JP3711896B2 - Manufacturing method of steel sheets for high-strength line pipes - Google Patents
Manufacturing method of steel sheets for high-strength line pipes Download PDFInfo
- Publication number
- JP3711896B2 JP3711896B2 JP2001193071A JP2001193071A JP3711896B2 JP 3711896 B2 JP3711896 B2 JP 3711896B2 JP 2001193071 A JP2001193071 A JP 2001193071A JP 2001193071 A JP2001193071 A JP 2001193071A JP 3711896 B2 JP3711896 B2 JP 3711896B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- steel
- cooling
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐水素誘起割れ性(耐HIC性)に優れた、主にAPI規格X65グレード以上の強度を有する鋼板の製造方法に関する。
【0002】
【従来の技術】
一般に、ラインパイプは、厚板ミルや熱延ミルにより製造された鋼板が、UOE成形、プレスべンド成形、ロール成形等で鋼管に成形されて製造される。硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。鋼材のHIC(水素誘起割れ)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、その内圧により割れを生ずるものとされている。
【0003】
このような水素誘起割れを防ぐためにいくつかの方法が提案されている。例えば、特開昭54-110119号公報には、鋼中のS含有量を下げるとともに、CaやREMなどを適量添加することにより、長く伸展したMnSの生成を抑制し、微細に分散した球状のCaS介在物に形態を変える技術が提案されている。これにより、硫化物系介在物による応力集中を小さくし、割れの発生・伝播を抑制することによって、耐HIC性を改善するというものである。
【0004】
また、特開昭61-60866号公報、特開昭61-165207号公報においては、偏析傾向の高い元素(C,Mn,P等)の低減やスラブ加熱段階での均熱処理による偏析の低減、および圧延後の冷却時の変態途中での加速冷却を行う技術が提案されている。これにより、中心偏析部での割れの起点となる島状マルテンサイトの生成、および割れの伝播経路となるマルテンサイトなどの硬化組織の生成を抑制するというものである。
【0005】
特開昭52-111815号公報には、Cuを添加して、鋼材表面に鋼中への水素侵入を抑制する保護膜を形成した鋼板が提案されている。
【0006】
最近、X80グレードの高強度鋼板に対して、特開平5-9575号公報、特開平5-271766号公報、特開平7-173536号公報等では、低SでCa添加により硫化物系介在物の形態制御を行いつつ、低C-低Mn化により中央偏析を抑制し、それに伴う強度低下をCr,Mo,Ni等の添加と加速冷却により補う方法が提案されている。
【0007】
【発明が解決しようとする課題】
しかし、上記の従来技術には次のような問題点がある。
【0008】
特開昭54-110119号公報記載の技術のように、硫化物系介在物の形態制御のみでは、高強度化に伴い酸化物系介在物に起因する割れの発生が無視できなくなる。
【0009】
特開昭52-111815号公報記載の技術のように、鋼材表面への水素侵入を抑制する保護膜を形成しても、pHの低い環境ではその効果が期待できない。例えば、低pHであるNACE溶液では、被膜の効果が得られていない。
【0010】
特開昭61-60866号公報、特開昭61-165207号公報、特開平5-9575号公報、特開平5-271766号公報、特開平7-173536号公報等記載の技術は、いずれも中心偏析部が対象となっているが、中心偏析部以外の部分については考慮されていない。加速冷却又は直接焼入れによって製造されるAPI規格X65グレード以上の強度を有する高強度鋼板においては、冷却速度の高い鋼板表面部が内部に比べて硬化するため、表面近傍から水素誘起割れが発生するという問題がある。
【0011】
表面からの割れを防ぐためには、焼戻し(変態点以下に再加熱)によって表面硬度を低下させる必要があるが、従来技術では、ガス燃焼炉により燃焼ガス雰囲気中で鋼板全体を加熱していた。そのため、昇温速度が遅く目的の温度に到達するのに長時間を要しており、鋼板表層部だけでなく、硬化していない鋼板中央部まで強度が低下し、DWTT特性の劣化を招いていた。
【0012】
本発明は、上記の問題を解決し、加速冷却によるAPI規格X65以上の高強度鋼板において、中心偏析部のHIC(水素誘起割れ)とともに表面近傍から発生するHICを防止することが可能な、耐HIC性に優れたラインパイプ用高強度鋼板の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の課題は以下の手段により達成できる。
1.化学成分としてmass%で、C:0.02〜0.08%,Si:0.01〜0.5%、Mn:1.0〜1.8%。P:0.01%以下、S:0.002%以下、Nb:0.005〜0.05%、Ti:0.005〜0.02%、Al:0.01〜0.07%、およびCa:0.0005〜0.0025%を含有し、残部Fe及び不可避的不純物であり、かつ下記の式(1)で表されるCeqが0.26%以上である鋼を、1000〜1200℃に加熱し、950℃以下のオーステナイト温度域で圧下率60%以上の圧延を行った後、冷却開始温度(Ar3−50℃)以上、平均冷却速度10℃/s以上、冷却停止温度650℃以下となる加速冷却を行い、その後、誘導加熱により、鋼板表面における昇温速度10℃/s以上、誘導加熱停止後の鋼板平均温度450℃未満の再加熱処理を行うことを特徴とする高強度ラインパイプ用鋼板の製造方法。
【0014】
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 (1)
ここで、各元素記号はそれぞれの元素の含有量(mass%)を表す。
【0015】
2.化学成分として、1記載の化学成分に加えて更に、mass%でCu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の内一種以上を含有していることを特徴とする請求項1記載の高強度ラインパイプ用鋼板の製造方法。
【0016】
3.再加熱処理の際、鋼板表面の最高温度を450〜650℃の範囲内とすることを特徴とする1又は請求項2記載の高強度ラインパイプ用鋼板の製造方法。
【0017】
この発明は、耐HIC特性の向上と高強度・高靭性の両立のために、鋼組成と加速冷却方法を検討し、とりわけ鋼板の表面硬度の低減を目指し、加速冷却後の熱処理(再加熱処理)について鋭意検討した結果なされた。その過程で、誘導加熱に着目し、加速冷却等により硬化した表層部のみを効果的に加熱し、かつ、鋼板中央部の温度上昇を抑制することに成功した。
【0018】
本発明はこれらの知見に基づきなされたものであり、以下、各構成要件について説明する。
【0019】
(1) 化学成分
C: 0.02〜0.08%
Cは、鋼板の強度を確保するために必要であるが、0.02%未満では十分な強度を確保できず、0.08%を超えると靭性および耐HIC性を劣化させる。従って、C量を0.02〜0.08%の範囲内とする。
【0020】
Si: 0.01〜0.5%
Siは脱酸のために添加するが、0.01%未満では脱酸効果が十分ではなく、0.5%を越えると靭性や溶接性を劣化させる。従ってSi量を0.01〜0.5%の範囲内とする。
【0021】
Mn: 1.0〜1.8%
Mnは鋼の強度および靭性の向上のため添加するが、1.0%未満ではその効果が十分ではなく、1.8%を越えると溶接性と耐HIC性が劣化する。従って、Mn量を1.0〜1.8%の範囲内とする。
【0022】
P: 0.01%以下
Pは不可避不純物元素であり、溶接性と耐HIC性とを劣化させる。この傾向は0.01%を超えると顕著となる。従って、P量を0.01%以下とする。
【0023】
S: 0.002%以下
Sは、鋼中においては一般にMnS系の介在物となるが、Ca添加によりMnS系からCaS系介在物に形態制御される。しかしSの含有量が多いとCaS系介在物の量も多くなり、高強度材では割れの起点となり得る。この傾向は、S量が0.002%を超えると顕著となる。従って、S量を0.002%以下とする。
【0024】
Nb: 0.005〜0.05%
Nbは、圧延時や焼入れ時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Nb量が0.005%未満ではその効果がなく、0.05%を超えると溶接熱影響部の靭性が劣化する。従って、Nb量を0.005〜0.05%の範囲内とする。
【0025】
Ti: 0.005〜0.02%
Tiは、TiNを形成してスラブ加熱時と焼入れ時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Ti量が0.005%未満ではその効果がなく、0.02%を越えると靭性を劣化させる。従って、Ti量を0.005〜0.02%の範囲内とする。
【0026】
Al: 0.01〜0.07%
Alは脱酸剤として添加されるが、0.01%未満ではその効果がなく、0.07%を超えると清浄度の低下により耐HIC性を劣化させる。従って、Al量を0.01〜0.07%の範囲内とする。
【0027】
Ca: 0.0005〜0.0025%
Caは硫化物系介在物の形態制御に不可欠な元素であるが、0.0005%未満ではその効果がなく、0.0025%を超えて添加しても効果が飽和し、むしろ清浄度の低下により耐HIC性を劣化させる。従って、Ca 量を0.0005〜0.0025%の範囲内とする。
【0028】
炭素当量:Ceq≧0.26%
炭素当量Ceq(前述の式(1))は、X65以上の強度を確保するために0.26%以上必要である。従って、Ceqを0.26%以上とする。
【0029】
その他、この発明では、強度と靭性の観点から次の元素を添加することができる。
【0030】
Cu: 添加する場合0.5%以下
Cuは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。従って、Cuを添加する場合は0.5%以下とする。
【0031】
Ni: 添加する場合0.5%以下
Niは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると応力腐食割れが発生しやすくなる。従って、Niを添加する場合は0.5%以下とする。
【0032】
Cr: 添加する場合0.5%以下
Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるが、0.5%を超えて添加すると溶接性を劣化させる。従って、Crを添加する場合は0.5%以下とする。
【0033】
Mo: 添加する場合0.5%以下
Moは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性や耐HIC性が劣化する。従って、Moを添加する場合は0.5%以下とする。
【0034】
V: 添加する場合0.1%以下
Vは、靭性、溶接性、および耐サワー性を劣化させずに強度を上昇させる元素であるが、0.1%を超えて添加すると溶接性を著しく損なう。従って、Vを添加する場合は、0.1%以下とする。
【0035】
なお、本発明の鋼の残部は実質的に鉄であり、上記以外の元素及び不可避不純物については、本発明の効果を損なわない限り含有することができる。
【0036】
(2) 圧延・冷却条件
スラブ加熱温度:1000〜1200℃
スラブ加熱温度は、1000℃未満では十分な強度が得られず、1200℃を超えると靭性やDWTT特性が劣化する。従って、スラブ加熱温度は1000〜1200℃の範囲内とする。
【0037】
圧延条件:950℃以下のオーステナイト温度域で圧下率60%以上
圧延においては、圧延条件を適切に設定し、結晶粒の微細化を図る。加速冷却前の鋼板の結晶粒が粗大であると、冷却後の鋼板の強度が上昇し、靭性が劣化するとともに耐HIC性も大きく劣化する。これを防止するため、オーステナイト未再結晶温度域に相当する950℃以下の温度域で、合計圧下率60%以上の圧延を行う必要がある。従って、圧延条件を950℃以下のオーステナイト温度域で圧下率60%以上とする。
【0038】
冷却開始温度:(Ar3-50℃)以上
加速冷却の冷却開始温度が低いと、加速冷却前のフェライト生成量が多くなり、Ar3変態点からの温度低下が50℃を超えると耐HIC性が劣化する。従って、冷却開始温度を(Ar3-50℃)以上の温度とする。なお、フェライト変態が開始するAr3変態点は、例えば次の式で求めることができる。
【0039】
Ar3(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
ここで、各元素記号はそれぞれの元素の含有量(mass%)を表す。
【0040】
平均冷却速度:10℃/s以上
加速冷却中の鋼板の冷却速度は、速いほど微細で均質な組織が得られるため、耐HIC性が向上する。平均冷却速度が10℃/s未満では、十分な効果が得られず、また冷却過程でパーライトが生成する場合があり、耐HIC性が劣化する。従って、加速冷却中の平均冷却速度を10℃/s以上とする。ここで、平均冷却速度は加速冷却の開始から500℃までの冷却速度の平均値とするが、冷却停止温度が500℃より高い場合は加速冷却の開始から冷却停止までの平均値とする。
【0041】
冷却停止温度:650℃以下
加速冷却における冷却停止温度が高いと、変態が不完全となり十分な強度が得られない。特に、冷却停止温度が650℃より高温では、加速冷却停止後にフェライトやパーライトが生成し強度が低下する。従って、加速冷却の冷却停止温度を650℃以下とする。
【0042】
(3) 加速冷却後の再加熱処理条件
再加熱処理方法:誘導加熱
加速冷却後の鋼板は表層部が硬化し、表面近傍でのHICの原因となる。そこで、再加熱処理においては、誘導加熱により表層部を加熱すると、鋼板中心部に比べて表層部の温度が高くなるような温度分布を与えることができる。さらに、誘導加熱により短時間で加熱することが可能であるため、鋼板中心部の材質を劣化させることなく、表層部の硬度を効果的に低下させることができる。従って、再加熱処理方法としては、従来のようなガス燃焼炉による加熱ではなく誘導加熱を用いる。
【0043】
鋼板表面における昇温速度:10℃/s以上
誘導加熱により、鋼板中心部の温度上昇を所定範囲に制限しつつ表層部のみを加熱することができるが、加熱速度が遅いと鋼板中心部も熱伝導により温度上昇する。鋼板表面における昇温速度が10℃/s未満となる熱処理では、鋼板中心部の温度も上昇するためDWTT特性が劣化する。従って、再加熱時の鋼板表面における昇温速度を10℃/s以上とする。
【0044】
再加熱時の鋼板平均温度:450℃未満
再加熱時の鋼板内部の温度が高くなりすぎると、炭化物等の析出が生じるため、DWTT特性が大きく劣化し、この傾向は鋼板平均温度が450℃以上で顕著となる。従って、再加熱時の鋼板平均温度を450℃未満とする。なおここで、再加熱時の鋼板平均温度とは、誘導加熱後、鋼板内部の温度分布がほぼ均一となった時の温度とする。
【0045】
鋼板表面の最高温度:必要に応じ450〜650℃の範囲内
加速冷却後は鋼板表面が硬化しているが、再加熱により鋼板表面の最高温度を450℃以上とすることにより、この表層部の硬度を十分に低下させることができる。一方、鋼板表面の最高温度が650℃を超えると、炭化物の析出により却って硬度低下が不十分となる場合がある。従って、材質の均一化等、必要に応じて、鋼板表面の最高温度を450〜650℃の範囲内とすることができる。
【0046】
このように、本発明の化学成分の鋼を、圧延、加速冷却、及び誘導加熱により再加熱することにより、優れた耐HIC性およびDWTT特性を有するX65グレード以上の高強度ラインパイプ用鋼板を製造することが可能となる。
【0047】
【発明の実施の形態】
発明の実施に当たっては、前述の成分組成範囲に調整した鋼を溶製し、連続鋳造後、得られた鋼スラブを加熱炉等に装入して加熱して熱間圧延を行う。その他の圧延条件は、本発明の圧延条件を満たす限り任意に選択してよい。なお、熱間圧延終了温度は、加速冷却の冷却開始温度の下限 (Ar3-50℃)以上であればよい。
【0048】
熱間圧延終了後は、本発明の冷却条件により、所定の冷却開始温度以上の温度から、所定の平均冷却速度以上で、所定の冷却停止温度以下の温度まで加速冷却を行う。加速冷却後は、引続き再加熱、あるいは冷却停止温度からさらに冷却床等で冷却した後、再加熱を行う。
【0049】
加速冷却後の再加熱は、誘導加熱装置を用いて実施する。特に、加熱が鋼板表層部に集中するよう、高周波誘導型の加熱装置を用いることが望ましい。このように、誘導加熱により表層部を加熱すると、鋼板中央部に比べて表層部の温度が高くなるような温度分布を与えることができる。高周波で誘導加熱することにより、鋼板の表層部に誘導電流を集中させ、電流密度を内部に比べて高くすることができる。
【0050】
図1は、誘導加熱装置により厚鋼板を加熱したときの鋼板表面と中心部の温度変化を模式的に示す図である。誘導加熱装置を用いれば、鋼板表層部の電流密度が内部より高くなるため、鋼板表面温度が最も高くなり、中心部の温度が最も低くなる。誘導加熱を開始すると、表面温度は急速に上昇するが、誘導加熱を停止すると表面温度は速やかに低下する。それとともに、鋼板の内部は表層部からの伝熱により若干の昇温を生じ、鋼板の表面と内部の温度はほぼ等しい温度となる。
【0051】
なお、板厚方向の温度分布については、従来技術のガス燃焼炉を用いる方法では鋼板の板厚中心部まで均一となり、本発明のように鋼板中央部の材質を劣化させることなく表層部の硬度を低下させることはできなかった。
【0052】
再加熱処理後の冷却については、空冷でもDWTT特性の劣化は見られず、冷却速度を特に規定する必要はない。但し、板厚35mm程度を超えるような厚鋼板において、冷却速度が遅くなり、炭化物の凝集粗大化による靭性劣化が懸念される場合は、再加熱処理後に水冷やミスト冷却を行ってもよい。
【0053】
【実施例】
表1に化学成分を示した供試鋼について、熱間圧延を行い、加速冷却後、再加熱処理を施した。ここで、鋼種A〜Fは本発明鋼、鋼種G〜Mは比較鋼である。
【0054】
【表1】
【0055】
表2に、熱間圧延の圧延条件、加速冷却の冷却条件、再加熱処理の鋼板温度を示す。ここで、No.1〜13は本発明鋼板、No.14〜30は比較鋼板である。比較鋼板の内、No.14〜23は鋼種は本発明鋼であるが製造条件が発明範囲を外れており、No.24〜30は製造条件は本発明範囲内であるが鋼種が発明範囲を外れている(比較鋼)。また、表2の圧下率は950℃以下における合計圧下率を示した。
【0056】
【表2】
【0057】
これらの鋼板について、機械的性質、耐HIC性、及びDWTT特性を調べた。耐HIC性は、pHが約3の硫化水素を飽和させた5%NaCl+0.5%CH3COOH水溶液(通常のNACE溶液)中で行ったHIC試験により調べた。DWTT特性は、API規格のプレスノッチ試験片によるDWTT試験(Drop Weight Tear Test)による延性破面率が85%となる温度(85%SATT)で評価した。
【0058】
鋼板の機械的性質、耐HIC性、及びDWTT特性を表2に併せて示す。強度はAPI X65グレードとして要求される降伏強度448MPa以上を目標とし、耐HIC性はHIC試験で割れ長さ率(CLR)が15%以下となった物を良好(○印)とし、DWTTは-10℃未満を目標とする。
【0059】
表2より明らかなように、本発明鋼板No.1〜13においては、良好な機械的特性、耐HIC性、及びDWTT特性が得られている。これに対して、比較鋼板No.14〜30においては、機械的特性、耐HIC性、又はDWTT特性のいずれかが劣っている。
【0060】
鋼板No.14はスラブ加熱温度が本発明範囲より高いためDWTT特性が劣っており、No.15は逆にスラブ加熱温度が本発明範囲より低いため十分な強度が得られない。鋼板No.16は950℃以下の圧下率が低いためDWTT特性が劣っている。鋼板No.17は加速冷却の冷却開始温度が本発明範囲より低いため耐HIC特性が劣っている。鋼板No.18,19はそれぞれ冷却速度、冷却停止温度が本発明範囲外であるためいずれも十分な強度が得られず、No.18は耐HIC特性も劣っている。
【0061】
鋼板No.20は、再加熱時の鋼板表面の昇温速度が本発明範囲より低いため、鋼板平均温度は本発明範囲内(450℃未満)であっても耐HIC特性が劣っている。鋼板No.20〜23は再加熱時の鋼板平均温度が本発明範囲より高いためDWTT特性が劣っている。鋼板No.24〜30は鋼種が発明範囲外であるため、製造条件が本発明範囲内であっても耐HIC特性又はDWTT特性が劣っている。
【0062】
【発明の効果】
本発明は、加速冷却後の鋼板を誘導加熱により急速加熱するすることにより、加速冷却により硬化した表層部のみを効果的に加熱し、かつ、鋼板中央部の温度上昇を抑制することができる。その結果、耐HIC性およびDWTT特性に優れた高強度ラインパイプ用鋼板を安価に大量生産することが可能となる。
【図面の簡単な説明】
【図1】誘導加熱における鋼板表面と中心部の温度変化を模式的に示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel sheet having excellent hydrogen-induced crack resistance (HIC resistance) and mainly having a strength of API standard X65 grade or higher.
[0002]
[Prior art]
Generally, a line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming or the like. Line pipes used for transporting crude oil and natural gas containing hydrogen sulfide have strength, toughness and weldability, as well as hydrogen-induced crack resistance (HIC resistance) and stress corrosion crack resistance (SCC resistance). So-called sour resistance is required. HIC (hydrogen-induced cracking) in steel materials is that hydrogen ions from the corrosion reaction are adsorbed on the steel material surface and penetrate into the steel as atomic hydrogen, resulting in non-metallic inclusions such as MnS in the steel and a hard second phase structure. It is said that it diffuses and accumulates around it and causes cracks due to its internal pressure.
[0003]
Several methods have been proposed to prevent such hydrogen-induced cracking. For example, in JP-A-54-110119, while lowering the S content in steel and adding an appropriate amount of Ca, REM, etc., the production of long stretched MnS is suppressed, and finely dispersed spherical Techniques have been proposed to change the form to CaS inclusions. As a result, the stress concentration due to the sulfide inclusions is reduced, and the occurrence and propagation of cracks is suppressed, thereby improving the HIC resistance.
[0004]
In addition, in JP-A-61-60866 and JP-A-61-165207, reduction of segregation due to soaking in the slab heating stage, reduction of elements with high tendency to segregation (C, Mn, P, etc.), In addition, a technique for accelerating cooling in the middle of transformation during cooling after rolling has been proposed. This suppresses the generation of island martensite that becomes the starting point of cracks in the center segregation part and the generation of hardened structures such as martensite that becomes the propagation path of cracks.
[0005]
Japanese Patent Application Laid-Open No. 52-111815 proposes a steel sheet in which Cu is added to form a protective film that suppresses hydrogen intrusion into the steel surface.
[0006]
Recently, for high strength steel sheets of X80 grade, in Japanese Patent Laid-Open No. 5-9575, Japanese Patent Laid-Open No. 5-271766, Japanese Patent Laid-Open No. 7-1373536, etc. A method has been proposed in which the central segregation is suppressed by lowering C-lower Mn while controlling the morphology, and the accompanying strength reduction is compensated by adding Cr, Mo, Ni, etc. and accelerated cooling.
[0007]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
[0008]
As in the technique described in Japanese Patent Application Laid-Open No. 54-110119, only by controlling the form of sulfide inclusions, the occurrence of cracks due to oxide inclusions cannot be ignored with increasing strength.
[0009]
Even if a protective film that suppresses hydrogen intrusion to the surface of a steel material is formed as in the technique described in Japanese Patent Laid-Open No. 52-111815, the effect cannot be expected in an environment having a low pH. For example, a NACE solution having a low pH does not provide a coating effect.
[0010]
The techniques described in JP-A-61-60866, JP-A-61-165207, JP-A-5-9575, JP-A-5-271766, JP-A-7-73536, etc. are all centered. The segregation part is the target, but parts other than the central segregation part are not considered. In high-strength steel sheets with API standard X65 grade or higher strength manufactured by accelerated cooling or direct quenching, the steel plate surface portion with a high cooling rate is hardened compared to the inside, so that hydrogen-induced cracking occurs from the vicinity of the surface. There's a problem.
[0011]
In order to prevent cracking from the surface, it is necessary to reduce the surface hardness by tempering (reheating below the transformation point), but in the prior art, the entire steel sheet was heated in a combustion gas atmosphere by a gas combustion furnace. For this reason, the rate of temperature rise is slow and it takes a long time to reach the target temperature, and the strength decreases not only to the surface layer of the steel sheet but also to the center part of the unhardened steel sheet, leading to deterioration of the DWTT characteristics. It was.
[0012]
The present invention solves the above-mentioned problems and is capable of preventing HIC generated from the vicinity of the surface together with HIC (hydrogen induced cracking) in the central segregation portion in high strength steel plate of API standard X65 or higher by accelerated cooling. It aims at providing the manufacturing method of the high strength steel plate for line pipes excellent in HIC property.
[0013]
[Means for Solving the Problems]
The object of the present invention can be achieved by the following means.
1. The chemical component is mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.0 to 1.8%. P: 0.01% or less, S: 0.002% or less, Nb: 0.005-0.05%, Ti: 0.005-0.02%, Al: 0.01-0.07%, and A steel containing 0.0005 to 0.0025%, balance Fe and inevitable impurities, and Ceq represented by the following formula (1) is 0.26% or more is 1000 to 1200 ° C. And after rolling at a reduction rate of 60% or more in an austenite temperature range of 950 ° C. or lower, a cooling start temperature (Ar 3-50 ° C.) or higher, an average cooling rate of 10 ° C./s or higher, and a cooling stop temperature of 650 ° C. or lower. A high-strength line characterized by performing accelerated cooling to be followed by reheating treatment at a heating rate of 10 ° C./s or more on the surface of the steel sheet and an average steel plate temperature of less than 450 ° C. after induction heating is stopped by induction heating. Manufacturing method of steel plate for pipes.
[0014]
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
Here, each element symbol represents the content (mass%) of each element.
[0015]
2. As a chemical component, in addition to the chemical component described in 1, further, in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.5% or less, V The method for producing a steel sheet for high-strength line pipe according to claim 1, further comprising at least one of 0.1 % or less.
[0016]
3. Upon reheating, 1 or claim 2 high strength line production method of pipes for steel sheet, wherein a is in the range of 450 to 650 ° C. The maximum temperature of the steel sheet surface.
[0017]
The present invention examined the steel composition and accelerated cooling method to improve both HIC resistance and high strength and toughness. In particular, aiming to reduce the surface hardness of the steel sheet, heat treatment after accelerated cooling (reheating treatment) ). In that process, focusing on induction heating, only the surface layer portion hardened by accelerated cooling or the like was effectively heated, and the temperature rise in the central portion of the steel sheet was successfully suppressed.
[0018]
The present invention has been made on the basis of these findings, and each constituent element will be described below.
[0019]
(1) Chemical composition
C: 0.02 ~ 0.08%
C is necessary to ensure the strength of the steel sheet, but if it is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.08%, toughness and HIC resistance are deteriorated. Therefore, the C content is set in the range of 0.02 to 0.08%.
[0020]
Si: 0.01-0.5%
Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, toughness and weldability are deteriorated. Accordingly, the Si content is set within a range of 0.01 to 0.5%.
[0021]
Mn: 1.0-1.8%
Mn is added to improve the strength and toughness of the steel, but if it is less than 1.0%, the effect is not sufficient, and if it exceeds 1.8%, the weldability and HIC resistance deteriorate. Therefore, the Mn content is set within a range of 1.0 to 1.8%.
[0022]
P: 0.01% or less
P is an inevitable impurity element and degrades weldability and HIC resistance. This tendency becomes remarkable when it exceeds 0.01%. Therefore, the P content is 0.01% or less.
[0023]
S: 0.002% or less
S is generally MnS-based inclusions in steel, but the form is controlled from MnS-based to CaS-based inclusions by the addition of Ca. However, if the S content is large, the amount of CaS inclusions also increases, and a high-strength material can be a starting point for cracking. This tendency becomes remarkable when the amount of S exceeds 0.002%. Therefore, the S content is 0.002% or less.
[0024]
Nb: 0.005-0.05%
Nb suppresses grain growth during rolling and quenching, and improves toughness by refinement. However, if the Nb content is less than 0.005%, the effect is not obtained, and if it exceeds 0.05%, the toughness of the heat affected zone is deteriorated. Therefore, the Nb content is within the range of 0.005 to 0.05%.
[0025]
Ti: 0.005-0.02%
Ti forms TiN, suppresses grain growth during slab heating and quenching, and improves toughness by refinement. However, when the Ti content is less than 0.005%, the effect is not obtained, and when it exceeds 0.02%, the toughness is deteriorated. Therefore, the Ti amount is set in the range of 0.005 to 0.02%.
[0026]
Al: 0.01-0.07%
Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect, and if it exceeds 0.07%, the HIC resistance is deteriorated due to a decrease in cleanliness. Therefore, the Al content is set in the range of 0.01 to 0.07%.
[0027]
Ca: 0.0005-0.0025%
Ca is an element indispensable for controlling the morphology of sulfide inclusions, but if it is less than 0.0005%, it will not be effective, and if added over 0.0025%, the effect will be saturated, but rather the HIC resistance due to the decrease in cleanliness. Deteriorate. Therefore, the Ca content is within the range of 0.0005 to 0.0025%.
[0028]
Carbon equivalent: Ceq ≧ 0.26%
The carbon equivalent Ceq (the above formula (1)) needs to be 0.26% or more in order to ensure the strength of X65 or more. Therefore, Ceq is 0.26% or more.
[0029]
In addition, in this invention, the following elements can be added from the viewpoint of strength and toughness.
[0030]
Cu: 0.5% or less when added
Cu is an element effective for improving toughness and increasing strength, but if added over 0.5%, weldability deteriorates. Therefore, when adding Cu, it is 0.5% or less.
[0031]
Ni: 0.5% or less when added
Ni is an element effective for improving toughness and increasing strength, but if added over 0.5%, stress corrosion cracking tends to occur. Therefore, when adding Ni, it is 0.5% or less.
[0032]
Cr: 0.5% or less when added
Cr, like Mn, is an element effective for obtaining sufficient strength even at low C, but if added over 0.5%, weldability deteriorates. Therefore, when adding Cr, it is 0.5% or less.
[0033]
Mo: 0.5% or less when added
Mo is an element effective for improving toughness and increasing strength, but if added over 0.5%, weldability and HIC resistance deteriorate. Therefore, when adding Mo, it is 0.5% or less.
[0034]
V: 0.1% or less when added
V is an element that increases strength without degrading toughness, weldability, and sour resistance, but if added over 0.1%, weldability is significantly impaired. Therefore, when V is added, the content is made 0.1% or less.
[0035]
The balance of the steel of the present invention is substantially iron, and elements other than the above and inevitable impurities can be contained unless the effects of the present invention are impaired.
[0036]
(2) Rolling / cooling conditions Slab heating temperature: 1000 ~ 1200 ℃
When the slab heating temperature is less than 1000 ° C, sufficient strength cannot be obtained, and when it exceeds 1200 ° C, the toughness and DWTT characteristics deteriorate. Accordingly, the slab heating temperature is in the range of 1000 to 1200 ° C.
[0037]
Rolling conditions: In rolling at a reduction rate of 60% or more in an austenite temperature range of 950 ° C. or lower, the rolling conditions are set appropriately to refine the crystal grains. If the crystal grains of the steel plate before accelerated cooling are coarse, the strength of the steel plate after cooling increases, and the toughness is deteriorated and the HIC resistance is greatly deteriorated. In order to prevent this, it is necessary to perform rolling with a total rolling reduction of 60% or more in a temperature range of 950 ° C. or lower corresponding to the austenite non-recrystallization temperature range. Therefore, the rolling condition is 60% or more in the austenite temperature range of 950 ° C. or less.
[0038]
Cooling start temperature: (Ar 3 -50 ° C) or more If the cooling start temperature for accelerated cooling is low, the amount of ferrite generated before accelerated cooling increases, and if the temperature drop from the Ar 3 transformation point exceeds 50 ° C, the HIC resistance Deteriorates. Accordingly, the cooling start temperature is set to (Ar 3 -50 ° C.) or higher. The Ar 3 transformation point at which the ferrite transformation starts can be obtained by the following equation, for example.
[0039]
Ar 3 (° C) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (2)
Here, each element symbol represents the content (mass%) of each element.
[0040]
Average cooling rate: 10 ° C / s or more The higher the cooling rate of the steel plate during accelerated cooling, the better the HIC resistance, because a finer and more homogeneous structure can be obtained. If the average cooling rate is less than 10 ° C / s, sufficient effects cannot be obtained, and pearlite may be generated during the cooling process, resulting in deterioration of HIC resistance. Therefore, the average cooling rate during accelerated cooling is set to 10 ° C./s or more. Here, the average cooling rate is the average value of the cooling rate from the start of the accelerated cooling to 500 ° C., but when the cooling stop temperature is higher than 500 ° C., the average value is the average value from the start of the accelerated cooling to the cooling stop.
[0041]
Cooling stop temperature: 650 ° C. or less If the cooling stop temperature in accelerated cooling is high, transformation is incomplete and sufficient strength cannot be obtained. In particular, when the cooling stop temperature is higher than 650 ° C., ferrite and pearlite are generated after the accelerated cooling stop and the strength is lowered. Therefore, the cooling stop temperature for accelerated cooling is set to 650 ° C. or lower.
[0042]
(3) Reheating treatment conditions after accelerated cooling Reheating treatment method: The steel layer after induction heating accelerated cooling hardens the surface layer, which causes HIC near the surface. Therefore, in the reheating treatment, when the surface layer portion is heated by induction heating, a temperature distribution can be given such that the temperature of the surface layer portion becomes higher than that of the steel plate center portion. Furthermore, since it is possible to heat by induction heating in a short time, the hardness of the surface layer portion can be effectively reduced without deteriorating the material of the steel plate center portion. Therefore, as a reheating treatment method, induction heating is used instead of conventional gas combustion furnace heating.
[0043]
Heating rate on the steel sheet surface: 10 ° C / s or more By induction heating, only the surface layer can be heated while limiting the temperature rise in the steel sheet center to a specified range. The temperature rises due to conduction. In the heat treatment in which the rate of temperature rise on the steel sheet surface is less than 10 ° C./s, the temperature at the center of the steel sheet also rises and the DWTT characteristics deteriorate. Therefore, the rate of temperature rise on the steel sheet surface during reheating is set to 10 ° C./s or more.
[0044]
Steel plate average temperature during reheating: less than 450 ° C If the temperature inside the steel plate during reheating becomes too high, precipitation of carbides and the like will occur, and the DWTT characteristics will deteriorate significantly. Becomes noticeable. Therefore, the average temperature of the steel sheet during reheating is set to less than 450 ° C. In addition, the steel plate average temperature at the time of reheating is a temperature when the temperature distribution inside the steel plate becomes substantially uniform after induction heating.
[0045]
Maximum temperature of steel sheet surface: The steel sheet surface is hardened after accelerated cooling within the range of 450 to 650 ° C as required. By reheating the maximum temperature of the steel sheet surface to 450 ° C or higher, Hardness can be sufficiently reduced. On the other hand, when the maximum temperature of the steel sheet surface exceeds 650 ° C., the hardness reduction may be insufficient due to precipitation of carbides. Therefore, the maximum temperature of the steel sheet surface can be set within a range of 450 to 650 ° C. as necessary, for example, for uniforming the material.
[0046]
In this way, steel of the chemical composition of the present invention is reheated by rolling, accelerated cooling, and induction heating to produce a steel sheet for high-strength line pipes of X65 grade or higher having excellent HIC resistance and DWTT characteristics. It becomes possible to do.
[0047]
DETAILED DESCRIPTION OF THE INVENTION
In carrying out the invention, steel adjusted to the above component composition range is melted, and after continuous casting, the obtained steel slab is charged into a heating furnace or the like and heated to perform hot rolling. Other rolling conditions may be arbitrarily selected as long as the rolling conditions of the present invention are satisfied. Note that the hot rolling end temperature may be not less than the lower limit (Ar 3 -50 ° C.) of the cooling start temperature of accelerated cooling.
[0048]
After the hot rolling is completed, accelerated cooling is performed from a temperature equal to or higher than a predetermined cooling start temperature to a temperature equal to or higher than a predetermined average cooling rate and equal to or lower than a predetermined cooling stop temperature according to the cooling condition of the present invention. After accelerated cooling, reheating is continued, or after further cooling from the cooling stop temperature in a cooling bed or the like, reheating is performed.
[0049]
Reheating after accelerated cooling is performed using an induction heating device. In particular, it is desirable to use a high-frequency induction heating device so that heating is concentrated on the surface layer of the steel sheet. In this way, when the surface layer part is heated by induction heating, a temperature distribution can be given such that the temperature of the surface layer part becomes higher than that of the central part of the steel sheet. By induction heating at a high frequency, the induction current can be concentrated on the surface layer of the steel sheet, and the current density can be increased compared to the inside.
[0050]
FIG. 1 is a diagram schematically showing a temperature change of a steel plate surface and a central portion when a thick steel plate is heated by an induction heating device. If an induction heating apparatus is used, since the current density of the steel plate surface layer portion is higher than the inside, the steel plate surface temperature is the highest and the temperature of the central portion is the lowest. When induction heating is started, the surface temperature rapidly rises, but when induction heating is stopped, the surface temperature rapidly decreases. At the same time, the temperature inside the steel sheet is slightly increased due to heat transfer from the surface layer portion, and the surface temperature and the inside temperature of the steel sheet are substantially equal.
[0051]
As for the temperature distribution in the plate thickness direction, the method using the gas combustion furnace of the prior art is uniform up to the plate thickness central portion of the steel plate, and the hardness of the surface layer portion is not deteriorated without deteriorating the material of the steel plate central portion as in the present invention. Could not be reduced.
[0052]
As for cooling after the reheating treatment, there is no deterioration in the DWTT characteristics even with air cooling, and it is not necessary to specify the cooling rate in particular. However, in a thick steel plate having a thickness exceeding about 35 mm, when the cooling rate becomes slow and there is a concern about toughness deterioration due to the coarsening of carbides, water cooling or mist cooling may be performed after the reheating treatment.
[0053]
【Example】
About the test steel which showed the chemical component in Table 1, it hot-rolled and performed the reheating process after accelerated cooling. Here, steel types A to F are invention steels, and steel types G to M are comparative steels.
[0054]
[Table 1]
[0055]
Table 2 shows the rolling conditions for hot rolling, the cooling conditions for accelerated cooling, and the steel plate temperature for reheating treatment. Here, Nos. 1 to 13 are steel plates of the present invention, and Nos. 14 to 30 are comparative steel plates. Among the comparative steel plates, Nos. 14 to 23 are steels of the present invention, but the manufacturing conditions are out of the scope of the invention, and Nos. 24 to 30 are in the scope of the present invention, but the steel types are within the scope of the invention. It is off (comparative steel). Moreover, the rolling reduction of Table 2 showed the total rolling reduction in 950 degrees C or less.
[0056]
[Table 2]
[0057]
These steel sheets were examined for mechanical properties, HIC resistance, and DWTT properties. The HIC resistance was examined by an HIC test conducted in a 5% NaCl + 0.5% CH 3 COOH aqueous solution (normal NACE solution) saturated with hydrogen sulfide having a pH of about 3. The DWTT property was evaluated at a temperature (85% SATT) at which the ductile fracture surface ratio was 85% according to a DWTT test (Drop Weight Tear Test) using a press notch test piece of API standard.
[0058]
Table 2 shows the mechanical properties, HIC resistance, and DWTT properties of the steel sheet. The target strength is 448MPa or higher, which is required for API X65 grade, and the HIC resistance is good when the crack length ratio (CLR) is 15% or less in the HIC test. Target less than 10 ℃.
[0059]
As is clear from Table 2, in the steel plates Nos. 1 to 13 of the present invention, good mechanical properties, HIC resistance, and DWTT properties are obtained. On the other hand, in the comparative steel plates No. 14 to 30, any of mechanical properties, HIC resistance, or DWTT properties is inferior.
[0060]
Steel plate No. 14 has inferior DWTT characteristics because the slab heating temperature is higher than the range of the present invention, and No. 15 has a lower slab heating temperature than the range of the present invention, so that sufficient strength cannot be obtained. Steel plate No. 16 is inferior in DWTT characteristics because of its low reduction rate of 950 ° C or lower. Steel plate No. 17 has inferior HIC resistance because the cooling start temperature of accelerated cooling is lower than the range of the present invention. Steel plates Nos. 18 and 19 have a cooling rate and a cooling stop temperature outside the scope of the present invention, respectively, so that sufficient strength cannot be obtained, and No. 18 has poor HIC resistance.
[0061]
Steel plate No. 20 has an inferior HIC resistance even when the average temperature of the steel plate is within the range of the present invention (less than 450 ° C.) because the rate of temperature rise on the surface of the steel plate during reheating is lower than the range of the present invention. Steel plates No. 20 to 23 have inferior DWTT characteristics because the steel plate average temperature during reheating is higher than the range of the present invention. Steel plates No. 24 to 30 have a steel type outside the scope of the invention, so that the HIC resistance or DWTT characteristics are inferior even if the production conditions are within the scope of the present invention.
[0062]
【The invention's effect】
In the present invention, by rapidly heating the steel sheet after accelerated cooling by induction heating, only the surface layer portion hardened by accelerated cooling can be effectively heated, and the temperature rise at the central portion of the steel sheet can be suppressed. As a result, it is possible to mass-produce high-strength linepipe steel sheets excellent in HIC resistance and DWTT characteristics at low cost.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a temperature change of a steel plate surface and a central portion in induction heating.
Claims (3)
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
ここで、各元素記号はそれぞれの元素の含有量(mass%)を表す。The chemical component is mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.5%, Mn: 1.0 to 1.8%, P: 0.01% or less, S: 0.002% or less, Nb: 0.005-0.05%, Ti: 0.005-0.02%, Al: 0.01-0.07%, and Ca: 0.0005-0.0025% The steel containing the remaining Fe and inevitable impurities and having a Ceq of 0.26% or more represented by the following formula is heated to 1000 to 1200 ° C. and reduced in an austenite temperature range of 950 ° C. or less. After rolling at a rate of 60% or more, the cooling start temperature (Ar3-50 ° C) or higher, the average cooling rate of 10 ° C / s or higher, the cooling stop temperature of 650 ° C or lower is performed, and then by induction heating, heating rate 10 ° C. / s or more at the surface of the steel sheet, the steel sheet after the induction heating is stopped Method of producing a high strength line pipe steel plate which is characterized in that the reheating of the average temperature of 450 lower than ° C..
Ceq = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
Here, each element symbol represents the content (mass%) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001193071A JP3711896B2 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of steel sheets for high-strength line pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001193071A JP3711896B2 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of steel sheets for high-strength line pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003013138A JP2003013138A (en) | 2003-01-15 |
JP3711896B2 true JP3711896B2 (en) | 2005-11-02 |
Family
ID=19031424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001193071A Expired - Fee Related JP3711896B2 (en) | 2001-06-26 | 2001-06-26 | Manufacturing method of steel sheets for high-strength line pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3711896B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181564A1 (en) | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe |
WO2018179512A1 (en) | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe |
WO2019064459A1 (en) | 2017-09-28 | 2019-04-04 | Jfeスチール株式会社 | High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe |
WO2019077725A1 (en) | 2017-10-19 | 2019-04-25 | Jfeスチール株式会社 | High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same |
KR20210050548A (en) | 2018-09-28 | 2021-05-07 | 제이에프이 스틸 가부시키가이샤 | High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe |
KR20210064296A (en) | 2018-09-28 | 2021-06-02 | 제이에프이 스틸 가부시키가이샤 | High-strength steel sheet for sour-resistant line pipe and manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe |
WO2021193383A1 (en) | 2020-03-26 | 2021-09-30 | Jfeスチール株式会社 | High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe |
US20230251181A1 (en) * | 2021-03-19 | 2023-08-10 | Saudi Arabian Oil Company | Development of Control Samples to Enhance the Accuracy of HIC Testing |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040075971A (en) | 2002-02-07 | 2004-08-30 | 제이에프이 스틸 가부시키가이샤 | High Strength Steel Plate and Method for Production Thereof |
JP4267367B2 (en) * | 2002-06-19 | 2009-05-27 | 新日本製鐵株式会社 | Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method |
CN100432261C (en) * | 2003-06-12 | 2008-11-12 | 杰富意钢铁株式会社 | Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for producing thereof |
EP2853615B1 (en) * | 2003-06-12 | 2017-12-27 | JFE Steel Corporation | Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same |
KR100815717B1 (en) | 2006-11-02 | 2008-03-20 | 주식회사 포스코 | High-strength large-diameter line pipe steel excellent in hydrogen organic cracking resistance and low temperature toughness and manufacturing method thereof |
JP5092358B2 (en) * | 2006-11-09 | 2012-12-05 | Jfeスチール株式会社 | Manufacturing method of high strength and tough steel sheet |
JP5223511B2 (en) * | 2007-07-31 | 2013-06-26 | Jfeスチール株式会社 | Steel sheet for high strength sour line pipe, method for producing the same and steel pipe |
WO2009061006A1 (en) * | 2007-11-07 | 2009-05-14 | Jfe Steel Corporation | Steel plate for line pipes and steel pipes |
JP5353156B2 (en) * | 2008-09-26 | 2013-11-27 | Jfeスチール株式会社 | Steel pipe for line pipe and manufacturing method thereof |
KR101143029B1 (en) | 2009-12-02 | 2012-05-08 | 주식회사 포스코 | High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same |
CN107245664A (en) * | 2017-06-07 | 2017-10-13 | 武汉钢铁有限公司 | A kind of tensile strength >=590MPa alloyed zinc hot dip galvanized steel and production method |
CN109682658B (en) * | 2018-12-27 | 2021-06-01 | 中国石油天然气集团有限公司 | DWTT test sample for avoiding DWTT abnormal fracture of large-wall-thickness high-toughness X80 steel pipe and method thereof |
CN110331347A (en) * | 2019-06-22 | 2019-10-15 | 江阴兴澄特种钢铁有限公司 | A kind of super 40mm low-temperature high-toughness X80 steel-grade Pipeline Steel Plate of low-carbon-equivalent thickness and its manufacturing method |
CN110438398A (en) * | 2019-08-21 | 2019-11-12 | 洛阳双瑞特种装备有限公司 | A kind of marine environment high-intensity fasteners steel |
CN113025902B (en) * | 2021-03-04 | 2022-02-01 | 东北大学 | Hot-rolled seamless steel tube with excellent toughness and manufacturing method thereof |
-
2001
- 2001-06-26 JP JP2001193071A patent/JP3711896B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210118961A (en) | 2017-03-30 | 2021-10-01 | 제이에프이 스틸 가부시키가이샤 | High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe |
KR20210118960A (en) | 2017-03-30 | 2021-10-01 | 제이에프이 스틸 가부시키가이샤 | High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe |
KR20190129097A (en) | 2017-03-30 | 2019-11-19 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet for internal sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel sheet for internal sour line pipe |
KR20190129957A (en) | 2017-03-30 | 2019-11-20 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet for internal sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel sheet for internal sour line pipe |
WO2018179512A1 (en) | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe |
WO2018181564A1 (en) | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe |
WO2019064459A1 (en) | 2017-09-28 | 2019-04-04 | Jfeスチール株式会社 | High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe |
KR20200051745A (en) | 2017-09-28 | 2020-05-13 | 제이에프이 스틸 가부시키가이샤 | High strength steel pipe for internal sour line pipe and manufacturing method thereof, and high strength steel pipe using high strength steel plate for internal sour line pipe |
WO2019077725A1 (en) | 2017-10-19 | 2019-04-25 | Jfeスチール株式会社 | High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same |
KR20200058490A (en) | 2017-10-19 | 2020-05-27 | 제이에프이 스틸 가부시키가이샤 | High strength steel plate for internal sour line pipe and high strength steel pipe using the same |
KR20210064296A (en) | 2018-09-28 | 2021-06-02 | 제이에프이 스틸 가부시키가이샤 | High-strength steel sheet for sour-resistant line pipe and manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe |
KR20210050548A (en) | 2018-09-28 | 2021-05-07 | 제이에프이 스틸 가부시키가이샤 | High-strength steel pipe using high-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel plate for sour-resistant line pipe |
WO2021193383A1 (en) | 2020-03-26 | 2021-09-30 | Jfeスチール株式会社 | High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe |
KR20220137970A (en) | 2020-03-26 | 2022-10-12 | 제이에프이 스틸 가부시키가이샤 | High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe |
US20230251181A1 (en) * | 2021-03-19 | 2023-08-10 | Saudi Arabian Oil Company | Development of Control Samples to Enhance the Accuracy of HIC Testing |
US12072278B2 (en) * | 2021-03-19 | 2024-08-27 | Saudi Arabian Oil Company | Development of control samples to enhance the accuracy of HIC testing |
Also Published As
Publication number | Publication date |
---|---|
JP2003013138A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3711896B2 (en) | Manufacturing method of steel sheets for high-strength line pipes | |
JP5900303B2 (en) | High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
EP2484792A1 (en) | Steel plate with low yield ratio, high strength, and high toughness and process for producing same | |
JP5303856B2 (en) | Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP5928405B2 (en) | Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same | |
JP3546726B2 (en) | Method for producing high-strength steel plate with excellent HIC resistance | |
JP2007270194A (en) | Method for producing high-strength steel sheet excellent in sr resistance property | |
JP3906779B2 (en) | Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance | |
JP2002327212A (en) | Method for manufacturing sour resistant steel sheet for line pipe | |
JP2008248359A (en) | Method for manufacturing on-line cooling type high tension steel sheet | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP4419744B2 (en) | High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
JP4314873B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JPH11279639A (en) | Production of steel plate for high strength linepipe excellent in hic resistance | |
JPH0941036A (en) | Production of high toughness steel sheet for low temperature use | |
JP4273826B2 (en) | High strength steel plate for line pipe with excellent HIC resistance and method for producing the same | |
JPH1180833A (en) | Production of steel sheet for high strength line pipe excellent in hic resistance | |
JP4311226B2 (en) | Manufacturing method of high-tensile steel sheet | |
WO2011043287A1 (en) | Steel for linepipe having good strength and malleability, and method for producing the same | |
JP3218447B2 (en) | Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness | |
JP2004269964A (en) | Method for producing high strength steel sheet | |
JPH059575A (en) | Manufacturing method of high strength steel plate with excellent corrosion resistance | |
JP3009558B2 (en) | Manufacturing method of thin high-strength steel sheet with excellent sour resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3711896 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080826 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090826 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090826 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100826 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110826 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120826 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120826 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130826 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |