[go: up one dir, main page]

JP3698156B2 - Carbon fiber - Google Patents

Carbon fiber Download PDF

Info

Publication number
JP3698156B2
JP3698156B2 JP2003405581A JP2003405581A JP3698156B2 JP 3698156 B2 JP3698156 B2 JP 3698156B2 JP 2003405581 A JP2003405581 A JP 2003405581A JP 2003405581 A JP2003405581 A JP 2003405581A JP 3698156 B2 JP3698156 B2 JP 3698156B2
Authority
JP
Japan
Prior art keywords
carbon fiber
pitch
carbon
fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003405581A
Other languages
Japanese (ja)
Other versions
JP2004137664A (en
Inventor
巌 山本
明彦 葭谷
忠弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003405581A priority Critical patent/JP3698156B2/en
Publication of JP2004137664A publication Critical patent/JP2004137664A/en
Application granted granted Critical
Publication of JP3698156B2 publication Critical patent/JP3698156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、5×10-2Ωcm以上という高い電気抵抗を有しながら、かつ90kg/mm2以上の引張強度を有する炭素繊維に関するものである。この炭素繊維は熱可塑性樹脂
強化用の炭素繊維として特に有用である。
The present invention relates to a carbon fiber having a high electrical resistance of 5 × 10 −2 Ωcm or more and a tensile strength of 90 kg / mm 2 or more. This carbon fiber is particularly useful as a carbon fiber for reinforcing a thermoplastic resin.

炭素繊維は、その原料によりPAN(ポリアクリロニトリル)系、ピッチ系等に区別される。このうちピッチ系炭素繊維は、その原料の調製方法により、高性能炭素繊維と、汎用炭素繊維に大別されている。高性能炭素繊維は石炭、石油等より得られるピッチを原料とし、これに加熱等の手段を適用して、炭素構造の前駆体である液晶性の光学的異方性部分を生じさせ、これを紡糸し、酸化性雰囲気で不融化、ついで炭化、必要に応じて黒鉛化を行うことにより得られる。ここで、光学的異方性部分を生じさせる理由は、液晶性を有する光学的異方性部分が良い配向性を有するために、得られた炭素繊維も配向性の優れたものとなり、高強度、高弾性率を発現し易くなるためである。これに反して、汎用グレードとして用いられているピッチ系炭素繊維は、光学的に等方性のピッチを紡糸、不融化、焼成を行うために高特性を得にくいということが知られている。   Carbon fibers are classified into PAN (polyacrylonitrile) type, pitch type, and the like depending on their raw materials. Among these, the pitch-based carbon fibers are roughly classified into high-performance carbon fibers and general-purpose carbon fibers according to the raw material preparation method. High-performance carbon fiber uses pitch obtained from coal, petroleum, etc. as a raw material, and by applying means such as heating to this, it produces a liquid crystalline optically anisotropic part that is a precursor of the carbon structure. It is obtained by spinning, making it infusible in an oxidizing atmosphere, then carbonizing, and if necessary, graphitizing. Here, the reason why the optically anisotropic part is generated is that the optically anisotropic part having liquid crystallinity has a good orientation, so that the obtained carbon fiber also has an excellent orientation and has a high strength. This is because it becomes easy to express a high elastic modulus. On the other hand, it is known that pitch-based carbon fibers used as a general-purpose grade are difficult to obtain high characteristics because optically isotropic pitches are spun, infusibilized, and fired.

従来、炭素繊維を短繊維として各種のマトリックスに混合、分散させて成る繊維強化樹脂組成物は、高強度、高剛性、低比重、高電気伝導性、高耐摩耗性等の機械的特性が評価され、工業的に重要な材料として様々な用途に使用されてきた。一般に炭素繊維を各種樹脂に混合、分散させて繊維強化樹脂材料を得る場合、炭素短繊維の取扱性を容易にして混合、分散の工程における作業性を高めるに、あらかじめ多数の炭素短繊維をサイジング剤等により集束させて成る炭素短繊維集合体が用いられている。   Conventionally, fiber reinforced resin compositions made by mixing and dispersing carbon fibers as short fibers in various matrices have been evaluated for mechanical properties such as high strength, high rigidity, low specific gravity, high electrical conductivity, and high wear resistance. It has been used for various purposes as an industrially important material. In general, when carbon fiber is mixed and dispersed in various resins to obtain a fiber reinforced resin material, a large number of carbon short fibers are sized in advance to facilitate handling of carbon short fibers and improve workability in the mixing and dispersing process. A short carbon fiber aggregate formed by bundling with an agent or the like is used.

ところが最近、特に電子部品の帯電防止用の材料として、従来の繊維強化熱可塑性樹脂組成物の電気抵抗(10-1〜10-2Ωcm程度)を上回る電気抵抗(105Ωcm以上)
を有する繊維強化熱可塑性樹脂組成物が求められており、その補強用繊維として高電気抵抗であり、かつ高強度を有する炭素繊維の開発が望まれていた。炭素化温度と電気抵抗の関係は従来から知られており、炭素化温度を上げるにしたがって電気抵抗は低下してくる(非特許文献1参照)。しかしながら、従来の原料を用いた場合は、所望の電気抵抗が得られる範囲の焼成温度で炭素繊維を製造した際、その温度が低いために、ピッチ系炭素繊維では、高い引張強度が得られず、またPAN系炭素繊維では、窒素が抜けきらずに炭素含有率の低い繊維となってしまい、所望の炭素繊維を得ることができなかった。
近代編集社刊“炭素繊維”p.83
Recently, however, the electrical resistance (10 5 Ωcm or more) exceeds the electrical resistance (about 10 −1 to 10 −2 Ωcm) of the conventional fiber reinforced thermoplastic resin composition, particularly as an antistatic material for electronic parts.
There has been a demand for a fiber reinforced thermoplastic resin composition having a high carbon resistance and a high strength as a reinforcing fiber. The relationship between the carbonization temperature and the electrical resistance has been conventionally known, and the electrical resistance decreases as the carbonization temperature increases (see Non-Patent Document 1). However, when conventional raw materials are used, when carbon fibers are produced at a firing temperature within a range where a desired electrical resistance can be obtained, the temperature is low, so pitch-based carbon fibers cannot provide high tensile strength. Moreover, in the PAN-based carbon fiber, the nitrogen is not completely removed and the carbon content is low, and a desired carbon fiber cannot be obtained.
“Carbon Fiber”, published by Modern Editing Company, p. 83

本発明者らは、かかる課題を解決すべく鋭意検討した結果、強度低下の原因と成りうる欠陥を発生させる要因を徹底的に排除してやること、及び紡糸ピッチの光学的異方性割合を特定し、焼成温度が低いにもかかわらず高強度が発現する製造条件を見つけて、高電気抵抗、かつ高強度の炭素繊維を見いだした。
すなわち、光学異方性割合80%以上、かつ炭素含有率93%以上、かつ灰分量30ppm以下の液晶ピッチを紡糸、不融化後、700〜1000℃で焼成する事により、引張強度が90kg/mm2以上、かつ引張弾性率が3ton/mm2以上、かつ電気抵抗が5×10-2Ωcm〜3.5Ωcmであり、炭素含有率85%以上の炭素繊維を得ることができたものである。

As a result of intensive investigations to solve such problems, the present inventors have thoroughly eliminated the factors that cause defects that can cause a decrease in strength, and identified the optical anisotropy ratio of the spinning pitch. The inventors have found a production condition in which high strength is exhibited even though the firing temperature is low, and have found a carbon fiber having high electrical resistance and high strength.
That is, a liquid crystal pitch having an optical anisotropy ratio of 80% or more, a carbon content of 93% or more, and an ash content of 30 ppm or less is spun and infusible, and then fired at 700 to 1000 ° C. to obtain a tensile strength of 90 kg / mm. 2 or more and a tensile modulus of 3 ton / mm 2 or more and an electrical resistance 5 × 10 -2 Ωcm ~3.5Ωcm, in which it was possible to obtain more than 85% of carbon fiber carbon content.

本発明に係る炭素繊維を用いれば、例えば電子部品の帯電防止用の材料として要求されている高い電気抵抗を有しながら、かつ高強度の炭素繊維強化樹脂組成物を得ることができる。   If the carbon fiber according to the present invention is used, a high-strength carbon fiber-reinforced resin composition can be obtained while having a high electrical resistance required as an antistatic material for electronic parts, for example.

以下、本発明をより詳細に説明する。
本発明に係る高い電気抵抗を有し、かつ高い引張強度を有する繊維を製造するためには、(イ)繊維中で物理的/化学的に強度低下の原因となる灰分を徹底的に除去する、(ロ)炭素の結晶として強度低下の原因となる紡糸ピッチ段階における光学的に等方性の部分の割合を低下させることによって強度を向上させ、かつ強度発現のために必要最低限の温度で焼成し高い電気抵抗を維持することが必要である。
Hereinafter, the present invention will be described in more detail.
In order to produce a fiber having high electrical resistance and high tensile strength according to the present invention, (i) thoroughly removing ash that causes a physical / chemical decrease in strength in the fiber. (B) The strength is improved by reducing the proportion of the optically isotropic portion in the spinning pitch stage that causes the strength reduction as a carbon crystal, and at the minimum temperature necessary for the strength development. It is necessary to fire and maintain high electrical resistance.

本発明に係る炭素繊維の製造に用いられる原料ピッチとしては、例えば、石炭系のコールタール、コールタールピッチ、石炭液化物、石油系の重質油、ピッチ、石油樹脂やその熱重縮合反応生成物、ナフタレンやアントラセンの触媒反応による重合反応生成物等の炭素質原料が挙げられる。また、前記炭素質原料を、例えば加熱処理した後、特定溶剤で可溶分を抽出するといった方法、あるいは、水素供与性溶剤、水素ガスの存在下に水添処理するといった方法で予備処理を行なっておいてもよい。   Examples of the raw material pitch used in the production of the carbon fiber according to the present invention include, for example, coal-based coal tar, coal-tar pitch, coal liquefaction, petroleum-based heavy oil, pitch, petroleum resin and thermal polycondensation reaction product thereof. And carbonaceous raw materials such as polymerization reaction products by catalytic reaction of naphthalene or anthracene. Further, the carbonaceous raw material is subjected to a pretreatment by, for example, a method in which a soluble component is extracted with a specific solvent after heat treatment, or a method in which a hydrogenation treatment is performed in the presence of a hydrogen donating solvent and hydrogen gas. You may keep it.

通常、原料ピッチ中には不溶性物質として、灰分(Ash成分)が含まれている。これは、その後、原料ピッチを加熱処理して炭素繊維の前駆体となる光学的に異方性の液晶ピッチ化をする際に、不均一性の原因となり乱れた組織の前駆体を与える。また紡糸後、不融化、焼成して得られた繊維中に物理的な欠陥を生じ、強度、弾性率に悪影響を及ぼす。
本発明において、紡糸に供するピッチの段階で、灰分量を通常30ppm以下、好ましくは20ppm以下に精製したピッチを用いることにより、炭素繊維の引張強度を著しく向上させることができる。
Usually, the raw pitch contains ash (Ash component) as an insoluble substance. This then causes heat treatment of the raw material pitch to produce an optically anisotropic liquid crystal pitch that becomes a carbon fiber precursor, resulting in a heterogeneous precursor of the structure. Further, after spinning, physical defects are generated in the fiber obtained by infusibilization and firing, which adversely affects strength and elastic modulus.
In the present invention, the tensile strength of the carbon fiber can be remarkably improved by using a pitch purified to have an ash content of usually 30 ppm or less, preferably 20 ppm or less at the stage of the pitch used for spinning.

30ppmを超える灰分を有する紡糸ピッチから製造した炭素繊維は、不融化反応における周りの空気雰囲気との酸化反応において、灰分が触媒作用を呈し繊維表面に露出している灰分の周りが選択的に酸化されて、いわゆる“ピット”を生成し、強度低下の原因となる欠陥を生じてしまう。
灰分を除去するタイミングは紡糸前であれば何時でもよく、例えば原料ピッチの段階、または紡糸ピッチの段階で除去しても構わない。灰分の除去方法については、特に限定せず、周知の方法を用いればよい。例えば、重力沈降法、遠心分離法、濾過法、吸着法、酸、アルカリ、溶媒による洗浄法などがあるが、それぞれを単独で行ってもよく、ピッチの形態によりそれぞれに適した除去法を組み合わせて、また繰り返し行ってもよい。また、除去の効率を上げるために多孔性無機物(濾過助剤等)等を加えても構わない。工業的には、重力沈降法、遠心分離法、濾過法を用いることが、連続的、また大量に処理できることから好ましい。
Carbon fiber produced from a spinning pitch having an ash content of more than 30 ppm is selectively oxidized around the ash that is exposed to the fiber surface in the oxidation reaction with the surrounding air atmosphere in the infusibilization reaction. As a result, so-called “pits” are generated, and defects that cause a decrease in strength are generated.
The timing for removing the ash may be any time before spinning, and for example, it may be removed at the raw material pitch stage or spinning pitch stage. The method for removing ash is not particularly limited, and a known method may be used. For example, there are gravity sedimentation method, centrifugal separation method, filtration method, adsorption method, washing method with acid, alkali, solvent, etc., but each may be performed independently, and combination with removal method suitable for each according to pitch form It may be repeated repeatedly. Further, in order to increase the removal efficiency, a porous inorganic substance (such as a filter aid) may be added. Industrially, it is preferable to use a gravity sedimentation method, a centrifugal separation method, and a filtration method because they can be processed continuously and in large quantities.

上記のように精製したピッチは、常法にしたがって光学的に異方性を呈する液晶ピッチに転換される。本発明においては、紡糸に供するピッチの光学的異方性割合は80%以上であることが必要であり、好ましくは90%以上、さらに好ましくは95%以上である。
光学的異方性割合が80%を下回ると、炭素繊維の強度が低下し、必要な引張強度を得ようとすれば、焼成温度を上げねばならず、そのために、必然的に電気抵抗が低下してしまい、所望の高電気抵抗、高強度の炭素繊維を得ることはできない。
The pitch purified as described above is converted into a liquid crystal pitch that exhibits optical anisotropy according to a conventional method. In the present invention, the optical anisotropy ratio of the pitch used for spinning needs to be 80% or more, preferably 90% or more, and more preferably 95% or more.
If the optical anisotropy ratio is less than 80%, the strength of the carbon fiber is reduced, and if the required tensile strength is to be obtained, the firing temperature must be increased, and therefore the electrical resistance is inevitably reduced. Therefore, the desired high electrical resistance and high strength carbon fiber cannot be obtained.

本発明でいうピッチの光学的異方性割合は、常温下、偏光顕微鏡下でピッチ試料中の光
学的異方性を示す部分を面積割合として求めた値である。具体的には、例えばピッチ試料を数mm角に粉砕した物を常法にしたがって、約2cm直径の樹脂の表面のほぼ全面に試料片を埋め込み、表面を研磨した後、表面全体をくまなく偏光顕微鏡(倍率100倍)下で観察し、試料の全表面積に占める光学的異方性部分の面積割合を測定することによって求める。
The pitch optical anisotropy ratio referred to in the present invention is a value obtained by obtaining a portion showing the optical anisotropy in the pitch sample under normal temperature and a polarizing microscope as an area ratio. Specifically, for example, a sample obtained by pulverizing a pitch sample into several mm squares is embedded in almost the entire surface of a resin having a diameter of about 2 cm according to a conventional method, and after polishing the surface, the entire surface is polarized. It is obtained by observing under a microscope (magnification 100 times) and measuring the area ratio of the optically anisotropic portion in the total surface area of the sample.

光学的異方性の液晶ピッチを製造する方法は特に限定されず、周知の方法を用いればよい。例えば、精製されたピッチを、通常350〜500℃、好ましくは380〜450℃で2分から50時間、好ましくは5分〜5時間の間、窒素、アルゴン、水蒸気等の不活性ガス雰囲気下、あるいは吹き込み下、または減圧下に加熱処理する方法がある。他の例を上げると、ナフタレン等の縮合多環炭化水素類をHF/BF3等の触媒の存在下で重合さ
せる方法、または原料ピッチをある特定の溶解度パラメーターを有する溶媒を用いて溶剤分割を行い、所望のピッチを得る方法がある。
The method for producing the optically anisotropic liquid crystal pitch is not particularly limited, and a known method may be used. For example, the purified pitch is usually 350 to 500 ° C., preferably 380 to 450 ° C. for 2 minutes to 50 hours, preferably 5 minutes to 5 hours, in an inert gas atmosphere such as nitrogen, argon, water vapor, or the like, or There is a method of performing heat treatment under blowing or under reduced pressure. As another example, a method for polymerizing condensed polycyclic hydrocarbons such as naphthalene in the presence of a catalyst such as HF / BF 3 or solvent splitting using a solvent having a certain solubility parameter as a raw material pitch. There is a method of performing a desired pitch.

また、紡糸ピッチの炭素含有率は93%以上であり、好ましくは95%以上である。炭素含有率が93%に満たないと前述の灰分同様、異元素である窒素、硫黄、酸素等が強度低下の要因となり、炭素繊維の引張強度を低下させる。
上記の様な紡糸ピッチを用いて溶融紡糸しピッチ繊維を得る。このピッチ繊維は単繊維としての破断強度が低いため、ガイド、ローラー等での毛羽の発生を防止するために、1000本〜20000本のピッチ繊維を集束剤で集束してピッチ繊維トウを得る。ここで集束剤としては、ピッチ繊維の一部を溶解したり、不融化処理の際に繊維同士を接着、または融着させることの少ないものを用いることが必要であり、例えばシリコーン油の水エマルションが好ましい。また、融着の回避をより効果的に行うために、集束剤中にカーボンブラック、SiC等の無機微粒子を添加しても構わない。
The carbon content of the spinning pitch is 93% or more, preferably 95% or more. If the carbon content is less than 93%, like the above-mentioned ash, foreign elements such as nitrogen, sulfur, oxygen and the like cause a decrease in strength and decrease the tensile strength of the carbon fiber.
Using the spinning pitch as described above, melt spinning is performed to obtain pitch fibers. Since this pitch fiber has low breaking strength as a single fiber, 1000 to 20000 pitch fibers are converged with a sizing agent to prevent generation of fluff in a guide, a roller or the like, and a pitch fiber tow is obtained. Here, as the sizing agent, it is necessary to dissolve a part of the pitch fibers or to use a material that does not cause the fibers to be bonded or fused together during the infusibilization treatment. For example, a water emulsion of silicone oil Is preferred. In order to more effectively avoid the fusion, inorganic fine particles such as carbon black and SiC may be added to the sizing agent.

次に、上記ピッチ繊維トウは、連続/回分処理により酸化性ガス雰囲気中で、通常160〜400℃に加熱して不融化処理を行う。
得られた不融化繊維トウは、窒素、アルゴン等の不活性ガス雰囲気下で焼成処理を行う。本発明において所望の炭素繊維を得るためには、焼成は通常700〜1000℃、好ましくは730〜900℃、さらに好ましくは、750〜850℃で行われる。焼成温度が、700℃より低いと、電気抵抗は高いものが得られるものの、引張強度の発現が十分でなく、また、焼成温度が1000℃を超えると、引張強度は高いものの、電気抵抗が低い炭素繊維しか得られない。
Next, the pitch fiber tow is infusibilized by heating to 160 to 400 ° C. in an oxidizing gas atmosphere by continuous / batch processing.
The obtained infusible fiber tow is baked in an inert gas atmosphere such as nitrogen or argon. In order to obtain a desired carbon fiber in the present invention, firing is usually performed at 700 to 1000 ° C, preferably 730 to 900 ° C, and more preferably 750 to 850 ° C. When the firing temperature is lower than 700 ° C., a high electrical resistance can be obtained, but the tensile strength is not sufficiently developed. When the firing temperature exceeds 1000 ° C., the tensile strength is high but the electrical resistance is low. Only carbon fiber can be obtained.

本発明に係る炭素繊維は通常、上記の方法により得られ、この様にして得られた炭素繊維は、高強度、高電気抵抗という性質を合わせ持つが、通常、引張強度が90kg/mm2以上、好ましくは100kg/mm2以上であり、さらに好ましくは110kg/mm2
以上であり、引張弾性率は3ton/mm2以上、好ましくは4ton/mm2以上、さらに好ましくは5ton/mm2以上であり、体積固有電気抵抗は5×10-2Ωcm以上、
好ましくは1×10-1Ωcm以上である。引張強度が90kg/mm2、引張弾性率が3
ton/mm2に満たないと、樹脂強化用炭素繊維として用いたときに樹脂の補強効果が
小さいために、得られる成形材料は充分な強度、弾性率を有することができない。また、体積固有電気抵抗が5×10-2Ωcmよりも小さいと、同様に成形材料としたとき、その電気抵抗が小さく、つまり導電性が向上してしまい、目的とする帯電防止用の材料として使用することができなくなる。なお、ここでいう引張強度、引張弾性率は、JIS R7601により単繊維試料を用いて測定した値であり、体積固有電気抵抗は、JIS R7601によりヤーン試料により測定した値である。
The carbon fiber according to the present invention is usually obtained by the above method, and the carbon fiber obtained in this way has the properties of high strength and high electrical resistance, but usually has a tensile strength of 90 kg / mm 2 or more. , Preferably 100 kg / mm 2 or more, more preferably 110 kg / mm 2
Or more, the tensile modulus 3 ton / mm 2 or more, preferably 4 ton / mm 2 or more, more preferably 5 ton / mm 2 or more, a volume electrical resistivity is 5 × 10 -2 Ωcm or more,
Preferably, it is 1 × 10 −1 Ωcm or more. Tensile strength is 90kg / mm 2 and tensile modulus is 3
If it is less than ton / mm 2 , since the reinforcing effect of the resin is small when used as a carbon fiber for resin reinforcement, the resulting molding material cannot have sufficient strength and elastic modulus. Further, if the volume specific electric resistance is smaller than 5 × 10 −2 Ωcm, when the molding material is similarly formed, the electric resistance is small, that is, the conductivity is improved. Can no longer be used. Here, the tensile strength and the tensile elastic modulus are values measured using a single fiber sample according to JIS R7601, and the volume resistivity is a value measured using a yarn sample according to JIS R7601.

次にこの炭素繊維から樹脂強化用の炭素短繊維集合体を製造する方法につい説明する。この様にして得られた炭素繊維トウは、サイジング剤を炭素繊維全量に対して、通常0.
2〜10重量%、好ましくは0.5〜7重量%添着して集束させる。サイジング剤の添着量が0.2重量%未満では炭素繊維の集束性が劣り、後で1〜30mmの短繊維にきりそろえたときに嵩密度の小さい、取扱性の不良な炭素短繊維集合体しか得られず、また、10重量%を超えると、同様に後で得られる炭素短繊維集合体の集束性が良すぎて、かえって樹脂中での分散性が低下し炭素短繊維強化熱可塑性樹脂の物性が低下するため好ましくない。
Next, a method for producing a carbon short fiber aggregate for resin reinforcement from the carbon fiber will be described. In the carbon fiber tow thus obtained, the sizing agent with respect to the total amount of the carbon fiber is usually at 0.
2-10 wt.%, Preferably 0.5-7 wt. When the amount of sizing agent is less than 0.2% by weight, the carbon fiber has poor convergence, and when it is later aligned into 1 to 30 mm short fibers, the bulk density of carbon short fibers is low and the handling property is poor. In addition, when the amount exceeds 10% by weight, the short carbon fiber aggregate obtained later is too good in convergence, and the dispersibility in the resin is lowered, and the short carbon fiber reinforced thermoplastic resin is obtained. This is not preferable because the physical properties of the resin deteriorate.

サイジング剤の添着方法としては、1,000〜20,000本の炭素繊維トウにサイジング剤を含浸させた後、乾燥させるという方法がある。含浸させるときのサイジング剤の形態は、適当な溶剤に溶解させるか、界面活性剤を用いてエマルションとして水に分散させておけばよい。用いる溶剤としては、2−ブタノン、テトラヒドロフラン、N,N−ジメチルホルムアミド、アセトン、クロロホルム、ジクロロメタン等がある。   As a method for attaching the sizing agent, there is a method in which 1,000 to 20,000 carbon fiber tows are impregnated with the sizing agent and then dried. The form of the sizing agent for impregnation may be dissolved in an appropriate solvent or dispersed in water as an emulsion using a surfactant. Examples of the solvent used include 2-butanone, tetrahydrofuran, N, N-dimethylformamide, acetone, chloroform, and dichloromethane.

サイジング剤としては、この目的で通常用いられる任意の物が使用でき、その中から炭素繊維トウの集束性の良いものを選択すればよい。具体的には、エポキシ化合物、飽和または不飽和ポリエステル、ポリフェニレンサルファイト、ポリフェニレンエーテル、ポリカーボネート、ポリオキシメチレン、ポリスチレン、ポリオレフィン、ポリウレタン樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリアミド樹脂などのホモポリマー、またはコポリマー等が挙げられる。このうち特にエポキシ化合物、水溶性ポリアミド化合物、またはポリウレタン化合物が好ましい。   As the sizing agent, any material usually used for this purpose can be used, and a carbon fiber tow with good converging property may be selected from them. Specifically, homopolymers or copolymers such as epoxy compounds, saturated or unsaturated polyesters, polyphenylene sulfites, polyphenylene ethers, polycarbonates, polyoxymethylenes, polystyrenes, polyolefins, polyurethane resins, acrylic resins, vinyl acetate resins, polyamide resins, etc. Etc. Among these, an epoxy compound, a water-soluble polyamide compound, or a polyurethane compound is particularly preferable.

炭素短繊維集合体は、サイジング剤により集束された炭素繊維トウを周知の切断方法を用いて切りそろえたもので、通常1〜30mm、好ましくは3〜10mmの任意の長さ、またはその範囲内の長さの混合物である。繊維長が1mmよりも短いと、カッテング時に繊維トウにかかる剪断力により糸が最低単糸レベルにまでバラケてしまい、集束した短繊維集合体を得ることができず、また、30mmを超えると、熱可塑性樹脂強化用として用いた場合に、樹脂との混合の際に均一な混合物を得ることが困難になる。   The short carbon fiber aggregate is obtained by cutting carbon fiber tows focused by a sizing agent using a known cutting method, and usually has an arbitrary length of 1 to 30 mm, preferably 3 to 10 mm, or the range thereof. It is a mixture of lengths. If the fiber length is shorter than 1 mm, the yarn is scattered to the lowest single yarn level due to the shearing force applied to the fiber tow at the time of cutting, and a concentrated short fiber aggregate cannot be obtained. When used for reinforcing a thermoplastic resin, it becomes difficult to obtain a uniform mixture upon mixing with the resin.

また、得られた炭素短繊維集合体は、特に熱可塑性樹脂強化用として用いる場合には、嵩密度が通常300g/l以上、好ましくは350g/l以上、さらに好ましくは400g/l以上であることが望ましい。嵩密度が300g/lより小さいとその嵩高さのために樹脂とのブレンドを行う際のフィード性が低下してしまう。
以下、本発明を実施例を用いてより詳細に説明するが、本発明は、その要旨を超えない限り、実施例に限定されるものではない。
In addition, the obtained short carbon fiber aggregate, particularly when used for reinforcing a thermoplastic resin, has a bulk density of usually 300 g / l or more, preferably 350 g / l or more, more preferably 400 g / l or more. Is desirable. When the bulk density is less than 300 g / l, the feed property at the time of blending with the resin is lowered due to its bulkiness.
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to an Example, unless the summary is exceeded.

コールタール1重量部に、沸点範囲が240〜290℃の予め水添された芳香族油を1重量部加え混合した後に、濾過助剤として、市販の珪藻土濾過助剤“セライト505”(商品名、セライト社製)を0.01重量部加え、目開き10μmのキャンドルフィルターを通して、濾過を行なった。得られた濾液を、温度450℃、水素圧力150kg/cm2に維持されたオートクレーブに連続的に供給した。平均滞留時間は60分とした。得ら
れた反応物を目開き0.5μの焼結フィルターを通してさらに濾過を行った後、濾液を減圧下、蒸留して水添ピッチを得た。得られた水添ピッチを窒素ガスバブリング下、430℃で140分加熱処理し、光学的異方性割合100%、メトラー軟化点302℃で、炭素含有率96重量%、灰分量20ppmの紡糸ピッチを調製した。
After adding 1 part by weight of a pre-hydrogenated aromatic oil having a boiling range of 240 to 290 ° C. to 1 part by weight of coal tar and mixing, a commercially available diatomaceous earth filter aid “Celite 505” (trade name) And 0.01 parts by weight of Celite), and filtered through a candle filter having an opening of 10 μm. The obtained filtrate was continuously supplied to an autoclave maintained at a temperature of 450 ° C. and a hydrogen pressure of 150 kg / cm 2 . The average residence time was 60 minutes. The obtained reaction product was further filtered through a sintered filter having an opening of 0.5 μm, and the filtrate was distilled under reduced pressure to obtain a hydrogenated pitch. The obtained hydrogenated pitch was heat-treated at 430 ° C. for 140 minutes under nitrogen gas bubbling, and a spinning pitch having an optical anisotropy ratio of 100%, a Mettler softening point of 302 ° C., a carbon content of 96% by weight and an ash content of 20 ppm. Was prepared.

次いで、該紡糸用ピッチをシリコン系油剤で集束させながら口金温度330℃で紡糸し、フィラメント数8000本、繊維径13μmの連続長ピッチ繊維トウを得た。
次いで、ピッチ繊維トウを空気中で不融化処理後、窒素ガス中770℃、滞留時間2分の条件で焼成し炭素繊維を調製した。得られた炭素繊維は、炭素含有率89%、繊維径1
2.4μ、引張強度100kg/mm2、引張弾性率5.0ton/mm2であり、3.5Ωcmという高い体積固有電気抵抗を示した。得られた炭素繊維にエポキシ系サイジング剤を6重量%添着した後、カッテング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は510g/lであった。
Next, spinning was performed at a die temperature of 330 ° C. while concentrating the spinning pitch with a silicon-based oil, and a continuous long pitch fiber tow having 8000 filaments and a fiber diameter of 13 μm was obtained.
Next, the pitch fiber tow was infusibilized in air and then fired in nitrogen gas at 770 ° C. under a residence time of 2 minutes to prepare carbon fibers. The obtained carbon fiber has a carbon content of 89% and a fiber diameter of 1
The volume resistivity was 2.4 μ, the tensile strength was 100 kg / mm 2 , the tensile modulus was 5.0 ton / mm 2 , and a high volume specific electrical resistance of 3.5 Ωcm was exhibited. After 6% by weight of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting device to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 510 g / l.

この炭素短繊維集合体15重量部とポリカーボネート樹脂ペレット85重量部とをドライブレンドした後、スクリュー押し出し機に仕込み、溶融混合してストランド状に押し出し、水冷後ペレット状に切断した。押し出し機への仕込みはスムースで、かつ炭素短繊維集合体と樹脂とは均一な分散状態であった。この様にして得られた炭素短繊維強化成形材料を90℃、4時間乾燥させた後、射出成形し試験片を作成した。この試験片の曲げ強度(ASTM−D790による)は1350kg/cm2、体積固有電気抵抗は、1×108Ωcmであった。 After 15 parts by weight of this short carbon fiber aggregate and 85 parts by weight of polycarbonate resin pellets were dry blended, they were charged into a screw extruder, melted and mixed, extruded into strands, cooled to water, and cut into pellets. The feeding into the extruder was smooth, and the short carbon fiber aggregate and the resin were uniformly dispersed. The carbon short fiber reinforced molding material thus obtained was dried at 90 ° C. for 4 hours and then injection molded to prepare a test piece. The bending strength (according to ASTM-D790) of this test piece was 1350 kg / cm 2 , and the volume specific electric resistance was 1 × 10 8 Ωcm.

実施例1と全く同様にして調製した不融化繊維トウを、窒素ガス中820℃、滞留時間2分の条件で焼成し炭素繊維を調製した。得られた炭素繊維は、炭素含有率91%、繊維径12.3μ、引張強度120kg/mm2、引張弾性率6.5ton/mm2であり1.7×10-1Ωcmという高い体積固有抵抗を示した。
得られた炭素繊維にエポキシ系サイジング剤を5重量%添着した後、カッテング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は500g/lであった。
An infusible fiber tow prepared in exactly the same manner as in Example 1 was baked in nitrogen gas at 820 ° C. for a residence time of 2 minutes to prepare a carbon fiber. The obtained carbon fiber has a high volume resistivity of 1.7 × 10 −1 Ωcm with a carbon content of 91%, a fiber diameter of 12.3 μ, a tensile strength of 120 kg / mm 2 and a tensile elastic modulus of 6.5 ton / mm 2. showed that.
After 5 wt% of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting device to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 500 g / l.

また、実施例1と同様にして調製した、この繊維をポリカーボネート樹脂中に15重量%分散させて成る炭素短繊維強化成形材料の曲げ強度は1400kg/cm2 、体積固
有電気抵抗は、2×107Ωcmであった。
Further, the short carbon fiber reinforced molding material prepared by dispersing the fibers in the same manner as in Example 1 in a weight of 15% by weight is 1400 kg / cm 2 , and the volume resistivity is 2 × 10. 7 Ωcm.

実施例1と全く同様にして調製した不融化繊維トウを、窒素ガス中950℃、滞留時間0.07分の条件で焼成し炭素繊維を調製した。得られた炭素繊維は、炭素含有率91%、繊維径12.2μ、引張強度120kg/mm2、引張弾性率6.2ton/mm2であり1.8×10-1Ωcmという高い体積固有抵抗を示した。
得られた炭素繊維にエポキシ系サイジング剤を5重量%添着した後、カッテング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は520g/lであった。
An infusible fiber tow prepared in exactly the same manner as in Example 1 was baked in nitrogen gas at 950 ° C. for a residence time of 0.07 minutes to prepare carbon fibers. The obtained carbon fiber has a high volume resistivity of 1.8 × 10 −1 Ωcm with a carbon content of 91%, a fiber diameter of 12.2 μ, a tensile strength of 120 kg / mm 2 and a tensile elastic modulus of 6.2 ton / mm 2. showed that.
After 5 wt% of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting device to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 520 g / l.

比較例1
実施例1と同様にして得られた水添ピッチを窒素ガスバブリング下、430℃で40分加熱処理し、光学的異方性割合30%、メトラー軟化点280℃で、炭素含有率91重量%、灰分量20ppmの紡糸ピッチを調製した。
次いで、この紡糸ピッチをシリコン系油剤で収束させながら口金温度310℃で紡糸し、フィラメント数8000本、繊維径13μmの連続長ピッチ繊維を得た。
Comparative Example 1
The hydrogenated pitch obtained in the same manner as in Example 1 was heat-treated at 430 ° C. for 40 minutes under nitrogen gas bubbling, with an optical anisotropy ratio of 30%, a Mettler softening point of 280 ° C., and a carbon content of 91% by weight. A spinning pitch with an ash content of 20 ppm was prepared.
Next, the spinning pitch was spun at a die temperature of 310 ° C. while converging with a silicon-based oil agent, and a continuous long pitch fiber having 8000 filaments and a fiber diameter of 13 μm was obtained.

次いで、ピッチ繊維を空気中で不融化処理後、窒素ガス中820℃、滞留時間2分の条件で焼成し炭素繊維を調製した。得られた炭素繊維の引張強度は40kg/mm2と低い
ものであった。引張弾性率は3.0ton/mm2、体積固有抵抗は3.5Ωcmであっ
た。
得られた炭素繊維にエポキシ系サイジング剤を5重量%添着した後、カッティング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は490g/lであった。
Next, the pitch fiber was infusibilized in air and then fired in nitrogen gas at 820 ° C. for 2 minutes in residence time to prepare carbon fiber. The resulting carbon fiber had a low tensile strength of 40 kg / mm 2 . The tensile modulus was 3.0 ton / mm 2 and the volume resistivity was 3.5 Ωcm.
After 5 wt% of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting apparatus to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 490 g / l.

また、実施例1と同様にして調製した、上記繊維をポリカーボネート樹脂中に15重量%分散させて成る炭素繊維強化成形材料の曲げ強度は1150kg/cm2、体積固有電
気抵抗は、3×108Ωcmであり、炭素繊維の強度が低いために補強効果が小さかった

比較例2
水添反応後の0.5μ焼結フィルターによる濾過を行わなかった以外は、実施例3と全く同様にして炭素繊維を調製した。紡糸ピッチの物性は光学的異方性割合100%、メトラー軟化点302℃で、炭素含有率96重量%、灰分量80ppmであった。この紡糸ピッチから得られた炭素繊維の引張強度は60kg/mm2と低いものであった。引張弾性
率は6.0ton/mm2、体積固有抵抗は1.7×10-1Ωcmであった。
Further, a carbon fiber reinforced molding material prepared by the same procedure as in Example 1 and having the above fibers dispersed in a polycarbonate resin by 15% by weight has a bending strength of 1150 kg / cm 2 and a volume specific electrical resistance of 3 × 10 8. The reinforcing effect was small due to the low strength of the carbon fiber.
Comparative Example 2
Carbon fibers were prepared in exactly the same manner as in Example 3 except that filtration with a 0.5 μ sintered filter after the hydrogenation reaction was not performed. The physical properties of the spinning pitch were an optical anisotropy ratio of 100%, a Mettler softening point of 302 ° C., a carbon content of 96% by weight, and an ash content of 80 ppm. The tensile strength of the carbon fiber obtained from this spinning pitch was as low as 60 kg / mm 2 . The tensile modulus was 6.0 ton / mm 2 and the volume resistivity was 1.7 × 10 −1 Ωcm.

得られた炭素繊維にエポキシ系サイジング剤を5重量%添着した後、カッティング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は490g/lであった。
また、実施例1と同様にして調製した、この繊維をポリカーボネート樹脂中に15重量%分散させて成る炭素短繊維強化成形材料の曲げ強度は1250kg/cm2、体積固有
電気抵抗は、2×107Ωcmであり、炭素繊維の強度が低いために補強効果が小さかっ
た。
After 5 wt% of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting apparatus to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 490 g / l.
The short carbon fiber reinforced molding material prepared by dispersing the fibers in the same manner as in Example 1 and having a weight of 15% by weight dispersed in polycarbonate resin has a bending strength of 1250 kg / cm 2 and a volume specific electrical resistance of 2 × 10. The reinforcing effect was small due to the low strength of the carbon fiber.

比較例3
実施例1と全く同様にして調製した不融化繊維トウを、窒素ガス中1200℃、滞留時間7秒の条件で焼成し炭素繊維を調製した。得られた炭素繊維は、炭素含有率99%、繊維径11.5μ、引張強度200kg/mm2、引張弾性率19.0ton/mm2であり、体積固有電気抵抗は2×10-3Ωcmであった。
Comparative Example 3
An infusible fiber tow prepared in exactly the same manner as in Example 1 was baked in nitrogen gas at 1200 ° C. and a residence time of 7 seconds to prepare carbon fibers. The obtained carbon fiber has a carbon content of 99%, a fiber diameter of 11.5 μ, a tensile strength of 200 kg / mm 2 , a tensile elastic modulus of 19.0 ton / mm 2 , and a volume specific electrical resistance of 2 × 10 −3 Ωcm. there were.

得られた炭素繊維にエポキシ系サイジング剤を6重量%添着した後、カッテング装置に連続的にフィードして、カット長6mmの炭素短繊維集合体を得た。得られた物の嵩密度は510g/lであった。
また、実施例1と同様にして調製した、この繊維をポリカーボネート樹脂中に15重量%分散させて成る炭素繊維強化成形材料の曲げ強度は1450kg/cm2、体積固有電
気抵抗は、1×10-2Ωcmであり、強度は高いものの電気抵抗が低い物しか得られなかった。
以上の結果を表1に示す。
After 6 wt% of an epoxy sizing agent was attached to the obtained carbon fiber, it was continuously fed to a cutting apparatus to obtain a short carbon fiber aggregate having a cut length of 6 mm. The bulk density of the obtained product was 510 g / l.
Further, a carbon fiber reinforced molding material prepared by dispersing in the same manner as in Example 1 in which 15% by weight of this fiber is dispersed in a polycarbonate resin has a bending strength of 1450 kg / cm 2 and a volume specific electrical resistance of 1 × 10 Only 2 Ωcm, which had high strength but low electrical resistance, was obtained.
The results are shown in Table 1.

Figure 0003698156
Figure 0003698156

Claims (4)

引張強度が90kg/mm2以上、引張弾性率が3ton/mm2以上であり、かつ電気抵抗が5×10-2Ωcm〜3.5Ωcmである、炭素含有率が85%以上の炭素繊維。 Carbon fiber having a carbon content of 85% or more, having a tensile strength of 90 kg / mm 2 or more, a tensile modulus of 3 ton / mm 2 or more, and an electrical resistance of 5 × 10 −2 Ωcm to 3.5 Ωcm. 引張強度が100kg/mm2以上、引張弾性率が4ton/mm2以上であり、かつ電気抵抗が1×10-1Ωcm〜3.5Ωcmである、炭素含有率が85%以上の炭素繊維。 Carbon fiber having a carbon content of 85% or more, having a tensile strength of 100 kg / mm 2 or more, a tensile modulus of 4 ton / mm 2 or more, and an electrical resistance of 1 × 10 −1 Ωcm to 3.5 Ωcm. 引張強度が90〜120kg/mm2、引張弾性率が3〜6.5ton/mm2であり、かつ電気抵抗が5×10-2〜3.5Ωcmである、炭素含有率が85%以上の炭素繊維。 Carbon having a tensile strength of 90 to 120 kg / mm 2 , a tensile elastic modulus of 3 to 6.5 ton / mm 2 and an electric resistance of 5 × 10 −2 to 3.5 Ωcm and a carbon content of 85% or more. fiber. 請求項1ないし3のいずれかに記載の炭素繊維を1000〜20000本集束させてなる炭素繊維トウ。
A carbon fiber tow obtained by focusing 1000 to 20000 carbon fibers according to any one of claims 1 to 3.
JP2003405581A 2003-12-04 2003-12-04 Carbon fiber Expired - Fee Related JP3698156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405581A JP3698156B2 (en) 2003-12-04 2003-12-04 Carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405581A JP3698156B2 (en) 2003-12-04 2003-12-04 Carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31525293A Division JP3531194B2 (en) 1993-12-15 1993-12-15 Carbon fiber aggregate

Publications (2)

Publication Number Publication Date
JP2004137664A JP2004137664A (en) 2004-05-13
JP3698156B2 true JP3698156B2 (en) 2005-09-21

Family

ID=32463959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405581A Expired - Fee Related JP3698156B2 (en) 2003-12-04 2003-12-04 Carbon fiber

Country Status (1)

Country Link
JP (1) JP3698156B2 (en)

Also Published As

Publication number Publication date
JP2004137664A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US4014725A (en) Method of making carbon cloth from pitch based fiber
US3784679A (en) Process for producing carbon fibres
JPH04263616A (en) Carbon thread and its manufacturing method
JP3698156B2 (en) Carbon fiber
JP2004176236A (en) Method for producing carbon fiber
JP3531194B2 (en) Carbon fiber aggregate
JP6133091B2 (en) Pitch-based carbon fiber and method for producing the same
KR102016272B1 (en) Carbon material and its manufacturing method
JPS6256198B2 (en)
KR102247155B1 (en) Carbon filament made from the hybrid precursor fiber and manufacturing method thereof
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH0532494B2 (en)
JP2780231B2 (en) Carbon fiber production method
JP3648865B2 (en) Carbon fiber manufacturing method
JP3031626B2 (en) Binder, impregnating agent, and method for producing them
JPH04370223A (en) Carbon fiber and its production
JP2817232B2 (en) Method for producing high-performance carbon fiber
JPH1025626A (en) Production of carbon fiber
JP4387056B2 (en) Carbon fiber bundle
JPH01282325A (en) Pitch-based carbon fibersheet and production thereof
KR101470261B1 (en) Pitch based carbon fiber and method of producing the same
US20230086954A1 (en) Pitch-based ultrafine carbon fibers and pitch-based ultrafine carbon fiber dispersion
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JP3024319B2 (en) Method for producing high strand strength carbon fiber
JP3321913B2 (en) Method for producing pitch-based carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees