測物Tと同じになるよう材料が選択されている。この例では被計測物Tが鋼材であるので、第二取付板11も鋼材が使用されている。第二取付板11は、第一取付板1の近傍に直線部2,12同士が平行になるよう設置される。第二取付板11は、片側のフランジ部13がボルト5で被計測物Tに固定されるが、反対側のフランジ部13は固定されない。即ち、第二取付板11は一箇所のみで被計測物Tに固定され、反対端が解放されることにより、被計測物Tの歪が第二取付板11に加わらないようになっている。
【0019】
この第二取付板11の線膨張方向に沿わせて第二FBG16が樹脂17により固定されている。第二FBG16は、第一FBG6と同様に光ファイバ18の一部に形成されており、光ファイバ18の図示しない一端には、光源及び反射波長を計測する波長計測器が設けられている。これにより、第二FBG16における反射波長変化を検出することができる。第二取付板11に第二FBG16を固定したものを温度計測部(温度計測用モジュール)19と呼ぶ。
【0020】
図示しないが、波長計測器で得られた2つのFBG6,16の反射波長変化を基に歪を演算する演算部が設けられているものとする。
【0021】
尚、図1の例では、第一FBG6の光ファイバ8と第二FBGの光ファイバ18とが共通になっており、光源及び波長計測器が共通に使用できる。この場合、各FBG6,16の反射波長は互いに異ならせる。
【0022】
また、図1には示さないが、各FBGに保護カバーを被せても良い。
【0023】
次に、歪計測の原理を詳しく説明する。
【0024】
歪計測部9は、被計測物Tに堅固に固定されているので、被計測物Tに随伴して歪計測方向に弾性的に伸縮する。その際、第一取付板1のヤング率と断面積との積が被計測物Tに比べて十分に小さいので、被計測物Tの歪が緩和されることがない。第一取付板1に固定されている第一FBG6は、第一取付板1と同様に長手方向に歪む。これにより、第一FBG6には反射波長変化が生じ、その反射波長変化は波長計測器で計測されるが、この反射波長変化は、被計測物Tの熱膨張・収縮による成分と温度による第一FBG6の反射波長変化成分とを含んでいる。
【0025】
一方、温度計測部19は、歪計測部9の近傍に配置され、かつ被計測物Tに片端が固定されているので、歪計測部9とほぼ同じ温度環境にある。温度計測部19は、反対端が解放されることにより、被計測物Tの歪が加わらない。第二取付板11は、被計測物Tと同じ材料なので、被計測物Tと同様に熱膨張・収縮する。従って、温度計測部19には、第二取付板11の線膨張と第二FBG16の温度による反射波長変化とが生じる。これにより、第二FBG16には反射波長変化が生じ、その反射波長変化は波長計測器で計測される。
【0026】
演算部にて、歪計測部9で計測した反射波長変化から温度計測部19で計測した反射波長変化を差し引くと、被計測物Tの熱膨張・収縮による影響と、FBGの温度特性とを同時に補正することができる。
【0027】
ここで、線膨張係数をα、ブラッグ波長をλB 、屈折率をnとしたとき、温度tと反射波長λの変化との関係は、
【0028】
【数1】

Figure 0003711905
【0029】
で示される。線膨張係数αは、第二取付板の線膨張係数(=被計測物の線膨張係数)にほぼ一致するため、歪計測部9の反射波長変化から温度計測部19の反射波長変化を差し引けば、その差から被計測物Tの歪を求めることができる。
【0030】
また、歪と反射波長変化との関係は、歪による反射波長変化をdλ/dεとすると、
【0031】
【数2】
Figure 0003711905
【0032】
で示される。但し、Pe は歪屈折率変化、p11、p12はポッケルス係数、νはポアソン比、ncoreはコアの屈折率である。
【0033】
そこで、前記反射波長変化の差から(2)式を用いて歪が計算できる。
【0034】
本発明のFBG歪センサは、FBGを多段に直列接続して多点歪計測を行うことができる。その場合、各FBGの波長は、反射波長変化の温度係数及び歪係数とダイナミックレンジとを考慮して、隣り合う波長間の間隔を設計するとよい。温度係数は約0.01nm/℃、歪係数は約0.001nm/μεである。
【0035】
図3に、他の実施形態によるFBG歪センサを示す。
【0036】
このFBG歪センサは、直線部32とフランジ部33とからなる取付板31が図1の第一取付板1と同様に被計測物Tの歪に擾乱を与えない材料で構成され、この取付板31に別の直線部42の一端が接合されている。接合されている直線部42は線膨張係数が被計測物Tと同じ材料で構成される。それぞれの直線部32,42に第一FBG6、第二FBG16を固定することにより、歪計測部と温度計測部とが一体的に構成されている。この構成においても、第一FBG6には被計測物Tの歪が伝わり、第二FBG16には被計測物Tの歪が伝わらずに温度要因のみが検出できるので、歪計測部と温度計測部と反射波長変化の差から歪が計算できる。
【0037】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0038】
(1)温度計測部19の第二取付板11の線膨張係数を被計測物Tと一致させ、さらに、温度計測部19の一端を解放して歪が加わらないようにしたので、温度要因による反射波長変化を取り出すことができ、歪計測部9で計測した反射波長変化から温度計測部19で計測した反射波長変化を差し引くことにより、被計測物Tの熱膨張・収縮による影響と、FBGの温度特性とを同時に補正することができる。
【0039】
(2)第一取付板1のヤング率と断面積との積を被計測物Tのヤング率と断面積との積よりも十分小さくしたので、被計測物Tの歪を緩和することなく、正確に歪が計測できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すFBG歪センサの取り付け構造図である。
【図2】本発明に用いる歪計測部の構造図である。
【図3】本発明の他の実施形態を示すFBG歪センサの構造図である。
【符号の説明】
1 第一取付板
2、12 直線部
3、13 フランジ部
4 固定穴
6 第一FBG
7、17 樹脂(接着剤)
8、18 光ファイバ
9 歪計測部(歪計測用モジュール)
11 第二取付板
16 第二FBG
19 温度計測部(温度計測用モジュール)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to strain measurement using a change in the reflection wavelength of an optical fiber grating, and in particular, an optical fiber grating strain sensor and strain measurement that are easy to fix to an object to be measured and do not require complicated correction calculations or special optical fibers. It is about the method.
[0002]
[Prior art]
An optical fiber grating (hereinafter referred to as FBG) is a reflection type filter having a very narrow band characteristic, in which a Bragg diffraction grating is formed in an optical fiber core using an ultraviolet light-induced refractive index change of the optical fiber core. It is known to work. Its formation method and principle are as follows: “Fibre grating and its application” Yasuhiro Ibusuki et al., The Institute of Electronics and Communication Engineers, IEICE Tech. ) And will be omitted here.
[0003]
It is known that various physical quantities can be measured using the properties of this FBG. For example, “Sensing using optical fiber grating” Koichi Iiyama, Optoro News (1999) No.6 p29-31 (hereinafter referred to as Reference 2) and “Precision measurement technology using optical fiber grating” Ishikawa. Shinji, Applied Physics, Vol. 69, No. 6 (2000) (hereinafter referred to as Reference 3).
[0004]
The reflection wavelength of FBG is affected by two displacements of temperature and strain. As described in Document 2, since the rate of change is about 0.01 nm / ° C for temperature and about 0.001 nm / με for strain, the strain measurement is greatly affected by temperature change and countermeasures such as correction are required. It becomes. Reference 2 includes
(1) A specific physical quantity (strain) is calculated from signals from multiple sensors (thermometers). (2) The temperature-reflection wavelength characteristic is flattened by designing the linear expansion coefficient and refractive index temperature coefficient of glass. Examples such as using special optical fibers are introduced.
[0005]
Further, as (3), the FBG is fixed to the object to be measured so that no strain is applied to the FBG, and the wavelength change of the FBG for distortion measurement is subtracted from the wavelength change of the FBG to which no distortion is applied. A method of correcting the difference between the expansion coefficient and the linear expansion coefficient of glass and calculating the strain from the previous wavelength change is also conceivable.
[0006]
[Problems to be solved by the invention]
In the case of {circle around (1)}, a thermometer is required as a separate measurement system, which is inefficient and requires complicated correction calculations.
[0007]
In the case of (2), it is necessary to manufacture a special optical fiber, and the system becomes expensive.
[0008]
In the case of {circle around (3)}, a fixing method that does not add distortion to the FBG is necessary, and complicated correction calculation is required.
[0009]
Accordingly, an object of the present invention is to provide an optical fiber grating strain sensor and a strain measurement method that solve the above-described problems, are easily fixed to an object to be measured, and do not require complicated correction calculations or special optical fibers. .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an optical fiber grating strain sensor according to the present invention includes a first mounting plate having fixing points to the object to be measured at a plurality of locations in the strain measuring direction, and the first mounting plate along the strain measuring direction. A first optical fiber grating fixed together, a second mounting plate having the same linear expansion coefficient as the object to be measured, and a second optical fiber grating fixed along the linear expansion direction of the second mounting plate. It is provided.
[0011]
When the first fiber grating and the second fiber grating are connected in series, it is necessary to make the reflection wavelength of the first fiber grating different from the reflection wavelength of the second fiber grating.
[0012]
The product of the Young's modulus and the cross-sectional area of the first mounting plate may be sufficiently smaller than the product of the Young's modulus and the cross-sectional area of the object to be measured.
[0013]
In the strain measurement method of the present invention, the first mounting plate having fixed portions to the object to be measured is fixed to the object to be measured at a plurality of locations in the strain measuring direction, and the first mounting plate is aligned with the strain measuring direction. The first optical fiber grating is used to detect a change in the reflected wavelength, and a second mounting plate having the same linear expansion coefficient as the object to be measured is installed in the vicinity of the first mounting plate. The reflected wavelength change is detected by the second optical fiber grating fixed along the direction, and the reflected wavelength change of the first optical fiber grating is subtracted from the reflected wavelength change of the first optical fiber grating. The wavelength is changed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 shows the mounting structure of the FBG strain sensor of the present invention. FIG. 2 shows the structure of the strain measurement unit.
[0016]
As shown in FIGS. 1 and 2, the first mounting plate 1 includes a straight portion 2 extending in the strain measuring direction and flange portions 3 formed at two locations in the longitudinal direction. The flange portion 3 is used for fixing to an object to be measured (in this example, a steel material) T. Two fixing holes 4 are provided in each of the flange portions 3. By inserting bolts 5 into the respective fixing holes 4 and fastening these bolts 5 to nuts formed on the object to be measured T or nuts (not shown) provided on the back side of the object to be measured T, the first mounting plate 1 is fixed to the object T to be measured. At this time, it is firmly fixed so that the expansion / contraction of the linear portion 2 of the first mounting plate 1 coincides with the expansion / contraction in the strain measurement direction of the measurement target T. Here, the first mounting plate 1 is made of aluminum, but the Young's modulus and the cross-sectional area of the first mounting plate 1 are measured so that the distortion of the measured object T is not relaxed by mounting the first mounting plate 1. Compared to the object T, it is sufficiently small. That is, the product of the Young's modulus and the cross-sectional area of the first mounting plate 1 is sufficiently smaller than the product of the Young's modulus and the cross-sectional area of the object T to be measured.
[0017]
A first FBG 6 is fixed to the first mounting plate 1 by a resin (adhesive) 7 along the strain measurement direction. The FBG is formed by forming a periodic refractive index changing portion having a wavelength order in the longitudinal direction of the optical fiber. The first FBG 7 is formed in a part of the optical fiber 8, and a remote end (not shown) of the optical fiber 8 is provided with a light source and a wavelength measuring device for measuring the reflected wavelength. Thereby, the change of the reflected wavelength in the first FBG 7 can be detected. A structure in which the first FBG 7 is fixed to the first mounting plate 1 is referred to as a strain measurement unit (or a strain measurement module) 9.
[0018]
Since the temperature measurement unit has a structure similar to that of the strain measurement unit 9 of FIG. 1, reference numerals are shown in parentheses in FIG. The material of the second mounting plate 11 is selected so that the linear expansion coefficient is the same as that of the object T to be measured. In this example, since the measurement target T is a steel material, the second mounting plate 11 is also a steel material. The second mounting plate 11 is installed in the vicinity of the first mounting plate 1 so that the straight portions 2 and 12 are parallel to each other. In the second mounting plate 11, the flange portion 13 on one side is fixed to the measurement object T with the bolt 5, but the flange portion 13 on the opposite side is not fixed. That is, the second mounting plate 11 is fixed to the measured object T only at one place, and the opposite end is released, so that the distortion of the measured object T is not applied to the second mounting plate 11.
[0019]
A second FBG 16 is fixed by a resin 17 along the linear expansion direction of the second mounting plate 11. The second FBG 16 is formed in a part of the optical fiber 18 similarly to the first FBG 6, and a light source and a wavelength measuring device for measuring the reflected wavelength are provided at one end (not shown) of the optical fiber 18. Thereby, the change of the reflected wavelength in the second FBG 16 can be detected. A device in which the second FBG 16 is fixed to the second mounting plate 11 is referred to as a temperature measurement unit (temperature measurement module) 19.
[0020]
Although not shown in the figure, it is assumed that there is provided a calculation unit that calculates distortion based on the reflected wavelength change of the two FBGs 6 and 16 obtained by the wavelength measuring instrument.
[0021]
In the example of FIG. 1, the optical fiber 8 of the first FBG 6 and the optical fiber 18 of the second FBG are common, and the light source and the wavelength measuring instrument can be used in common. In this case, the reflection wavelengths of the FBGs 6 and 16 are different from each other.
[0022]
Although not shown in FIG. 1, each FBG may be covered with a protective cover.
[0023]
Next, the principle of strain measurement will be described in detail.
[0024]
Since the strain measurement unit 9 is firmly fixed to the measurement target T, the strain measurement unit 9 elastically expands and contracts in the strain measurement direction along with the measurement target T. At that time, since the product of the Young's modulus and the cross-sectional area of the first mounting plate 1 is sufficiently smaller than the measurement target T, the distortion of the measurement target T is not reduced. The first FBG 6 fixed to the first mounting plate 1 is distorted in the longitudinal direction similarly to the first mounting plate 1. Thereby, the reflected wavelength change occurs in the first FBG 6, and the reflected wavelength change is measured by the wavelength measuring instrument. This reflected wavelength change is first caused by the component and temperature due to thermal expansion / contraction of the measurement object T. The reflection wavelength change component of FBG6 is included.
[0025]
On the other hand, the temperature measuring unit 19 is disposed in the vicinity of the strain measuring unit 9 and has one end fixed to the object T to be measured. The temperature measuring unit 19 is not subjected to distortion of the measurement target T by releasing the opposite end. Since the second mounting plate 11 is made of the same material as the object T, the second mounting plate 11 expands and contracts in the same manner as the object T. Therefore, the temperature measurement unit 19 undergoes linear expansion of the second mounting plate 11 and reflection wavelength change due to the temperature of the second FBG 16. Thereby, the reflected wavelength change occurs in the second FBG 16, and the reflected wavelength change is measured by the wavelength measuring instrument.
[0026]
When the calculation unit subtracts the reflection wavelength change measured by the temperature measurement unit 19 from the reflection wavelength change measured by the strain measurement unit 9, the influence of the thermal expansion / contraction of the measurement object T and the temperature characteristics of the FBG are simultaneously obtained. It can be corrected.
[0027]
Here, when the linear expansion coefficient is α, the Bragg wavelength is λ B , and the refractive index is n, the relationship between the temperature t and the change in the reflection wavelength λ is:
[0028]
[Expression 1]
Figure 0003711905
[0029]
Indicated by Since the linear expansion coefficient α substantially matches the linear expansion coefficient of the second mounting plate (= the linear expansion coefficient of the object to be measured), the reflection wavelength change of the temperature measurement unit 19 is subtracted from the reflection wavelength change of the strain measurement unit 9. For example, the distortion of the measurement object T can be obtained from the difference.
[0030]
In addition, the relationship between the distortion and the reflection wavelength change is as follows.
[0031]
[Expression 2]
Figure 0003711905
[0032]
Indicated by Here, Pe is a strain refractive index change, p 11 and p 12 are Pockels coefficients, ν is a Poisson's ratio, and n core is a refractive index of the core.
[0033]
Therefore, the strain can be calculated from the difference in reflection wavelength change using the equation (2).
[0034]
The FBG strain sensor of the present invention can perform multipoint strain measurement by connecting FBGs in series in multiple stages. In this case, the wavelength of each FBG may be designed with an interval between adjacent wavelengths in consideration of the temperature coefficient and distortion coefficient of the reflected wavelength change and the dynamic range. The temperature coefficient is about 0.01 nm / ° C., and the strain coefficient is about 0.001 nm / με.
[0035]
FIG. 3 shows an FBG strain sensor according to another embodiment.
[0036]
In this FBG strain sensor, the mounting plate 31 composed of the straight portion 32 and the flange portion 33 is made of a material that does not disturb the strain of the object T to be measured, like the first mounting plate 1 of FIG. One end of another linear portion 42 is joined to 31. The joined linear portion 42 is made of the same material as that of the object T to be measured. By fixing the first FBG 6 and the second FBG 16 to the respective straight portions 32 and 42, the strain measurement unit and the temperature measurement unit are integrally configured. Even in this configuration, the strain of the measurement object T is transmitted to the first FBG 6 and only the temperature factor can be detected without transmitting the distortion of the measurement object T to the second FBG 16. Distortion can be calculated from the difference in reflection wavelength change.
[0037]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0038]
(1) The linear expansion coefficient of the second mounting plate 11 of the temperature measuring unit 19 is made to coincide with the object T to be measured, and further, one end of the temperature measuring unit 19 is released so that no distortion is applied. The reflected wavelength change can be taken out, and by subtracting the reflected wavelength change measured by the temperature measuring unit 19 from the reflected wavelength change measured by the strain measuring unit 9, the influence of the thermal expansion / contraction of the measurement object T and the FBG The temperature characteristic can be corrected simultaneously.
[0039]
(2) Since the product of the Young's modulus and the cross-sectional area of the first mounting plate 1 is made sufficiently smaller than the product of the Young's modulus and the cross-sectional area of the object T to be measured, without reducing the distortion of the object T to be measured, Strain can be measured accurately.
[Brief description of the drawings]
FIG. 1 is a mounting structure diagram of an FBG strain sensor showing an embodiment of the present invention.
FIG. 2 is a structural diagram of a strain measurement unit used in the present invention.
FIG. 3 is a structural diagram of an FBG strain sensor showing another embodiment of the present invention.
[Explanation of symbols]
1 First mounting plate 2, 12 Linear portion 3, 13 Flange portion 4 Fixing hole 6 First FBG
7, 17 Resin (adhesive)
8, 18 Optical fiber 9 Strain measuring unit (strain measuring module)
11 Second mounting plate 16 Second FBG
19 Temperature measurement unit (temperature measurement module)

Claims (4)

歪計測方向の複数箇所に被計測物への固定箇所を有する第一取付板と、この第一取付板に歪計測方向に沿わせて固定された第一光ファイバグレーティングと、線膨張係数が被計測物と同じ第二取付板と、この第二取付板の線膨張方向に沿わせて固定された第二光ファイバグレーティングとを備えたことを特徴とする光ファイバグレーティング歪センサ。A first mounting plate having fixed portions to the object to be measured at a plurality of locations in the strain measurement direction, a first optical fiber grating fixed along the strain measurement direction on the first mounting plate, and a linear expansion coefficient An optical fiber grating strain sensor comprising: a second mounting plate that is the same as a measurement object; and a second optical fiber grating fixed along the linear expansion direction of the second mounting plate. 第一ファイバグレーティングと第二ファイバグレーティングとが直列に接続されており、第一ファイバグレーティングの反射波長と、第二ファイバグレーティングの反射波長とが異なることを特徴とする請求項1記載の光ファイバグレーティング歪センサ。2. The optical fiber grating according to claim 1, wherein the first fiber grating and the second fiber grating are connected in series, and the reflection wavelength of the first fiber grating is different from the reflection wavelength of the second fiber grating. Strain sensor. 第一取付板のヤング率と断面積との積が被計測物のヤング率と断面積との積よりも十分小さいことを特徴とする請求項1又は2記載の光ファイバグレーティング歪センサ。3. The optical fiber grating strain sensor according to claim 1, wherein the product of the Young's modulus and the cross-sectional area of the first mounting plate is sufficiently smaller than the product of the Young's modulus and the cross-sectional area of the object to be measured. 歪計測方向の複数箇所に被計測物への固定箇所を有する第一取付板を被計測物に固定し、この第一取付板に歪計測方向に沿わせて固定された第一光ファイバグレーティングにより反射波長変化を検出し、線膨張係数が被計測物と同じ第二取付板を前記第一取付板の近傍に設置し、この第二取付板の線膨張方向に沿わせて固定された第二光ファイバグレーティングにより反射波長変化を検出し、第一光ファイバグレーティングの反射波長変化から第二光ファイバグレーティングの反射波長変化を差し引いて被計測物の歪による反射波長変化とすることを特徴とする歪計測方法。A first mounting plate having fixing points to the object to be measured at a plurality of positions in the strain measuring direction is fixed to the object to be measured, and the first optical fiber grating fixed to the first mounting plate along the strain measuring direction is used. A second mounting plate that detects a change in the reflected wavelength, has a second expansion plate that has the same linear expansion coefficient as the object to be measured, is installed in the vicinity of the first mounting plate, and is fixed along the linear expansion direction of the second mounting plate. A distortion characterized by detecting a reflected wavelength change by an optical fiber grating and subtracting a reflected wavelength change of the second optical fiber grating from a reflected wavelength change of the first optical fiber grating to obtain a reflected wavelength change caused by distortion of the object to be measured. Measurement method.
JP2001253169A 2001-08-23 2001-08-23 Optical fiber grating strain sensor and strain measurement method Expired - Fee Related JP3711905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253169A JP3711905B2 (en) 2001-08-23 2001-08-23 Optical fiber grating strain sensor and strain measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253169A JP3711905B2 (en) 2001-08-23 2001-08-23 Optical fiber grating strain sensor and strain measurement method

Publications (2)

Publication Number Publication Date
JP2003065730A JP2003065730A (en) 2003-03-05
JP3711905B2 true JP3711905B2 (en) 2005-11-02

Family

ID=19081541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253169A Expired - Fee Related JP3711905B2 (en) 2001-08-23 2001-08-23 Optical fiber grating strain sensor and strain measurement method

Country Status (1)

Country Link
JP (1) JP3711905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022029A (en) * 2009-07-16 2011-02-03 Tobishima Corp Distortion detecting device for concrete structure
CN106595510A (en) * 2017-01-06 2017-04-26 成都翰光科技有限公司 Strain gauge and fiber grating strain sensor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028995A1 (en) 2003-09-17 2005-03-31 Kyocera Corporation Fbg sensing system
US7796844B2 (en) * 2008-07-22 2010-09-14 The Hong Kong Polytechnic University Temperature-compensated fibre optic strain gauge
GB2490086B (en) * 2010-11-08 2015-04-08 Silixa Ltd Fibre optic monitoring installation, apparatus and method
JP2013083558A (en) * 2011-10-11 2013-05-09 Toyota Industries Corp Fbg strain sensor and strain amount measuring system
JP6324058B2 (en) * 2013-12-20 2018-05-16 株式会社Ihi検査計測 Strain measuring method and strain measuring apparatus
JP6247931B2 (en) * 2013-12-26 2017-12-13 古河電気工業株式会社 Optical pressure sensor
CN104101306B (en) * 2014-07-24 2016-08-31 河海大学 A kind of optical fiber grating temperature compensation method and ultra-thin micro reinforcing steel strain gauge
JP6397369B2 (en) * 2015-05-19 2018-09-26 株式会社東京測器研究所 Displacement measuring system and displacement measuring method
CN108613764A (en) * 2018-06-07 2018-10-02 广西大学 A kind of primary structure member and the strain transducer with the primary structure member
US20230048107A1 (en) * 2020-03-25 2023-02-16 Mitsubishi Electric Corporation Measurement device
CN112857227B (en) * 2021-02-24 2024-05-24 沈阳建筑大学 Distributed optical fiber sensing device capable of monitoring cracks of steel beam and monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022029A (en) * 2009-07-16 2011-02-03 Tobishima Corp Distortion detecting device for concrete structure
CN106595510A (en) * 2017-01-06 2017-04-26 成都翰光科技有限公司 Strain gauge and fiber grating strain sensor

Also Published As

Publication number Publication date
JP2003065730A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP3711905B2 (en) Optical fiber grating strain sensor and strain measurement method
US5258614A (en) Optical fiber loop temperature sensor
US5410404A (en) Fiber grating-based detection system for wavelength encoded fiber sensors
JP5150445B2 (en) Optical fiber sensor device, temperature and strain measurement method, and optical fiber sensor
US20090199646A1 (en) Optical fiber thermometer and temperature-compensated optical fiber sensor
JP4403674B2 (en) Optical fiber sensor
BRPI0403240B1 (en) optical transducer for simultaneous measurement of pressure and temperature in oil wells and method for said measurement
JPH05215628A (en) Temperature compensation self-reference fiber optics microbending pressure trans- ducer
KR101203700B1 (en) Fiber bragg grating sensor and system of measuring temperature and strain using the same
WO2020250187A1 (en) Method and system for detecting and measuring a braking force of a braking system for vehicle, by means of photonic sensors incorporated in a brake caliper
CN110530282A (en) Three spindle-type fiber grating strain measurement sensors of adjustable sensitivity
US10663324B2 (en) Optical fiber sensor
JP7047366B2 (en) Fiber optic sensor
JP2000097786A (en) Mechanical force sensor
JP2012225729A (en) Fbg distortion sensor
US20230213398A1 (en) An optical element for sensing a change in strain
KR101314857B1 (en) Deformation measuring module and apparatus incorporating the same
JP2005351663A (en) FBG humidity sensor and humidity measurement method using FBG humidity sensor
JP3925202B2 (en) High speed wavelength detector
WO2023004760A1 (en) Temperature-compensating optical fiber strain gauge with variable range
CN113624152B (en) Grating-based wheel-load signal detection method
JP6397369B2 (en) Displacement measuring system and displacement measuring method
CN209181734U (en) Applied on strain gauge substrate and corresponding strain gauge
JP2004264114A (en) FBG type temperature sensor and temperature measurement system using the same
WO2013054733A1 (en) Fbg strain sensor and strain quantity measurement system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees