JP3707503B2 - Decomposition catalyst for volatile organochlorine compounds - Google Patents
Decomposition catalyst for volatile organochlorine compounds Download PDFInfo
- Publication number
- JP3707503B2 JP3707503B2 JP15715295A JP15715295A JP3707503B2 JP 3707503 B2 JP3707503 B2 JP 3707503B2 JP 15715295 A JP15715295 A JP 15715295A JP 15715295 A JP15715295 A JP 15715295A JP 3707503 B2 JP3707503 B2 JP 3707503B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- zirconia
- weight
- titania
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 101
- 150000004045 organic chlorine compounds Chemical class 0.000 title claims description 24
- 238000000354 decomposition reaction Methods 0.000 title claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 84
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 76
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 48
- 229910052697 platinum Inorganic materials 0.000 claims description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims description 14
- 239000011574 phosphorus Substances 0.000 claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 description 35
- 239000000969 carrier Substances 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000002253 acid Substances 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 20
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 229960002645 boric acid Drugs 0.000 description 8
- 235000010338 boric acid Nutrition 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 235000011007 phosphoric acid Nutrition 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000005108 dry cleaning Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229950011008 tetrachloroethylene Drugs 0.000 description 2
- 230000010512 thermal transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000182522 Arcania Species 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- -1 dichloroethylene, trichloroethylene Chemical group 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は揮発性有機塩素化合物を分解処理するための触媒に関し、さらに詳細には、揮発性有機塩素化合物を触媒分解処理するため使用する触媒に関するものである。
【0002】
【従来の技術】
揮発性有機塩素化合物としては、塩化メチレン、ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン等があり、塩化メチレンやトリクロロエチレン等は電子部品および金属製品の脱脂工程やドライクリーニング等に広く用いられている。
揮発性有機塩素化合物は、大気中に排出された場合、オゾン層にまで到達して、太陽からの強い紫外線によって分解されて生ずる塩素原子によりオゾン層を破壊する。オゾン層が破壊されると、地表にまで到達する紫外線量が増大し、皮膚癌、白内障害、動植物の生長阻害等を引き起こすため、地球環境の保護の観点から現在重大な問題となっている。また、揮発性有機塩素化合物には発癌作用があり、不法投棄による土壌汚染や地下水の汚染も問題化してきている。
近年、環境衛生上の見地から、世界各国において法規制が実施され、揮発性有機塩素化合物およびこれらを含む廃液等は厳しい管理が要求されており、揮発性有機塩素化合物の無害化処理技術が強く望まれている。
従来、塩化メチレン、トリクロロエチレン、テトラクロロエチレン等の揮発性有機塩素化合物の処理の方法としては、活性炭、ゼオライト等で吸着して回収する方法が知られているが、回収した揮発性有機塩素化合物の無害化処理方法に関しては考慮がなされていなかった。
【0003】
最近になり、揮発性有機塩素化合物の分解して無害化する方法として、熱分解法、光分解法、接触分解法等が提案されている。このうち接触分解法は、熱分解法が装置が大掛かりで、処理コストが高い等の問題があるのに対して、簡便な方法であって、また低濃度から高濃度までの揮発性有機塩素化合物を含む気体に対して有効である等の理由から、特に注目されている。
この接触分解法においては、アルミナ、シリカ、ゼオライト、チタニア、ジルコニア等の無機酸化物を単独あるいは組み合わせからなる担体に、銅、クロム、鉄、白金、パラジウム等を触媒成分として担持させて得た触媒を用い、これとトリクロロエチレン等の揮発性有機塩素化合物とを水と酸素または空気の存在下で、400〜500℃において接触させる方法が採られており、この方法は特開昭50−2669号公報、特開平3−12221号公報、特開平3−47516号公報等で紹介されている。
【0004】
【発明が解決しようとする課題】
一般に触媒を用いたガスの触媒反応では、高い空間速度SV(単位時間当りのガス流量/触媒の体積)、速いLV(線速度)といった条件下で反応を行わせることが求められている。このためには、該反応に用いる触媒は固体酸性が高く、活性点の数が多いことが望ましく、揮発性有機塩素化合物を接触分解する触媒は、特に塩化水素に対する耐酸性が優れていることが重要とである。
これらの点より上記に紹介された触媒を考察すると、触媒の耐酸性を考慮してジルコニア、チタニアおよびチタニアージルコニア二成分系酸化物担体が有望であるが、該担体に白金、パラジウム等の触媒成分を担持した触媒では、初期活性は高いものの長期間に亘り当該活性を維持することはできない。一方耐酸性に優れ、かつ固体酸性を高める成分を添加させた触媒担体についての検討は未だなされていない。
【0005】
本発明は、上記状況を考慮してなされたものであり、その目的は揮発性有機塩素化合物を空気と水の存在下で、濃度に関係なく効率よく揮発性有機塩素化合物を分解でき、かつ長期間活性を維持することのできる触媒を提供することである。
【0006】
【課題を解決するための手段】
上記の課題を解決し、上記の目的を達成するために、本発明者らは、揮発性有機塩素化合物を分解することにより生ずる塩化水素に対する耐酸性を持つ、チタニアージルコニア二成分系酸化物担体においてその固体酸性度を高め、かつ耐酸性を保持できる第3成分について着目して鋭意研究した結果、チタニアージルコニア二成分系酸化物組成物に、第3成分としてリンまたはホウ素を添加した三成分系酸化物担体に、触媒成分として従来から提案されていた貴金属を担持させることにより、得られた触媒は揮発性有機塩素化合物をきわめて効率よく分解することを見出だし、本発明を完成するに至った。
すなわち、上記課題を解決する本発明に係る揮発性有機塩素化合物の分解触媒は、リンをPO4換算でまたはホウ素をB2O3換算で2〜5重量%、ジルコニアを25〜50重量%含み、残部が実質的にチタニアからなる三成分系酸化物担体に、触媒成分として白金、パラジウム、ルテニウムからなる群より選ばれた少なくとも1種を金属換算で0.1〜5重量%相当量担持させたことを特徴とするものである。
【0007】
【作用】
本発明の要旨とするところは、特定の組成比を有するジルコニア(ZrO2)とチタニア(TiO2)とからなる二成分系酸化物組成物に、さらに第3成分としてリンまたはホウ素を含有させた担体、詳しくはリンをPO4としてまたはホウ素をB2O3として2〜5重量%、ジルコニアを25〜50重量%含み、残部が実質的にチタニアからなる三成分系酸化物担体に、触媒成分として白金、パラジウム、ルテニウムからなる群より選ばれた少なくとも1種を担持した場合に、低濃度から高濃度まで揮発性有機塩素化合物を効率よく分解する効果が最も優れていることを見出したことにある。
本発明の詳細およびその作用についてさらに具体的に説明すると次の通りである。
【0008】
本発明において、リンとジルコニアとチタニアからなる三成分系酸化物担体(以後、「リンージルコニアーチタニア担体」と略す)は、例えば混合法などの一般的な触媒担体の製造方法によって製造し得るものである。すなわち、メタチタン酸水和物ケーキに、触媒担体としたときにジルコニアの含有量が25〜50重量%、リンの含有量がPO4として2〜5重量%となるように、水酸化ジルコニウム粉体と、オルトリン酸溶液と、成型助剤とを加え捏和して、成型、乾燥、さらに焼成することでリンージルコニアーチタニア担体を製造することができる。一方、ホウ素とジルコニアとチタニアからなる三成分系酸化物担体(以後、「ホウ素ージルコニアーチタニア担体」と略す)も、例えば混合法などの一般的な触媒担体の製造方法によって製造し得るものである。すなわち、メタチタン酸水和物ケーキに、触媒担体としたときにジルコニアの含有量が25〜50重量%、ホウ素の含有量がB2O3として2〜5重量%となるように、水酸化ジルコニウム粉体と、オルトホウ酸、メタホウ酸、四ホウ酸等のホウ酸或は該ホウ酸水溶液と、成形助剤とを加え捏和して、成型、乾燥、さらに焼成することでホウ素−ジルコニアーチタニア担体を製造することができる。
【0009】
本発明において用いられるメタチタン酸水和物ケーキは、酸化チタンの製造方法として広く知られている硫酸法によるチタニア製造の際の中間体であるメタチタン酸水和物スラリーを濾過・洗浄することによって得られる。
【0010】
本発明の担体において、リンの含有量をPO4としてまたはホウ素の含有量をB2O3として2〜5重量%、ジルコニアの含有量を25〜50重量%とし、残部が実質的にチタニアとするのは、この範囲外では低濃度から高濃度までの揮発性有機塩素化合物を長時間安定した分解活性を維持することができないからである。
【0011】
成型助剤としては、チタニアゾル、硝酸ジルコニウム溶液、炭酸ジルコニウムアンモニウム溶液等を添加することで成型した担体の破壊強度を高めることができ、セルロース系の有機物を添加することで成型性を改善することができる。本発明で用いる成型助剤は、触媒担体を製造するのに用いられる通例のものでよく、特に限定されるものではないが、焼成後に本発明の組成以外の無機物が残存しないものであることが望ましい。
【0012】
本発明の三成分系酸化物担体の形状は一般に触媒担体として用いられている粉状、球状、円筒状、三つ葉状、四つ葉状、ハニカム状、螺旋状等でよく、触媒反応に適した形状を適宜選択することができる。
【0013】
また、成型体を焼成して担体を得る際に、該成型体の焼成温度を400〜600℃の範囲とすることが好ましい。焼成温度が高すぎすとチタニアはアナターゼ構造からルチル構造に熱転移し、ジルコニアは準安定正方晶系から単斜晶系に熱転移し、強いては得られる担体の比表面積が減少するからである。
本発明の触媒は、このようにして得られたリンージルコニアーチタニア三成分系酸化物担体またはホウ素−ジルコニアーチタニア三成分系酸化物担体に白金、パラジウム、ルテニウム等の触媒成分を担持し、次いで80〜110℃の温度で乾燥し、400〜600℃で焼成して製造する。
【0014】
上記担体に触媒成分を担持させるためには、触媒成分の塩溶液、すなわち白金塩、パラジウム塩、またはルテニウム塩水溶液を準備し、所望量の触媒成分を担持できるように濃度を調整した触媒塩水溶液中に上記担体を含浸し触媒成分を吸収させるか、或は前記所望量の触媒成分を溶解させた水溶液全量を吸着させることで担持することができる。
【0015】
本発明の触媒において、分解活性の高い触媒を得るために担持される白金、パラジウム、ルテニウム等の触媒成分の担持量を金属換算で0.1〜5重量%とするのは、触媒成分の担持量が0.1重量%未満であると十分な分解活性が得られず、一方5重量%を超えても活性向上に対する効果に差がないからであり、経済性を考慮すると前記の範囲を超えて担持する必要はないからである。
本発明の触媒が低濃度から高濃度までの揮発性有機塩素化合物をきわめて効率よく分解できるのは、固体酸の酸性点に水分子が吸着してブレンステッド酸型の活性を発揮し、揮発性有機塩素化合物から塩素を引き抜き、分解する機能が向上することによる。この理由については、担体を構成する3つの成分の相乗効果により活性点の数が増したために分解活性を向上させることができたのではないかと思われる。
【0016】
【実施例】
以下に本発明の実施例を比較例とともに述べる。
【0017】
実施例1〜3:
(1)担体の調製
まず、チタニアとして40重量%、SO4として5.7重量%を含んだメタチタン酸スラリー(チタン工業社製)1.5kgに、SO4を除去するために濃度7%のアンモニア水50リットルを加え、十分撹拌を行った後、濾過する操作を3回繰り返し、チタニアとして15重量%、SO4として0.5重量%を含むメタチタン酸ケーキを得た。
次に、このメタチタン酸ケーキ1967g(チタニアとして295g)と、ジルコニアとして35.5重量%を含む水酸化ジルコニウム粉体(日本軽金属社製)493g(ジルコニアとして175g)と、濃度が85重量%のオルトリン酸溶液18.2g(PO4として15g)とを加温ジャケット付ニーダー中で捏和し、次いでこの捏和物に、成型助剤としてチタニアを6重量%を含むチタニアゾル(多木化学社製)250g(チタニアとして15g)と、アビセル(商品名、旭化成社製)15gと、メトロース(商品名、信越化学社製)7gとを加え、十分可塑化するまでさらに捏和した。なお、捏和物の500℃での強熱減量は62%であった。
次に、該捏和物を製丸機にて直径2mmφのビードに造粒し、100℃の温度で15時間乾燥した後、500℃で2時間焼成して、リンをPO4として3重量%、ジルコニア(ZrO2)を35重量%含み、残部が実質的にチタニア(TiO2)からなるリンージルコニアーチタニア担体AAを得た。
一方、上記のメタチタン酸ケーキ1967gに対する水酸化ジルコニウム粉体をオルトリン酸溶液の加入量の組み合わせを、それぞれ304gと15.7g、930gと24.0gと変化させたことを以外は上記手順と同様の手順を用いて、上記担体AAとジルコニアの含有量の異なる(リンの含有量は同一で、チタニアの含有量が異なる)担体AB、ACを得た。担体AA、AB、ACの組成をそれぞれ表1に示す。
【0018】
(2)触媒の調製
塩化白金酸2.0gを水30ミリリットルに溶解し、担体の吸水量に見合う液量に水で液量調節を行った含浸溶液を、担体AA、AB、AC、それぞれ150gに含浸させ、110℃で15時間乾燥し、次いで500℃で2時間焼成して触媒KK、KL、KMを得た。触媒KK、KL、KM共に白金の担持量は0.5重量%である。
【0019】
(3)触媒の評価
触媒充填量50ミリリットルの固定床流通反応装置に、得られた触媒KK、KL、KMをそれぞれ充填し、トリクロロエチレンを2000ppm、5000ppmおよび10000ppmを含む空気に水を10体積%添加しながら、反応温度を350℃、空間速度SV=5000hr−1で触媒層を通過させてトリクロロエチレンの分解反応を行った。
なお、上記反応は発熱反応のため、反応温度350℃で設定してもトリクロロエチレンの濃度を高めると酸化熱が発生し、トリクロロエチレンの濃度が5000ppmのときの触媒の温度は400℃に、10000ppmのときは500℃までに温度が上昇した。
各トリクロロエチレン濃度に対して、反応を開始後、100時間経過後の各触媒の性能評価結果を表1に示した。なお、処理ガスの分析は島津製作所社製のガスクロマトグラフを用いてガスクトマト法により分析した。
表1に示すように触媒KK、KL、KMは、用いたリンージルコニアーチタニア担体のリンの含有量が3種ともPO4として3重量%で、ジルコニアの含有量がそれぞれ35重量%、25重量%、50重量%と本発明の組成範囲内であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。なお、99.9%以上の分解率を有していない場合は作業環境基準の管理濃度を十分に満足することができないのである。
【0020】
比較例1と2:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトリン酸溶液の加入量の組み合わせを、それぞれ101gと13g、1417gと30.5gと変化させたこと以外は実施例1に示す方法と同様の手順でリンージルコニアーチタニア担体のAG、AHを得た。担体AG、AHの組成をそれぞれ表1に示す。
(2)触媒の調製
実施例1に示す方法と同様の方法により上記担体AG、AHに白金を担持し、触媒KQ、KRを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒KQ、KRを用いて実施例1と同様の試験を行った結果を表1に示す。触媒KQ、KRは、用いたリンージルコニアーチタニア担体のジルコニアの含有量がそれぞれ10重量%、60重量%と本発明の範囲外であり、トリクロロエチレンの分解率は低濃度でも高濃度でも99.9%を下回っている。
【0021】
実施例4と5:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトリン酸溶液の加入量の組み合わせを、それぞれ485gと11.9g、510gと31.3gと変化させたこと以外は実施例1に示す方法と同様の手順でリンージルコニアーチタニア担体AD、AEを得た。担体AD、AEの組成をそれぞれ表1に示す。
(2)触媒の調製
実施例1に示す方法と同様の方法により上記担体AD、AEに白金を担持し、触媒KN、KOを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒KN、KOを用いて実施例1と同様の試験を行った結果を表1に示す。触媒KN、KOは、用いたリンージルコニアーチタニア担体のリンの含有量がPO4換算でそれぞれ2重量%、5重量%で、ジルコニアの含有量が35重量%と本発明の範囲内であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。
【0022】
比較例3〜5:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトリン酸溶液の加入量の組み合わせを、それぞれ479gと5.9g、527gと45.4gと変化させたこと以外は実施例1と同様な手順でリン−ジルコニア−チタニア担体AI、AJを得た。
またリンを全く含まない担体としてメタチタン酸ケーキ1967gにオルトリン酸溶液を加えず、水酸化ジルコニウム粉体を470g加入したこと以外は実施例1に示す方法と同様の手順で、ジルコニアーチタニア二成分系酸化物担体AFを得た。担体AI、AJ、AFの組成をそれぞれ表1に示す。
(2)触媒の調製
実施例1に示す方法と同様の方法により上記担体AI、AJ、AFに白金を担持し、触媒KS、KT、KPを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒KS、KT、KPを用いて実施例1と同様の試験を行った結果を表1に示す。触媒KS、KTは、用いたリンージルコニアーチタニア担体のリンの含有量がPO4換算でそれぞれ1重量%、7重量%と本発明の範囲外であり、触媒KPに至ってはリンを全く含まないジルコニアーチタニア二成分系酸化物担体を用いた触媒である。表1に示すように、トリクロロエチレンの分解率は低濃度でも高濃度でも99.9%を下回っている。
【0023】
実施例6〜8:
(1)担体の調製
担体としては、実施例1に示す担体AAと同じものを用意した。
(2)触媒の調製
塩化白金酸1.0g、4.0g、12.0gをそれぞれ水30ミリリットルに溶解し、担体の吸水量に見合う液量に水で液量調節を行った含浸溶液を実施例1で得たリンージルコニアーチタニア担体AAの各々150gにそれぞれ含浸させ、110℃で15時間乾燥し、次いで500℃で2時間焼成して触媒KU、KV、KWを得た。
(3)触媒の評価
触媒KU、KV、KWを用いて実施例1と同様の試験を行った結果を表1に示す。触媒KU、KV、KWは、本発明の範囲のリンージルコニアーチタニア担体に白金をPtとしてそれぞれ0.25重量%、1.0重量%、3.0重量%相当量担持した触媒であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。
【0024】
【表1】
【0025】
実施例9〜11:
(1)担体の調製
実施例1で用いたオルトリン酸溶液に変えてオルトホウ酸26.5g(B2O3として15g)を用いた以外は実施例1と同じ組成で、かつ同一手順で得られた捏和物を、製丸機にて直径2mmφのビードに造粒し、100℃の温度で15時間乾燥した後、500℃で2時間焼成して、ホウ素をB2O3として3重量%、ジルコニア(ZrO2)を35重量%含み、残部が実質的にチタニア(TiO2)からなるホウ素ージルコニアーチタニア担体BAを得た。
一方、上記のメタチタン酸ケーキ1967gに対する水酸化ジルコニウム粉体をオルトホウ酸の加入量の組み合わせを、それぞれ304gと22.8g、930gと34.0gと変化させたことを以外は上記手順と同様の手順を用いて、上記担体BAとジルコニアの含有量の異なる(ホウ素の含有量は同一で、チタニアの含有量が異なる)担体BB、BCを得た。担体BA、BB、BCの組成をそれぞれ表2に示す。
(2)触媒の調製
塩化白金酸2.0gを水30ミリリットルに溶解し、担体の吸水量に見合う液量に水で液量調節を行った含浸溶液を、担体BA、BB、BCそれぞれ150gに含浸させ、110℃で15時間乾燥し、次いで500℃で2時間焼成して触媒LK、LL、LMを得た。触媒LK、LL、LMともに白金の担持量は0.5重量%である。
(3)触媒の評価
実施例1と同様な試験を行った結果、表2に示すように触媒LK、LL、LMは、用いたホウ素ージルコニアーチタニア担体のホウ素の含有量が3つともB2O3として3重量%であって、またジルコニアの含有量もそれぞれ35重量%、25重量%、50重量%と本発明の組成範囲内であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。
【0026】
比較例6と7:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトホウ酸の加入量の組み合わせを、それぞれ101gと18.9g、1417gと44.2gと変化させたこと以外は実施例9に示す方法と同様の手順でホウ素ージルコニアーチタニア担体BG、BHを得た。担体BG、BHの組成をそれぞれ表2に示す。
(2)触媒の調製
実施例9に示す方法と同様の方法により上記担体BG、BHに白金を担持し、触媒LQ、LRを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒LQ、LRを用いて実施例1と同様の試験を行った結果を表2に示す。触媒LQ、LRは、用いたホウ素ージルコニアーチタニア担体のジルコニアの含有量がそれぞれ10重量%、60重量%と本発明の範囲外であり、トリクロロエチレンの分解率は低濃度でも高濃度でも99.9%を下回っている。
【0027】
実施例12と13:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトホウ酸の加入量の組み合わせを、それぞれ485gと17.4g、510gと45.7gと変化させたこと以外は実施例9に示す方法と同様の手順でホウ素ージルコニアーチタニア担体BD、BEを得た。担体BD、BEの組成をそれぞれ表2に示す。
(2)触媒の調製
実施例9に示す方法と同様の方法により上記担体BD、BEに白金を担持し、触媒LN、LOを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒LN、LOを用いて実施例1と同様の試験を行った結果を表2に示す。触媒LN、LOは、用いたホウ素ージルコニアーチタニア担体のホウ素の含有量がB2O3換算でそれぞれ2重量%、5重量%であり、またジルコニア含水量が35重量%と本発明の範囲内であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。
【0028】
比較例8と9:
(1)担体の調製
メタチタン酸ケーキ1967gに加える、水酸化ジルコニウム粉体とオルトホウ酸の加入量の組み合わせを、それぞれ470gと8.6g、527gと66.2gと変化させたこと以外は実施例9に示す方法と同様の手順で、ホウ素−ジルコニアーチタニア担体BI、BJを得た。担体BI、BJの組成をそれぞれ表2に示す。
(2)触媒の調製
実施例9に示す方法と同様の方法により上記担体BI、BJに白金を担持し、触媒LS、LTを作製した。白金の担持量は0.5重量%である。
(3)触媒の評価
触媒LS、LTを用いて実施例1と同様の試験を行った結果を表2に示す。触媒LS、LTは、用いたホウ素ージルコニアーチタニア担体のホウ素の含有量がB2O3換算でそれぞれ1重量%、7重量%と本発明の範囲外であり、表2に示すように、トリクロロエチレンの分解率は低濃度でも高濃度でも99.9%を下回っている。
【0029】
実施例14〜16:
(1)担体の調製
担体としては、実施例9に示す担体BAと同じものを用意した。
(2)触媒の調製
塩化白金酸1.0g、4.0g、12.0gをそれぞれ水30ミリリットルに溶解し、担体の吸水量に見合う液量に水で液量調節を行った含浸溶液を実施例9で得たホウ素ージルコニアーチタニア担体BAの各々150gにそれぞれ含浸させ、110℃で15時間乾燥し、次いで500℃で2時間焼成して触媒LU、LV、LWを得た。
(3)触媒の評価
触媒LU、LV、LWを用いて実施例1と同様の試験を行った結果を表2に示す。触媒LU、LV、LWは、本発明の組成範囲内のホウ素ージルコニアーチタニア担体に白金をPtとしてそれぞれ0.25重量%、1.0重量%、3.0重量%相当量担持した触媒であり、低濃度から高濃度までトリクロロエチレンを99.9%以上の分解率で、長時間にわたり効率良く分解し無害化できた。
【0030】
【表2】
【0031】
【発明の効果】
以上述べた通り、本発明の触媒を揮発性有機塩素化合物と水蒸気および空気共存下で接触させることにより、低濃度から高濃度までの揮発性有機塩素化合物を効率良く処理することができ、触媒の活性が長時間安定しており実用的である。したがって、本発明の触媒は金属の脱脂工程やドライクリーニング等から排出される排ガス、廃液中の揮発性有機塩素化合物の無害化に使用でき、環境汚染防止策上きわめて有効である。[0001]
[Industrial application fields]
The present invention relates to a catalyst for decomposing volatile organic chlorine compounds, and more particularly to a catalyst used for catalytically decomposing volatile organic chlorine compounds.
[0002]
[Prior art]
Examples of volatile organic chlorine compounds include methylene chloride, dichloroethylene, trichloroethylene, and tetrachloroethylene. Methylene chloride and trichlorethylene are widely used in degreasing processes and dry cleaning of electronic parts and metal products.
When the volatile organic chlorine compound is discharged into the atmosphere, it reaches the ozone layer and destroys the ozone layer by chlorine atoms generated by being decomposed by strong ultraviolet rays from the sun. When the ozone layer is destroyed, the amount of ultraviolet rays reaching the surface of the earth increases, causing skin cancer, cataract damage, growth inhibition of animals and plants, and so on, which is a serious problem from the viewpoint of protecting the global environment. In addition, volatile organochlorine compounds have a carcinogenic effect, and soil contamination and groundwater contamination due to illegal dumping have become a problem.
In recent years, from the viewpoint of environmental hygiene, laws and regulations have been implemented in various countries around the world, and strict management is required for volatile organic chlorine compounds and waste liquids containing them. It is desired.
Conventionally, as a method for treating volatile organic chlorine compounds such as methylene chloride, trichlorethylene, tetrachloroethylene, etc., a method of adsorbing and recovering with activated carbon, zeolite, etc. is known, but the recovered volatile organic chlorine compounds are rendered harmless. No consideration has been given to the processing method.
[0003]
Recently, thermal decomposition methods, photodecomposition methods, catalytic decomposition methods, and the like have been proposed as methods for decomposing and detoxifying volatile organic chlorine compounds. Among them, the catalytic cracking method is a simple method, while the thermal cracking method requires a large apparatus and has a high processing cost. In particular, it is attracting attention because it is effective for a gas containing selenium.
In this catalytic cracking method, a catalyst obtained by supporting copper, chromium, iron, platinum, palladium or the like as a catalyst component on a carrier made of an inorganic oxide such as alumina, silica, zeolite, titania, zirconia alone or in combination. And a volatile organic chlorine compound such as trichlorethylene are brought into contact with each other at 400 to 500 ° C. in the presence of water and oxygen or air. This method is disclosed in JP-A-50-2669. JP-A-3-12221, JP-A-3-47516 and the like.
[0004]
[Problems to be solved by the invention]
In general, in a catalytic reaction of a gas using a catalyst, it is required to perform the reaction under conditions such as high space velocity SV (gas flow rate per unit time / volume of catalyst) and fast LV (linear velocity). For this purpose, it is desirable that the catalyst used in the reaction has a high solid acidity and a large number of active sites, and that the catalyst that catalytically decomposes volatile organic chlorine compounds has excellent acid resistance against hydrogen chloride. It is important.
Considering the catalyst introduced above from these points, considering the acid resistance of the catalyst, zirconia, titania and titania-zirconia binary oxide supports are promising. In the catalyst carrying the components, the initial activity is high, but the activity cannot be maintained for a long time. On the other hand, no investigation has yet been made on a catalyst carrier to which a component having excellent acid resistance and solid acidity is added.
[0005]
The present invention has been made in consideration of the above situation, and its purpose is to decompose volatile organochlorine compounds efficiently in the presence of air and water regardless of the concentration, and for a long time. It is to provide a catalyst that can maintain activity for a period of time.
[0006]
[Means for Solving the Problems]
In order to solve the above problems and achieve the above object, the present inventors have developed a titania-zirconia binary oxide support having acid resistance against hydrogen chloride generated by decomposing volatile organic chlorine compounds. As a result of earnest research focusing on the third component capable of increasing the acidity of the solid and maintaining acid resistance, three components obtained by adding phosphorus or boron as the third component to the titania-zirconia binary oxide composition By supporting a noble metal conventionally proposed as a catalyst component on a system oxide support, the obtained catalyst was found to decompose volatile organochlorine compounds very efficiently, and the present invention was completed. It was.
That is, a catalyst for decomposing volatile organic chlorine compounds according to the present invention for solving the above-2-5 wt% of Li down the PO 4 conversion or boron terms of B 2 O 3, zirconia 25-50 wt% In addition, at least one selected from the group consisting of platinum, palladium and ruthenium as a catalyst component is supported in an equivalent amount of 0.1 to 5% by weight in terms of metal on the ternary oxide carrier that is substantially composed of titania. It is characterized by having made it.
[0007]
[Action]
The gist of the present invention is that a binary oxide composition composed of zirconia (ZrO 2 ) and titania (TiO 2 ) having a specific composition ratio is further incorporated with phosphorus or boron as a third component. A catalyst component is added to a carrier, more specifically, a ternary oxide carrier containing 2 to 5% by weight of phosphorus as PO 4 or boron as B 2 O 3 and 25 to 50% by weight of zirconia, with the balance being substantially titania. As a result, when carrying at least one selected from the group consisting of platinum, palladium and ruthenium, it was found that the effect of efficiently decomposing volatile organochlorine compounds from low to high concentration was most excellent. is there.
The details of the present invention and the operation thereof will be described more specifically as follows.
[0008]
In the present invention, a ternary oxide support composed of phosphorus, zirconia and titania (hereinafter abbreviated as “phosphorus-zirconia titania support”) can be manufactured by a general catalyst support manufacturing method such as a mixing method. Is. That is, zirconium hydroxide powder so that the content of zirconia is 25 to 50% by weight and the content of phosphorus is 2 to 5% by weight as PO 4 when used as a catalyst carrier in a metatitanic acid hydrate cake. Then, an orthophosphoric acid solution and a molding aid are added and kneaded, followed by molding, drying, and further firing, whereby a lin-zirconia titania carrier can be produced. On the other hand, a ternary oxide support composed of boron, zirconia and titania (hereinafter abbreviated as “boron-zirconia titania support”) can also be manufactured by a general catalyst support manufacturing method such as a mixing method. is there. That is, zirconium hydroxide so that the content of zirconia is 25 to 50% by weight and the content of boron is 2 to 5% by weight as B 2 O 3 when used as a catalyst carrier in the metatitanic acid hydrate cake. Boron-zirconia titania by adding powder, boric acid such as orthoboric acid, metaboric acid, tetraboric acid or the like and an aqueous boric acid solution and a molding aid, kneading, drying, and further firing. A carrier can be produced.
[0009]
The metatitanic acid hydrate cake used in the present invention is obtained by filtering and washing a metatitanic acid hydrate slurry, which is an intermediate in the production of titania by the sulfuric acid method, which is widely known as a method for producing titanium oxide. It is done.
[0010]
In the carrier of the present invention, the phosphorus content is PO 4 or the boron content B 2 O 3 is 2 to 5 wt%, the zirconia content is 25 to 50 wt%, and the balance is substantially titania. This is because, outside this range, volatile organochlorine compounds from low to high concentrations cannot maintain stable decomposition activity for a long time.
[0011]
As a molding aid, the fracture strength of the molded carrier can be increased by adding titania sol, zirconium nitrate solution, ammonium zirconium carbonate solution, etc., and the moldability can be improved by adding a cellulose-based organic substance. it can. The molding aid used in the present invention may be a customary one used for producing a catalyst carrier, and is not particularly limited, but it may be one in which inorganic substances other than the composition of the present invention do not remain after firing. desirable.
[0012]
The shape of the ternary oxide support of the present invention may be a powder, a sphere, a cylinder, a three-leaf, a four-leaf, a honeycomb, a spiral, etc., which are generally used as a catalyst support, and is suitable for a catalytic reaction. Can be appropriately selected.
[0013]
Moreover, when the molded body is fired to obtain a carrier, the firing temperature of the molded body is preferably in the range of 400 to 600 ° C. If the firing temperature is too high, titania undergoes a thermal transition from the anatase structure to the rutile structure, and zirconia undergoes a thermal transition from the metastable tetragonal system to the monoclinic system, thereby reducing the specific surface area of the resulting support. .
The catalyst of the present invention carries a catalyst component such as platinum, palladium, ruthenium, etc. on the phosphorus-zirconia titania ternary oxide support or boron-zirconia titania ternary oxide support thus obtained, Next, it is dried at a temperature of 80 to 110 ° C. and fired at 400 to 600 ° C. for production.
[0014]
In order to support the catalyst component on the carrier, a salt solution of the catalyst component, that is, a platinum salt, palladium salt, or ruthenium salt aqueous solution is prepared, and the concentration of the catalyst salt aqueous solution is adjusted so that a desired amount of the catalyst component can be supported. The catalyst can be supported by impregnating the carrier therein to absorb the catalyst component, or by adsorbing the entire amount of the aqueous solution in which the desired amount of the catalyst component is dissolved.
[0015]
In the catalyst of the present invention, the supported amount of catalyst component such as platinum, palladium, ruthenium, etc. supported for obtaining a catalyst having high decomposition activity is 0.1 to 5% by weight in terms of metal. If the amount is less than 0.1% by weight, sufficient decomposition activity cannot be obtained. On the other hand, if the amount exceeds 5% by weight, there is no difference in the effect for improving the activity. This is because there is no need to carry it.
The catalyst of the present invention can decompose volatile organochlorine compounds from low to high concentration very efficiently because water molecules are adsorbed on the acid point of the solid acid, exhibiting Bronsted acid type activity, and volatile This is because the ability to extract and decompose chlorine from organochlorine compounds is improved. For this reason, it is considered that the degradation activity could be improved because the number of active sites increased due to the synergistic effect of the three components constituting the carrier.
[0016]
【Example】
Examples of the present invention will be described below together with comparative examples.
[0017]
Examples 1-3:
(1) Preparation of carrier First, 40% by weight titania, metatitanic acid slurry (manufactured by Titan Kogyo) containing 5.7% by weight as SO 4 to 1.5 kg, in order to remove the SO 4 concentration of 7% After adding 50 liters of ammonia water and sufficiently stirring, the operation of filtering was repeated 3 times to obtain a metatitanate cake containing 15% by weight as titania and 0.5% by weight as SO 4 .
Next, 1967 g of this metatitanic acid cake (295 g as titania), 493 g of zirconium hydroxide powder (made by Nippon Light Metal Co., Ltd.) containing 35.5 wt% as zirconia (175 g as zirconia), and ortholine having a concentration of 85 wt% 18.2 g of acid solution (15 g as PO 4 ) was kneaded in a kneader with a warming jacket, and then this kneaded product was titania sol containing 6% by weight of titania as a molding aid (manufactured by Taki Chemical Co., Ltd.). 250 g (15 g as titania), 15 g of Avicel (trade name, manufactured by Asahi Kasei Co., Ltd.), and 7 g of metrose (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) were added and further kneaded until sufficiently plasticized. The ignition loss of the kneaded product at 500 ° C. was 62%.
Next, the kneaded product is granulated into a bead having a diameter of 2 mmφ using a round machine, dried at a temperature of 100 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain 3 wt% phosphorus as PO 4. A zirconia (ZrO 2 ) -containing zirconia (ZrO 2 ) 35 wt% was obtained, and the remainder was substantially composed of titania (TiO 2 ).
On the other hand, the same procedure as described above, except that the addition amount of the orthophosphoric acid solution of zirconium hydroxide powder to 1967 g of the above metatitanate cake was changed to 304 g and 15.7 g, and 930 g and 24.0 g, respectively. Using the procedure, carriers AB and AC having different contents of the carrier AA and zirconia (phosphorus contents are the same and titania contents are different) were obtained. The compositions of carriers AA, AB and AC are shown in Table 1, respectively.
[0018]
(2) Preparation of catalyst An impregnating solution prepared by dissolving 2.0 g of chloroplatinic acid in 30 ml of water and adjusting the amount of water with the amount of water corresponding to the amount of water absorbed by the carrier was 150 g for each of carriers AA, AB and AC. And dried at 110 ° C. for 15 hours and then calcined at 500 ° C. for 2 hours to obtain catalysts KK, KL, and KM. The supported amount of platinum for each of the catalysts KK, KL, and KM is 0.5% by weight.
[0019]
(3) Evaluation of catalyst The obtained catalyst KK, KL, and KM are filled in a fixed bed flow reactor with a catalyst loading amount of 50 ml, and 10% by volume of water is added to air containing 2000 ppm, 5000 ppm, and 10000 ppm of trichlorethylene. While the reaction temperature was 350 ° C. and the space velocity was SV = 5000 hr −1 , the decomposition reaction of trichlorethylene was performed by passing through the catalyst layer.
Since the above reaction is an exothermic reaction, heat of oxidation is generated when the concentration of trichlorethylene is increased even when the reaction temperature is set at 350 ° C., and the temperature of the catalyst when the concentration of trichlorethylene is 5000 ppm is 400 ° C. and 10000 ppm. The temperature rose to 500 ° C.
Table 1 shows the performance evaluation results of each catalyst after 100 hours had elapsed after starting the reaction with respect to each trichlorethylene concentration. In addition, the analysis of the processing gas was analyzed by the gas tomato method using a gas chromatograph manufactured by Shimadzu Corporation.
As shown in Table 1, in the catalysts KK, KL, and KM, the phosphorus content of the used phosphorus-zirconia titania carrier is 3% by weight as PO 4 and the content of zirconia is 35% by weight and 25%, respectively. Within the composition range of the present invention, such as 50% by weight and 50% by weight, trichlorethylene was efficiently decomposed and made harmless over a long period of time at a decomposition rate of 99.9% or higher from low to high concentrations. In addition, when it does not have a decomposition rate of 99.9% or more, it cannot fully satisfy the management concentration of the working environment standard.
[0020]
Comparative Examples 1 and 2:
(1) Preparation of support Example 1 except that the addition amount of zirconium hydroxide powder and orthophosphoric acid solution added to 1967 g of metatitanate cake was changed to 101 g and 13 g, and 1417 g and 30.5 g, respectively. AG and AH of the linzirconia titania carrier were obtained by the same procedure as shown. The compositions of carriers AG and AH are shown in Table 1, respectively.
(2) Catalyst preparation Platinum was supported on the carriers AG and AH by the same method as shown in Example 1 to prepare catalysts KQ and KR. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 1 shows the results of tests similar to Example 1 using catalysts KQ and KR. The catalysts KQ and KR have a zirconia content of 10% by weight and 60% by weight, respectively, of the phosphorus-zirconia titania carrier used, which is outside the scope of the present invention. The decomposition rate of trichlorethylene is 99. It is below 9%.
[0021]
Examples 4 and 5:
(1) Preparation of carrier Example 1 except that the combination of addition amount of zirconium hydroxide powder and orthophosphoric acid solution added to 1967 g of metatitanic acid cake was changed to 485 g and 11.9 g, 510 g and 31.3 g, respectively. In the same manner as in the method shown in Fig. 1, Linzirconia arcania carriers AD and AE were obtained. The compositions of the carriers AD and AE are shown in Table 1, respectively.
(2) Catalyst preparation Platinum was supported on the carriers AD and AE by the same method as shown in Example 1 to prepare catalysts KN and KO. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 1 shows the results of tests similar to Example 1 using catalysts KN and KO. In the catalysts KN and KO, the phosphorus content of the used phosphorus-zirconia titania carrier is 2% by weight and 5% by weight, respectively, in terms of PO 4 and the content of zirconia is 35% by weight, which is within the scope of the present invention. From a low concentration to a high concentration, trichlorethylene was efficiently decomposed and made harmless over a long period of time with a decomposition rate of 99.9% or more.
[0022]
Comparative Examples 3-5:
(1) Preparation of support Examples except that the combination of the addition amount of zirconium hydroxide powder and orthophosphoric acid solution added to 1967 g of metatitanate cake was changed to 479 g, 5.9 g, 527 g and 45.4 g, respectively. Phosphorus-zirconia-titania carriers AI and AJ were obtained by the same procedure as in Example 1.
Further, as a carrier containing no phosphorus, 1967 g of the metatitanic acid cake was added with 470 g of zirconium hydroxide powder without adding the orthophosphoric acid solution, and the same procedure as shown in Example 1 was followed. An oxide carrier AF was obtained. The compositions of carriers AI, AJ, and AF are shown in Table 1, respectively.
(2) Preparation of catalyst Platinum was supported on the carriers AI, AJ, and AF by the same method as shown in Example 1 to prepare catalysts KS, KT, and KP. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 1 shows the results of tests similar to Example 1 using catalysts KS, KT, and KP. Catalysts KS and KT are out of the scope of the present invention, in which the phosphorus content of the used linzirconia titania support is 1% by weight and 7% by weight in terms of PO 4 respectively, and the catalyst KP does not contain any phosphorus. There is no catalyst using a two-component oxide support of zirconia architectania. As shown in Table 1, the decomposition rate of trichlorethylene is below 99.9% at both low and high concentrations.
[0023]
Examples 6-8:
(1) Preparation of carrier The same carrier as AA shown in Example 1 was prepared.
(2) Preparation of catalyst 1.0 g, 4.0 g and 12.0 g of chloroplatinic acid were dissolved in 30 ml of water, respectively, and an impregnation solution was prepared by adjusting the amount of water with water to match the amount of water absorbed by the carrier. 150 g of each lin-zirconia titania support AA obtained in Example 1 was impregnated, dried at 110 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain catalysts KU, KV and KW.
(3) Evaluation of catalyst Table 1 shows the results of tests similar to Example 1 using catalysts KU, KV, and KW. Catalysts KU, KV, and KW are catalysts having platinum, platinum, and platinum corresponding to 0.25 wt%, 1.0 wt%, and 3.0 wt%, respectively, supported on a phosphorus-zirconia architectania support within the scope of the present invention. Trichlorethylene was efficiently decomposed and made harmless over a long period of time with a decomposition rate of 99.9% or more from low to high concentrations.
[0024]
[Table 1]
[0025]
Examples 9-11:
(1) Preparation of support The same composition as in Example 1 and the same procedure except that orthoboric acid 26.5 g (15 g as B 2 O 3 ) was used instead of the orthophosphoric acid solution used in Example 1. The kneaded product is granulated into a bead with a diameter of 2 mmφ by a round machine, dried at a temperature of 100 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours, so that boron is 3% by weight as B 2 O 3. Boron-zirconia arcutania carrier BA containing 35% by weight of zirconia (ZrO 2 ) and the balance substantially consisting of titania (TiO 2 ) was obtained.
On the other hand, the procedure similar to the above procedure except that the addition amount of orthoboric acid in the zirconium hydroxide powder to 1967 g of the above metatitanate cake was changed to 304 g and 22.8 g, and 930 g and 34.0 g, respectively. Were used to obtain the carriers BB and BC having different contents of the carrier BA and zirconia (the same boron content and different titania contents). The compositions of the carriers BA, BB, and BC are shown in Table 2, respectively.
(2) Preparation of catalyst An impregnating solution obtained by dissolving 2.0 g of chloroplatinic acid in 30 ml of water and adjusting the amount of water with water to the amount of water absorbed by the carrier was added to 150 g of each of the carriers BA, BB and BC. It was impregnated, dried at 110 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain catalysts LK, LL and LM. The supported amount of platinum in each of the catalysts LK, LL and LM is 0.5% by weight.
(3) Evaluation of catalyst As a result of conducting the same test as in Example 1, as shown in Table 2, the catalysts LK, LL, and LM had a boron content of 3 in the boron-zirconia arctania carrier used. 2 O 3 is 3% by weight, and the content of zirconia is 35% by weight, 25% by weight, and 50% by weight, respectively, within the composition range of the present invention. With a decomposition rate of at least%, it was able to decompose efficiently and be rendered harmless over a long period of time.
[0026]
Comparative Examples 6 and 7:
(1) Preparation of carrier Example 9 except that the addition amount of zirconium hydroxide powder and orthoboric acid added to 1967 g of metatitanate cake was changed to 101 g and 18.9 g, and 1417 g and 44.2 g, respectively. Boron-zirconia arcutania carriers BG and BH were obtained by the same procedure as described above. The compositions of the carriers BG and BH are shown in Table 2, respectively.
(2) Catalyst preparation Platinum was supported on the carriers BG and BH by the same method as shown in Example 9 to prepare catalysts LQ and LR. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 2 shows the results of tests similar to Example 1 using catalysts LQ and LR. The catalysts LQ and LR have a zirconia content of 10% by weight and 60% by weight, respectively, in the boron-zirconia titania support used, which are outside the scope of the present invention, and the decomposition rate of trichlorethylene is 99. It is below 9%.
[0027]
Examples 12 and 13:
(1) Preparation of carrier Example 9 except that the addition amount of zirconium hydroxide powder and orthoboric acid added to 1967 g of metatitanic acid cake was changed to 485 g and 17.4 g, 510 g and 45.7 g, respectively. Boron-zirconia arcutania carriers BD and BE were obtained in the same procedure as shown in FIG. The compositions of the carriers BD and BE are shown in Table 2, respectively.
(2) Catalyst Preparation Platinum was supported on the carriers BD and BE by the same method as shown in Example 9 to prepare catalysts LN and LO. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 2 shows the results of tests similar to Example 1 using catalysts LN and LO. In the catalysts LN and LO, the boron content of the used boron-zirconia titania support is 2% by weight and 5% by weight in terms of B 2 O 3 , respectively, and the water content of zirconia is 35% by weight. From the low concentration to the high concentration, trichlorethylene was efficiently decomposed and made harmless over a long period of time with a decomposition rate of 99.9% or more.
[0028]
Comparative Examples 8 and 9:
(1) Preparation of support Example 9 except that the addition amount of zirconium hydroxide powder and orthoboric acid added to 1967 g of metatitanate cake was changed to 470 g, 8.6 g, 527 g and 66.2 g, respectively. Boron-zirconia titania carriers BI and BJ were obtained by the same procedure as shown in FIG. The compositions of the carriers BI and BJ are shown in Table 2, respectively.
(2) Catalyst preparation Platinum was supported on the carriers BI and BJ by the same method as shown in Example 9 to prepare catalysts LS and LT. The supported amount of platinum is 0.5% by weight.
(3) Evaluation of catalyst Table 2 shows the results of tests similar to Example 1 using catalysts LS and LT. In the catalysts LS and LT, the boron content of the used boron-zirconia titania support is 1% by weight and 7% by weight in terms of B 2 O 3 , respectively, and is outside the scope of the present invention. The decomposition rate of trichlorethylene is below 99.9% at both low and high concentrations.
[0029]
Examples 14-16:
(1) Preparation of carrier The same carrier as the carrier BA shown in Example 9 was prepared.
(2) Preparation of catalyst 1.0 g, 4.0 g and 12.0 g of chloroplatinic acid were dissolved in 30 ml of water, respectively, and an impregnation solution was prepared by adjusting the amount of water with water to match the amount of water absorbed by the carrier. 150 g of each of the boron-zirconia titania support BA obtained in Example 9 was impregnated, dried at 110 ° C. for 15 hours, and then calcined at 500 ° C. for 2 hours to obtain catalysts LU, LV, and LW.
(3) Evaluation of catalyst Table 2 shows the results of tests similar to Example 1 using catalysts LU, LV, and LW. Catalysts LU, LV, and LW are catalysts in which platinum corresponding to 0.25 wt%, 1.0 wt%, and 3.0 wt% is supported on a boron-zirconia titania support within the composition range of the present invention, respectively. Yes, trichlorethylene was decomposed efficiently from a low concentration to a high concentration with a decomposition rate of 99.9% or more over a long period of time, making it harmless.
[0030]
[Table 2]
[0031]
【The invention's effect】
As described above, by bringing the catalyst of the present invention into contact with a volatile organic chlorine compound in the presence of water vapor and air, a volatile organic chlorine compound from a low concentration to a high concentration can be efficiently treated. The activity is stable for a long time and practical. Therefore, the catalyst of the present invention can be used for detoxification of exhaust gas discharged from a metal degreasing process, dry cleaning, etc., and volatile organic chlorine compounds in waste liquid, and is extremely effective in preventing environmental pollution.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15715295A JP3707503B2 (en) | 1995-05-31 | 1995-05-31 | Decomposition catalyst for volatile organochlorine compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15715295A JP3707503B2 (en) | 1995-05-31 | 1995-05-31 | Decomposition catalyst for volatile organochlorine compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08323208A JPH08323208A (en) | 1996-12-10 |
JP3707503B2 true JP3707503B2 (en) | 2005-10-19 |
Family
ID=15643322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15715295A Expired - Fee Related JP3707503B2 (en) | 1995-05-31 | 1995-05-31 | Decomposition catalyst for volatile organochlorine compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3707503B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100371905B1 (en) * | 1999-12-28 | 2003-02-11 | 주식회사 코캣 | Catalyst for eliminating volatile organic compounds in low-temperature |
JP2010029786A (en) * | 2008-07-29 | 2010-02-12 | Sumitomo Chemical Co Ltd | Oxide and method for producing the same, and method for producing chlorine |
-
1995
- 1995-05-31 JP JP15715295A patent/JP3707503B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08323208A (en) | 1996-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105289716A (en) | Catalyst for volatile halocarbon catalytic combustion and its preparation method and use | |
CN110302830A (en) | VOCs purification molecular sieve based catalyst under high humidity environment and the preparation method and application thereof | |
KR20110126300A (en) | Visible light-activated spherical carbon-based porous material and manufacturing method thereof | |
JP3707503B2 (en) | Decomposition catalyst for volatile organochlorine compounds | |
KR100506813B1 (en) | Mn oxide catalyst for decomposing ozone and the method therefor | |
US6858562B1 (en) | Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof | |
JPH0857323A (en) | Catalyst for decomposition of volatile organic halogen compound and production thereof | |
JP3440295B2 (en) | Novel semiconductor photocatalyst and photocatalytic reaction method using the same | |
JP3546766B2 (en) | Deodorizing catalyst | |
JPH0910593A (en) | Decomposition catalyst for volatile organic chlorine compound | |
JPH07121361B2 (en) | Catalyst for catalytic reduction of nitrogen oxides | |
JP3598539B2 (en) | Catalyst for decomposition of volatile organic chlorine compounds | |
JP2002136870A (en) | Catalyst for treating exhaust gas | |
JPH0852361A (en) | Catalyst for decomposition of volatile organic chlorine compound | |
KR100502852B1 (en) | Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS | |
KR20020016145A (en) | Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS | |
JP3505751B2 (en) | Decomposition method of chlorinated organic compounds | |
JP4096052B2 (en) | Method for decomposing nitrile compounds contained in waste gas | |
JPH0857322A (en) | Catalyst for decomposition of volatile organic halogen compound and production thereof | |
US20030135082A1 (en) | Destruction of organophosphonate compounds | |
JPH02253848A (en) | Ozone decomposition catalyst | |
TW567086B (en) | Pre-treating method of exhaust gas and pre-treating catalyst | |
JP2000042409A (en) | Catalyst for decomposing chlorinated organic compounds and method for treating combustion exhaust gas | |
JP4664608B2 (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
JP4445660B2 (en) | Exhaust gas treatment catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050726 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100812 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100812 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |