JP3702658B2 - Wind direction and wind speed measuring device - Google Patents
Wind direction and wind speed measuring device Download PDFInfo
- Publication number
- JP3702658B2 JP3702658B2 JP20280298A JP20280298A JP3702658B2 JP 3702658 B2 JP3702658 B2 JP 3702658B2 JP 20280298 A JP20280298 A JP 20280298A JP 20280298 A JP20280298 A JP 20280298A JP 3702658 B2 JP3702658 B2 JP 3702658B2
- Authority
- JP
- Japan
- Prior art keywords
- wind
- wind speed
- wind direction
- measuring device
- speed measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measuring Volume Flow (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、風向および風速を計測するための風向風速計測装置に関し、特に高感度、コンパクトで低風速域の計測に好適な風向風速計測装置に関する。
【0002】
【従来の技術】
自動車部品に要求される耐熱品質や排気品質などを評価するために、エンジンルーム内等における風向および風速を計測することが行われている。たとえば、熱発生源となるエンジンの近傍に取り付けられる部品であっても、取り付けられる位置によっては走行時に受ける風量が相違し、必要とされる耐熱性の程度に差が生じるからである。
【0003】
この種のセンサとして熱風速計が知られているが、これは風速によるヒータそのものの温度変化を検出することで風速を計測するものであって、風向は測定できない。また、検出素子である熱線が外部に露出した構造であるため破損しやすく取り扱いに注意が必要となる。
【0004】
風向および風速の両方を計測できる装置としては、円筒後方に生じるカルマン渦の発生周期を圧力変動として捉え、これにより風速を求めるとともに、円周方向の圧力平均パターンから風向を求める計測装置が知られている(たとえば特開平9−196959号公報参照)。
【0005】
【発明が解決しようとする課題】
上述した従来の風向風速計測装置では、風速および風向の何れも圧力の変動値に基づいて求めることとされている。しかしながら、圧力は風速の二乗に比例するため、低い風速域における圧力変化はきわめて小さく、たとえば1.8m/s程度の風速では0.2mmH2 O程度の圧力変化しか生じない。したがって、低風速域での検出感度が低いという問題がある。
【0006】
この程度の小さな圧力変化を高感度で検出できる圧力センサは、最小でも直径が10mm、厚さが1.3mmの大きさが必要とされるため、こうした大きく厚い圧力センサを円筒上に滑らかに配置しようとすると、円筒は直径50mm以上の大きなものとなる。したがって、この計測装置ではエンジンルームなどの狭小な空間の風向および風速は計測できなかった。
【0007】
また、50m/s以上の風速を計測するのであれば、円筒径も数十mm程度まで小さくできるが、この大きさでもエンジンルームなどの狭小空間に用いるには大き過ぎ、また低風速域の測定ができないといった問題があった。
【0008】
本発明は、このような従来技術の問題点に鑑みてなされたものであり、高感度かつコンパクトで低風速域の計測も可能な風向風速計測装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の風向風速計測装置は、少なくとも計測すべき方位に対する断面形状が実質的に円形とされた風向風速計測装置において、略中心に設けられたヒータと、前記ヒータの周囲に設けられた第1の熱伝導体と、前記第1の熱伝導体の周囲に設けられ前記第1の熱伝導体の熱伝導率より小さい熱伝導率を有する第2の熱伝導体と、前記第2の熱伝導体の表面に、前記計測方位に対して所定の位置関係をもって設けられた複数の温度検出手段と、を備えたことを特徴とする。
【0010】
この場合、特に限定されないが、請求項2記載の風向風速計測装置のように、前記複数の温度検出手段により検出された温度の計測方位に対する分布状況に基づいて計測すべき風向を求め、前記複数の温度検出手段により検出された温度の平均値に基づいて計測すべき風速を求めることが好ましい。
【0011】
また、特に限定されないが、請求項3記載の風向風速計測装置のように、前記複数の温度検出手段により検出された温度のうち最も高温の方位を風向とすることが好ましい。
【0012】
ヒータ(熱源)からの熱が固体を介して周囲の気体に伝導(伝達)するモデルを考えると、図5に示すように、まず固体内においてはその固体固有の熱伝導率によって熱が固体表面に向かって伝導し、さらに固体表面から気体への熱伝達は熱伝達係数に支配されながら伝達する。しかしながら、固体内における熱伝導率は固体固有の値として一義的に定まるのに対して、固体表面から気体への熱伝達係数は、その気体の物性、気体の温度、流れの状態により変動する。
【0013】
本発明の風向風速計測装置は、こうした流れの状態による熱伝達係数の変動に着目し、固体と気体との境界層の流れの状態によって固体の表面温度に分布が生じることを利用し、これを計測して演算処理することで風向および風速を求めることとしている。
【0014】
たとえば、図6に示すように、断面円形をなす本発明の風向風速計測装置に図示する方位から風が流れている場合、当該風に直面する領域(図において「0」で示す。)の境界層は気体の淀み溜まりとなり、流速が低く熱伝達が小さくなるので固体の表面温度が高くなる。また、風向きに対する背面領域(図において「4」で示す。)の境界層は流れの乱流域となり、同じく流速が低く熱伝達が小さくなるので固体の表面温度が高くなる。
【0015】
これに対して、風向きに沿った領域(図において「2」で示す。)の境界層は流れの層流域となり、流速が高く熱伝達が大きくなるので固体の表面温度が低くなる。また、領域0と領域2との間の領域1や、領域4と領域2との間の領域3は、これらの領域0および4と領域2との中間的な流れ状態となって、固体の表面温度もこれらの中間温度となる。図7は領域(方位)に対する固体表面温度をプロットしたグラフであり、最も高温となる方位が求める風向とされる。
【0016】
ちなみに、円周方向の角度θ(0°〜360°)に対する温度Tの関係は、上述したように、風向きに対向する2つの領域にそれぞれ極大値が現れ、風向きに沿った2つの領域にそれぞれ極小値が現れることから、理論的には円周方向の角度を変数とした下記5次関数で近似することができる。
【0017】
【数1】
T=aθ5 +bθ4 +cθ3 +dθ2 +eθ+f (a〜fは定数)…(1)
また、図3は風速に対する固体表面温度の平均値の逆数をプロットしたグラフであるが、これからも明らかなように固体表面温度の平均値と風速とは強く相関しているので、複数の温度検出手段により計測された温度の平均値に基づいて風速を求めることができる。
【0018】
特に本発明の風向風速計測装置では、温度検出手段が設けられる第2の熱伝導体の熱伝導率が、第1の熱伝導体の熱伝導率よりも小さい、つまりヒータ側には大きい熱伝導率の熱伝導体を用い、表面側には小さい熱伝導率の熱伝導体を用いているので、気流による表面温度の分布を拡大することができ、これにより風向の検出感度を高めることができる。
【0019】
また、本発明の風向風速計測装置では、表面温度の計測値に基づいて風向と風速を求めるので、気流の圧力に基づいて風向と風速を求める計測装置に比べ、低風速域における温度変化が大きくなり、風向および風速の検出感度が高くなる。
【0020】
さらに、低風速域での検出感度が良好であるため、温度検出手段をたとえばフィルム状に構成でき、その結果、計測装置自体をコンパクトに構成することができる。
【0021】
本発明において、計測装置自体の形状は特に限定されないが、互いに直交する三次元方位の風向を計測するのであれば、請求項4記載の風向風速計測装置のように、前記第2の熱伝導体の表面を球状とし、また互いに直交する二次元方位の風向を計測するのであれば、請求項5記載の風向風速計測装置のように、前記第2の熱伝導体の表面を円筒側面形状とすることが好ましい。
【0022】
【発明の効果】
請求項1〜3記載の発明によれば、温度検出手段が設けられる第2の熱伝導体の熱伝導率が第1の熱伝導体の熱伝導率よりも小さいので、気流による表面温度の分布を拡大することができ、これにより風向の検出感度が高くなる。
【0023】
また、表面温度の計測値に基づいて風向と風速を求めるので、気流の圧力に基づいて風向と風速を求める計測装置に比べ、低風速域における温度変化が大きくなり、風向および風速の検出感度が高くなる。
【0024】
さらに、低風速域での検出感度が良好であるため、温度検出手段をたとえばフィルム状に構成でき、その結果、計測装置自体をコンパクトに構成することができる。また、破損しやすい部品がないので取扱性にも優れている。
【0025】
請求項4記載の発明によれば三次元方位の風向が計測でき、請求項5記載の発明によれば二次元方位の風向が計測できる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1に示すように、本実施形態の風向風速計測装置は、XY平面における風向および風速を計測する装置であって、中心に熱源となる円筒状ヒータ1を有し、このヒータ1を囲繞するように同心円状に第1の熱伝導体2が設けられている。また、第1の熱伝導体2の表面には、当該第1の熱伝導体2の熱伝導率よりも小さい熱伝導率を有する第2の熱伝導体3がたとえば膜状に設けられている。
【0027】
さらに、第2の熱伝導体3の表面には、当該円筒の円周方向に沿って45°のピッチで、温度検出手段としての熱電対4が都合8つ貼り付けられている。各熱電対により検出された温度信号はそれぞれ図外のコントローラに送出される。
【0028】
このように構成された本実施形態の風向風速計測装置を用いて風向および風速を計測する場合には、まずヒータ1をONして第1および第2の熱伝導体2,3に充分に熱が伝導された状態で気流内に臨ませ、各熱電対4により得られる第2の熱伝導体3の表面温度をコントローラに取り込む。
【0029】
そして、8つの熱電対4により得られた表面温度の平均値の逆数を求め、予め計測しておいた風速と平均温度の逆数との関係(図3参照)からその気流の風速を求める。
【0030】
また、8つの熱電対4により検出された温度を、たとえばXY平面における円周方向の角度を変数とする5次関数(上記関係式(1)参照)に代入して近似し、その極大値をその気流の風向きとする。
【0031】
特に本実施形態の風向風速計測装置では、第2の熱伝導体3の熱伝導率が、第1の熱伝導体2の熱伝導率よりも小さいので、気流による表面温度の分布を拡大することができ、これにより風向の検出感度を高めることができる。
【0032】
また、既述したように表面温度の計測値に基づいて風向と風速を求めるので、気流の圧力に基づいて風向と風速を求める計測装置に比べ、図4に示されるようにたとえば0〜4m/s程度の低風速域における温度変化が大きくなり、風向および風速の検出感度が高くなる。
【0033】
さらに、低風速域での検出感度が良好であるため、熱電対4をたとえばフィルム状に構成でき、その結果、計測装置自体をコンパクトに構成することができる。
【0034】
本発明の風向風速計測装置は上述した実施形態にのみ限定されず種々に改変することができる。図2は本発明の風向風速計測装置の他の実施形態を示す斜視図であり、三次元の風向を求めることができる計測装置である。
【0035】
基本的な構成は上述した円筒状の実施形態と同じであるが、本実施形態では風向の三次元方位を求めるために、中心に設けられるヒータ1、その周囲を囲繞する第1の熱伝導体2、および第1の熱伝導体2の表面にたとえば膜状に設けられる第2の熱伝導体3からなる本体を球状に形成している。また、第2の熱伝導体3の表面に貼り付けられる温度検出手段としての熱電対4は、図示するXY平面(赤道)上に45°のピッチで設けられ、さらに経線(子午線)上にも45°のピッチで設けられている。つまり、第2の熱伝導体3の表面に16個(うち2個を共用するときは14個)の熱電対4が設けられている。
【0036】
このように構成された球状の風向風速計測装置を用いて風向および風速を計測する場合には、まずヒータ1をONして第1および第2の熱伝導体2,3に充分に熱が伝導された状態で気流内に臨ませ、各熱電対4により得られる第2の熱伝導体3の表面温度をコントローラに取り込む。
【0037】
そして、16個の熱電対4により得られた表面温度の平均値の逆数を求め、予め計測しておいた風速と平均温度の逆数との関係(図3参照)からその気流の風速を求める。
【0038】
また、16個の熱電対4により検出された温度を、たとえばXY平面における円周方向の角度を変数とする5次関数(上記関係式(1)参照)に代入して近似し、その極大値をその気流のXY平面における風向きとする。同様にしてYZ平面における風向きを求め、これらXY平面およびYZ平面における風向きから三次元空間における風向きを求める。
【0039】
このように本実施形態の風向風速計測装置によれば、上述した効果に加えて三次元空間における風向をも求めることができる。
【0040】
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【図面の簡単な説明】
【図1】本発明の風向風速計測装置の実施形態を示す斜視図および横断面図である。
【図2】本発明の風向風速計測装置の他の実施形態を示す斜視図である。
【図3】本発明の風向風速計測装置による風速と平均温度の逆数との関係を示すグラフである。
【図4】本発明の風向風速計測装置による風速と表面温度との関係を示すグラフである。
【図5】本発明の測定原理を説明するための概念図である。
【図6】本発明の測定原理を説明するための概念図である。
【図7】本発明の測定原理を説明するためのグラフである。
【符号の説明】
1…ヒータ
2…第1の熱伝導体
3…第2の熱伝導体
4…熱電対(温度検出手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind direction and wind speed measuring apparatus for measuring wind direction and wind speed, and more particularly to a wind direction and wind speed measuring apparatus that is highly sensitive, compact, and suitable for measurement in a low wind speed range.
[0002]
[Prior art]
In order to evaluate heat resistance quality and exhaust quality required for automobile parts, measurement of wind direction and wind speed in an engine room or the like is performed. For example, even if a component is mounted near the engine that is a heat generation source, the amount of air received during traveling differs depending on the mounting position, resulting in a difference in required heat resistance.
[0003]
A thermal anemometer is known as this type of sensor, but it measures the wind speed by detecting the temperature change of the heater itself due to the wind speed, and cannot measure the wind direction. In addition, since the heat ray as a detection element is exposed to the outside, it is easily damaged and requires care in handling.
[0004]
As a device that can measure both the wind direction and the wind speed, a measurement device that captures the generation cycle of Karman vortices generated behind the cylinder as pressure fluctuations and obtains the wind speed from the pressure average pattern in the circumferential direction is obtained. (For example, refer to JP-A-9-196959).
[0005]
[Problems to be solved by the invention]
In the conventional wind direction and wind speed measuring apparatus described above, both the wind speed and the wind direction are obtained based on the pressure fluctuation value. However, since the pressure is proportional to the square of the wind speed, the pressure change in the low wind speed region is extremely small. For example, at a wind speed of about 1.8 m / s, only a pressure change of about 0.2 mmH 2 O occurs. Therefore, there is a problem that the detection sensitivity in the low wind speed region is low.
[0006]
A pressure sensor that can detect such a small pressure change with high sensitivity is required to have a diameter of at least 10 mm and a thickness of 1.3 mm. Therefore, such a large and thick pressure sensor can be smoothly placed on a cylinder. When trying to do so, the cylinder becomes large with a diameter of 50 mm or more. Therefore, this measuring apparatus cannot measure the wind direction and the wind speed in a narrow space such as an engine room.
[0007]
If the wind speed of 50 m / s or more is measured, the cylindrical diameter can be reduced to several tens of millimeters, but this size is too large to be used in a narrow space such as an engine room, and the measurement is in a low wind speed range. There was a problem that could not.
[0008]
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a wind direction and wind speed measuring device that is highly sensitive, compact, and capable of measuring a low wind speed region.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a wind direction wind speed measuring device according to claim 1 is a wind direction wind speed measuring device in which a cross-sectional shape with respect to at least a direction to be measured is substantially circular, a heater provided substantially at the center; A first thermal conductor provided around the heater and a second heat having a thermal conductivity smaller than that of the first thermal conductor provided around the first thermal conductor It is characterized by comprising a conductor and a plurality of temperature detection means provided on the surface of the second thermal conductor with a predetermined positional relationship with respect to the measurement direction.
[0010]
In this case, although not particularly limited, as in the wind direction and wind speed measuring device according to
[0011]
Moreover, although not particularly limited, it is preferable that the direction of the highest temperature among the temperatures detected by the plurality of temperature detecting means be the wind direction as in the wind direction and wind speed measuring device according to claim 3.
[0012]
Considering a model in which the heat from the heater (heat source) is conducted (transferred) to the surrounding gas through the solid, as shown in FIG. Furthermore, heat transfer from the solid surface to the gas is controlled by the heat transfer coefficient. However, while the thermal conductivity in the solid is uniquely determined as a value inherent to the solid, the heat transfer coefficient from the solid surface to the gas varies depending on the physical properties of the gas, the temperature of the gas, and the flow state.
[0013]
The wind direction and wind speed measuring device of the present invention pays attention to the fluctuation of the heat transfer coefficient depending on the flow state, and utilizes the fact that the surface temperature of the solid is distributed depending on the flow state of the boundary layer between the solid and the gas. The wind direction and wind speed are obtained by measuring and calculating.
[0014]
For example, as shown in FIG. 6, when the wind is flowing from the direction shown in the wind direction and wind speed measuring device of the present invention having a circular cross section, the boundary of the region facing the wind (indicated by “0” in the figure). The layer becomes a stagnation pool of gas, and the surface temperature of the solid is increased because the flow rate is low and the heat transfer is small. In addition, the boundary layer of the rear region (indicated by “4” in the figure) with respect to the wind direction becomes a turbulent flow region, and similarly the flow velocity is low and heat transfer is small, so the surface temperature of the solid is high.
[0015]
On the other hand, the boundary layer in the region along the wind direction (indicated by “2” in the figure) is a laminar flow region, and the flow velocity is high and heat transfer is large, so the surface temperature of the solid is low. In addition, the region 1 between the region 0 and the
[0016]
Incidentally, the relationship between the temperature T and the circumferential angle θ (0 ° to 360 °) has a maximum value in each of the two regions facing the wind direction as described above, and each of the two regions along the wind direction has a maximum value. Since a minimum value appears, it can be theoretically approximated by the following quintic function with the angle in the circumferential direction as a variable.
[0017]
[Expression 1]
T = aθ 5 + bθ 4 + cθ 3 + dθ 2 + eθ + f (a to f are constants) (1)
FIG. 3 is a graph plotting the reciprocal of the average value of the solid surface temperature with respect to the wind speed. As is clear from this, the average value of the solid surface temperature and the wind speed are strongly correlated. A wind speed can be calculated | required based on the average value of the temperature measured by the means.
[0018]
In particular, in the wind direction and wind speed measuring device according to the present invention, the thermal conductivity of the second thermal conductor provided with the temperature detecting means is smaller than the thermal conductivity of the first thermal conductor, that is, a larger thermal conductivity on the heater side. The surface temperature distribution due to the airflow can be expanded, which can increase the detection sensitivity of the wind direction. .
[0019]
Further, in the wind direction and wind speed measuring device of the present invention, the wind direction and the wind speed are obtained based on the measured value of the surface temperature. Therefore, the temperature change in the low wind speed region is larger than the measuring device that obtains the wind direction and the wind speed based on the pressure of the air flow. Thus, the detection sensitivity of the wind direction and the wind speed is increased.
[0020]
Furthermore, since the detection sensitivity in the low wind speed region is good, the temperature detection means can be configured, for example, in the form of a film, and as a result, the measuring device itself can be configured compactly.
[0021]
In the present invention, the shape of the measuring device itself is not particularly limited. However, if the wind direction in a three-dimensional direction orthogonal to each other is measured, the second heat conductor as in the wind direction / wind speed measuring device according to
[0022]
【The invention's effect】
According to invention of Claims 1-3, since the heat conductivity of the 2nd heat conductor in which a temperature detection means is provided is smaller than the heat conductivity of a 1st heat conductor, distribution of the surface temperature by airflow , So that the detection sensitivity of the wind direction is increased.
[0023]
In addition, because the wind direction and wind speed are obtained based on the measured surface temperature, the temperature change in the low wind speed region is larger than in the measurement device that obtains the wind direction and wind speed based on the airflow pressure, and the detection sensitivity of the wind direction and wind speed is improved. Get higher.
[0024]
Furthermore, since the detection sensitivity in the low wind speed region is good, the temperature detection means can be configured, for example, in the form of a film, and as a result, the measuring device itself can be configured compactly. In addition, since there are no parts that are easily damaged, it is easy to handle.
[0025]
According to the invention of
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the wind direction and wind speed measuring device of the present embodiment is a device that measures the wind direction and the wind speed in the XY plane, and has a cylindrical heater 1 serving as a heat source at the center and surrounds the heater 1. Thus, the
[0027]
Further, eight
[0028]
In the case of measuring the wind direction and the wind speed using the wind direction and wind speed measuring apparatus of the present embodiment configured as described above, the heater 1 is first turned on to sufficiently heat the first and
[0029]
And the reciprocal number of the average value of the surface temperature obtained by the eight
[0030]
Further, the temperatures detected by the eight
[0031]
In particular, in the wind direction and wind speed measuring device of the present embodiment, the thermal conductivity of the second thermal conductor 3 is smaller than the thermal conductivity of the first
[0032]
Further, as described above, since the wind direction and the wind speed are obtained based on the measurement value of the surface temperature, for example, as shown in FIG. The temperature change in the low wind speed region of about s becomes large, and the detection sensitivity of the wind direction and the wind speed becomes high.
[0033]
Furthermore, since the detection sensitivity in the low wind speed region is good, the
[0034]
The wind direction and wind speed measuring device of the present invention is not limited to the above-described embodiment, and can be variously modified. FIG. 2 is a perspective view showing another embodiment of the wind direction and wind speed measuring device of the present invention, which is a measuring device capable of obtaining a three-dimensional wind direction.
[0035]
The basic configuration is the same as that of the cylindrical embodiment described above, but in this embodiment, in order to obtain the three-dimensional orientation of the wind direction, the heater 1 provided at the center and the first thermal conductor surrounding the
[0036]
When the wind direction and wind speed are measured using the spherical wind direction wind speed measuring device configured as described above, first, the heater 1 is turned on to sufficiently conduct heat to the first and
[0037]
And the reciprocal number of the average value of the surface temperature obtained by the 16
[0038]
Further, the temperature detected by the 16
[0039]
As described above, according to the wind direction and wind speed measuring apparatus of the present embodiment, the wind direction in the three-dimensional space can be obtained in addition to the effects described above.
[0040]
The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view and a cross-sectional view showing an embodiment of a wind direction and wind speed measuring device of the present invention.
FIG. 2 is a perspective view showing another embodiment of the wind direction and wind speed measuring device of the present invention.
FIG. 3 is a graph showing the relationship between the wind speed and the reciprocal of the average temperature by the wind direction wind speed measuring apparatus of the present invention.
FIG. 4 is a graph showing the relationship between wind speed and surface temperature by the wind direction and wind speed measuring device of the present invention.
FIG. 5 is a conceptual diagram for explaining the measurement principle of the present invention.
FIG. 6 is a conceptual diagram for explaining the measurement principle of the present invention.
FIG. 7 is a graph for explaining the measurement principle of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
Claims (5)
略中心に設けられたヒータと、
前記ヒータの周囲に設けられた第1の熱伝導体と、
前記第1の熱伝導体の周囲に設けられ前記第1の熱伝導体の熱伝導率より小さい熱伝導率を有する第2の熱伝導体と、
前記第2の熱伝導体の表面に、前記計測方位に対して所定の位置関係をもって設けられた複数の温度検出手段と、を備えたことを特徴とする風向風速計測装置。In the wind direction and wind speed measuring device in which the cross-sectional shape for at least the direction to be measured is substantially circular,
A heater provided substantially at the center;
A first thermal conductor provided around the heater;
A second thermal conductor provided around the first thermal conductor and having a thermal conductivity smaller than that of the first thermal conductor;
A wind direction and wind speed measuring device comprising: a plurality of temperature detecting means provided on the surface of the second heat conductor with a predetermined positional relationship with respect to the measurement direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20280298A JP3702658B2 (en) | 1998-07-02 | 1998-07-02 | Wind direction and wind speed measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20280298A JP3702658B2 (en) | 1998-07-02 | 1998-07-02 | Wind direction and wind speed measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000019195A JP2000019195A (en) | 2000-01-21 |
JP3702658B2 true JP3702658B2 (en) | 2005-10-05 |
Family
ID=16463448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20280298A Expired - Fee Related JP3702658B2 (en) | 1998-07-02 | 1998-07-02 | Wind direction and wind speed measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3702658B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020008370A (en) * | 2018-07-05 | 2020-01-16 | 株式会社Soken | Wind state detector |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4915374B2 (en) * | 2008-03-19 | 2012-04-11 | 株式会社エクォス・リサーチ | Information input device |
JP6413179B2 (en) * | 2014-12-23 | 2018-10-31 | 林 泰正 | Thermal flow rate / flow rate sensor with flow direction detection function |
CN105807088A (en) * | 2015-12-17 | 2016-07-27 | 韩明 | Power transmission line's wind speed and direction detecting system |
CN107373922B (en) * | 2017-07-24 | 2019-01-22 | 京东方科技集团股份有限公司 | Wearable device and method of measuring wind speed and direction using wearable device |
JP6904149B2 (en) * | 2017-08-03 | 2021-07-14 | 株式会社Soken | Anemometer and anemometer |
CN107907706B (en) * | 2017-11-10 | 2019-11-08 | 北京卫星环境工程研究所 | Hot film wind speed and direction measurement system for low pressure |
JP2019207111A (en) * | 2018-05-28 | 2019-12-05 | 株式会社Soken | Anemoscope |
CN109061771A (en) * | 2018-08-09 | 2018-12-21 | 昆明创培知识产权服务有限公司 | A kind of miniature automatic weather station |
CN113110653B (en) * | 2021-04-12 | 2022-03-29 | 安徽气象信息有限公司 | Mechanical type wind sensor freeze-proof device based on thing networking |
CN113820514B (en) * | 2021-09-26 | 2025-02-28 | 广州极飞科技股份有限公司 | Anemometers and weather stations |
-
1998
- 1998-07-02 JP JP20280298A patent/JP3702658B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020008370A (en) * | 2018-07-05 | 2020-01-16 | 株式会社Soken | Wind state detector |
JP7059836B2 (en) | 2018-07-05 | 2022-04-26 | 株式会社Soken | Wind condition detector |
Also Published As
Publication number | Publication date |
---|---|
JP2000019195A (en) | 2000-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4825704A (en) | Fluid flow speed measuring apparatus | |
JP3702658B2 (en) | Wind direction and wind speed measuring device | |
US3604261A (en) | Multidirectional thermal anemometer sensor | |
CN102207512B (en) | Wind vane anemometer and wind direction and velocity device | |
JP2002228509A5 (en) | ||
US3592055A (en) | Directional sensor | |
CN110993778A (en) | Heat flow sensor based on transverse thermoelectric effect of thin film | |
CN106897537A (en) | Temperature field containing three-dimensional or curved profile structure is with hot-fluid while reconstructing method | |
US6684695B1 (en) | Mass flow sensor utilizing a resistance bridge | |
JP5662026B2 (en) | Apparatus and method for measuring flow speed and direction of a gaseous fluid | |
Nguyen | A novel thermal sensor concept for flow direction and flow velocity | |
JP2019510965A (en) | Sensor array and catheter comprising sensor array | |
JPH0469521A (en) | Flowmeter | |
JPH10115535A (en) | Flow measuring probe | |
RU2548135C1 (en) | Thermal wind-gage determination of fluid or gas flow velocity and direction and device to this end | |
JP5856534B2 (en) | Heat flux measuring device and heat flux measuring method | |
US4061029A (en) | Flow separation detector | |
US6134958A (en) | Thermal anemometer aircraft airspeed gust component transducer | |
Menna et al. | The Mean Flow Structure Around and Within a Turbulent Junction or Horseshoe Vortex—Part I: The Upstream and Surrounding Three-Dimensional Boundary Layer | |
Olin et al. | Split-Film Anemometer Sensors for Three-Dimensional Velocity-Vector Measurement | |
JP3832185B2 (en) | Wind direction calculation method for 3D wind direction measuring device | |
JPH09196959A (en) | Wind direction/speed indicator | |
Batchelder et al. | Surface flow visualization using the thermal wakes of small heated spots | |
JP2004226216A (en) | Thermopile array | |
JP2701301B2 (en) | Anemometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050329 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050711 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |