[go: up one dir, main page]

JP3694103B2 - Naturally degradable composite fiber and its application products - Google Patents

Naturally degradable composite fiber and its application products Download PDF

Info

Publication number
JP3694103B2
JP3694103B2 JP12599896A JP12599896A JP3694103B2 JP 3694103 B2 JP3694103 B2 JP 3694103B2 JP 12599896 A JP12599896 A JP 12599896A JP 12599896 A JP12599896 A JP 12599896A JP 3694103 B2 JP3694103 B2 JP 3694103B2
Authority
JP
Japan
Prior art keywords
polymer
fiber
composition
aliphatic polyester
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12599896A
Other languages
Japanese (ja)
Other versions
JPH09310229A (en
Inventor
雅男 松井
英一 小関
義和 近藤
宏史 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12599896A priority Critical patent/JP3694103B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to CNB2004100492695A priority patent/CN1311113C/en
Priority to US09/180,628 priority patent/US6174602B1/en
Priority to EP04023800A priority patent/EP1520918B1/en
Priority to PCT/JP1997/001588 priority patent/WO1997043472A1/en
Priority to CNB971945241A priority patent/CN1159476C/en
Priority to EP97918408A priority patent/EP0905292B1/en
Priority to DE69737075T priority patent/DE69737075T2/en
Priority to DE69731290T priority patent/DE69731290T2/en
Priority to TW86106390A priority patent/TW396220B/en
Publication of JPH09310229A publication Critical patent/JPH09310229A/en
Priority to HK99103514A priority patent/HK1018633A1/en
Priority to US09/713,033 priority patent/US6322887B1/en
Priority to US09/938,578 priority patent/US6440556B2/en
Priority to US10/187,280 priority patent/US6579617B2/en
Priority to US10/426,797 priority patent/US6844062B2/en
Priority to US10/863,775 priority patent/US6844063B2/en
Application granted granted Critical
Publication of JP3694103B2 publication Critical patent/JP3694103B2/en
Priority to HK05108787A priority patent/HK1074653A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自然分解性であり、且つ優れた柔軟性や大きい比表面積を有する繊維及び繊維構造物を製造することができる新規な分割可能な複合繊維及びその応用製品に関する。
【0002】
【従来の技術】
合成樹脂からなる従来の合成繊維は、自然環境下での分解速度が遅く、また焼却時の発熱量が多く炉を傷め、更に空気中の炭酸ガスを増やすため、自然環境保護の見地からの見直しが必要である。このため、脂肪族ポリエステルからなる自然分解性繊維が開発されつつあり、環境保護への貢献が期待されている。脂肪族ポリエステルのあるものは、優れた繊維性能を持ち、新しい特徴ある繊維素材として期待されるが、さらに高度な柔軟性や特殊な断面形態や大きな比表面積に基ずく各種機能を有する繊維および繊維製品が望まれる。このような要請に対し、従来の合成繊維では、分割型の複合繊維を分割する方法で、柔軟性や光沢に優れた編織物、不織布、人工皮革、人工スェード、高性能ワイピングクロス、高性能フイルターなどが開発され広く用いられている。しかし、自然環境下で分解する繊維の分野では、いまだ分割型複合繊維は提案されていない。その理由は、分割に適する紡糸材料(ポリマー)の組合わせや分割方法が、いまだ知られていないことにある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、自然分解性であり、改良された分割可能性を有し、優れた柔軟性や大きい比表面積を有する繊維や繊維構造物を製造することができる新規な複合繊維およびその応用製品を提供するにある。本発明者らは、生分解性ポリマーの化学処理による分解について鋭意研究し、化学処理によって分割可能な本発明繊維を見出だしたものである。
【0004】
【課題を解決するための手段】
上記目的は、(1)融点140℃以上の脂肪族ポリエステルの結晶性重合体[A]と、脂肪族ポリエステルに対し「スルホン基を持つ有機化合物および硫酸エステル基を持つ有機化合物」よりなる群より選ばれた少なくとも1種の化合物が1〜50重量%混合された組成物[B]とが、単繊維内で複合されており、且つ(2)横断面において、組成物[B]が重合体[A]を少なくとも2つの部分に分離していることを特徴とする、本発明複合繊維によって達成される。
【0005】
ここで、脂肪族ポリエステルとは、(1)グリコール酸、乳酸、ヒドロキシブチルカルボン酸などのようなヒドロキシアルキルカルボン酸、(2)グリコリド、ラクチド、ブチロラクトン、カプロラクトンなどのような脂肪族ラクトン、(3)エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオールなどのような脂肪族ジオール、(4)ポリエチレングリコール、ポリプロピレンリコール、ポリブチレンエーテル、それらの共重合体などのようなポリアルキレングリコール、(5)ジエチレングリコール、トリエチレングリコール、エチレン/プロピレングリコール、ビスヒドロキシエトキシブタンなどのようなポリアルキレンエーテルのオリゴマー、(6)ポリプロピレンカーボネート、ポリブチレンカーボネート、ポリヘキサンカーボネート、ポリオクタンカーボネート、ポリデカンカーボネートなどのようなポリアルキレンカーボネートグリコールおよびそれらのオリゴマー、(7)コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸などの脂肪族ジカルボン酸など、脂肪族ポリエステル重合原料に由来する成分を主成分すなわち50重量%以上(特に60%以上)とするものであって、脂肪族ポリエステルのホモポリマー、脂肪族ポリエステルのブロック又は/及びランダム共重合ポリマー、及び脂肪族ポリエステルに他の成分、例えば芳香族ポリエステル、ポリエーテル、ポリカーボネート、ポリアミド、ポリ尿素、ポリウレタン、ポリオルガノシロキサンなどを50重量%以下(ブロック又は/及びランダム)共重合したもの及び/又は混合したものをすべて包含する。
【0006】
脂肪族ポリエステルを共重合や混合によって変性する目的は、結晶性の低下、融点の低下(重合温度や成型温度の低下)、溶融流動性の改良、耐衝撃性、柔軟性や弾性回復性の改良、耐熱性、ガラス転移温度や熱収縮性の低下または上昇、摩擦係数、染色性、親水性や撥水性の改良、他成分との接着性の改良、分解性の向上又は抑制などが挙げられる。
【0007】
本発明複合繊維は、融点が140℃以上の脂肪族ポリエステルの結晶性重合体[A]と、特定の成分が混合された脂肪族ポリエステル系組成物[B]とが複合(接合)されている。組成物[B]は、アルカリ水溶液による分解性が、重合体[A]よりも大きいために、本発明繊維はアルカリ水溶液処理によって容易に分割される。
【0008】
重合体[A]は、アルカリ水溶液による分解性が相対的に小さいものであって、好ましいものの具体例としては、ポリL−乳酸(融点175℃)、ポリD−乳酸(同175℃)、ポリ3−ヒドロキシブチレート(同180℃)、ポリグリコリド(同230℃)などのホモポリマー、及びそれらを主成分とし少量の他成分を共重合又は/及び混合した変成ポリエステルが挙げられる。一般に、ブロック共重合では結晶性や融点の低下は緩やかであり、共重合成分の比率は50%以下、特に1〜40%、多くの場合1〜30%が好ましいが、ランダム共重合では結晶性や融点の変化が顕著で、共重合成分の比率は0.5〜20%、特に1〜10%が好ましいことが多い。勿論、共重合による融点や結晶性の変化は、共重合成分によって大きく変わるので、DSCによる結晶の溶融吸熱量と融点に注意する必要がある。他成分の混合による融点や結晶性の変化も、混合成分や混合率によりかなり変わるが、ランダム共重合ほど顕著でないことが多い。
【0009】
重合体[A]には、アルカリによる加水分解を抑制するため、撥水成分を混合または共重合によって導入することも好ましい。撥水成分としては、炭素数10以上、特に15以上のアルキル基を持つ脂肪酸、脂肪族アルコール、それらのエステル、アミド、ワックス類、ポリエチレンおよびその誘導体、ポリ有機シロキサン(例えばポリジメチルシロキサン)およびその誘導体などが挙げられる。混合率または共重合比率(重量)は、特に限定されないが、多くの場合0.1〜20%、特に0.5〜10%程度の範囲が好ましく用いられる。重合体[A]の分子量は特に限定されないが、多くの場合、5万以上が好ましく、7万〜30万の範囲が特に好ましく、8万〜20万の範囲が最も好ましい。
【0010】
本発明において融点は、走査型示差熱量計(以下DSCと記す)を用い、十分に延伸又は/及び熱処理し且つ乾燥した試料について、試料重量約10mg、窒素中、昇温速度10℃/minの条件で測定した時の、ポリマー結晶の溶融による吸熱のピーク値温度である。図10に、DSC曲線を模式的に示す。図はほとんど結晶化していない急冷試料の測定例で、4はガラス転移によるベースラインの変化を示し、5は測定時の加熱による結晶化の発熱ピークを示し、6は結晶の溶融による吸熱ピークを示す。十分に結晶化した試料では、ガラス転移によるベースラインの変化4や発熱ピーク5は消失し殆ど観測されない。融点は、結晶の溶融による吸熱ピーク6の極小値(中心値)の温度とし、吸熱ピーク6の全吸熱量(積分値、図7の斜線部の面積に比例する)を溶融時の吸熱量とする。ガラス転移点は、ベースラインの変化4の中心温度であるが、粘弾性の測定での力学損失の主分散のピーク値温度でも同じである。吸熱量の単位は、ジュール/グラム(以下J/gと記す)とする。混合物やブロック共重合体などで、融点が複数存在する場合は、最も高いものを(本発明における)融点とする。但し、最も高温の吸熱ピークが例えば吸熱量5J/g未満と無視し得るほどで、それより低温に例えば吸熱量20J/g以上の主ピークがあるような場合は、実質的な融点(ポリマーが極度に軟化、流動開始する温度)は、主ピークであると見なす場合がある。なお溶融吸熱量は、全ての溶融吸熱ピークの合計とする。
【0011】
重合体[A]は、結晶性が高く、加水分解速度が低い成分であるが、さらに耐熱性が高く熱収縮性が低いことが好ましい。本発明繊維から得られる製品の強度や耐熱性の見地から、重合体[A]の融点は、140℃以上の必要があり、150℃以上が好ましく、160℃以上が特に好ましく、170℃以上が最も好ましい。同様に実用的見地から、重合体[A]の溶融時の吸熱量は、20J/g以上が好ましく、30/g以上が特に好ましく、40J/g以上が最も好ましい。なお結晶性脂肪族ポリエステルのホモポリマーの溶融吸熱量は、多くの場合50J/g前後又はそれ以上である。
【0012】
組成物[B]は、結晶性または非晶性の脂肪族ポリエステルと、特定の親水性化合物すなわち「スルホン基を持つ有機化合物および硫酸エステル基を持つ有機化合物」よりなる群より選ばれた少なくとも1種の化合物とが混合されたものである。この親水性成分によって、組成物[B]は水及びアルカリ金属(ナトリウム、カリウム、リチウム、カルシウム、マグネシウムなど)化合物の水溶液に極めて敏感になり、容易に加水分解され、その結果、本発明複合繊維は分割され、または他の手段例えば機械的手段や化学的膨潤による分割方法を併用した場合の分割が容易となる。このためには、繊維状での組成物[B]の弱アルカリ水溶液での、例えば炭酸ナトリウム(炭酸ソーダ)3重量%の水溶液中98〜100℃での分解速度すなわち単位時間当たりの重量減少率は、重合体[A]のそれの15倍以上、特に2倍以上であることが好ましく、5倍以上であることが特に好ましく、10倍以上であることが最も好ましく、通常5〜200倍程度の範囲が広く用いられる
組成物[B]に混合される親水性化合物は、脂肪族ポリエステルと溶融混合可能で、且つ組成物[B]は溶融複合紡糸可能であることが最も好ましい。
【0014】
組成物[B]に混合される親水性化合物である、スルホン基を持つ有機化合物および硫酸エステル基を持つ有機化合物としては、例えばビニルスルホン酸、スルホン化スチレン(ナトリウム塩)、メタリルスルホン酸ソーダ、2−アクリルアミド2−メチルプロパンスルホン酸ソーダなどのスルホン基(ナトリウム塩など)を持つビニルモノマーを重合または共重合した熱可塑性ポリマー、アルキルベンゼンスルホン酸ソーダ、各種高級アルコールの硫酸エステル(ナトリウム塩)などの界面活性剤が挙げられる。なお、これらのスルホン化合物や硫酸エステル類は、熱可塑性が必ずしも高くない場合があるが、非イオン界面活性剤やポリエチレングリコールなどのポリエーテルと混合して、すぐれた溶融流動性が得られることが多い。特に、スルホン化合物は耐熱性に優れるので、実用性が最も高い。
【0016】
成物[B]に混合する上記親水性化合物の混合比率は、1〜50重量%の範囲であるが、多くの場合、3〜30重量%程度の範囲が好適であり、5〜20重量%の範囲が最も広く用いられる。
【0017】
組成物[B]の主成分(50%以上)は、脂肪族ポリエステルであり、アルカリによって容易に加水分解するものが好ましい。そのためには、結晶性が低いもの、例えば溶融時の吸熱量が30J/g以下、特に20J/g以下のものが好ましく、非晶性でも良い。同様に、組成物[B]を形成する脂肪族ポリエステルは、融点120℃以下が好ましく、100℃以下が特に好ましく、同じく融点120℃以下特に100℃以下の脂肪族ポリエステル成分を10重量%以上、特に20%以上共重合又は/及び混合していることも好ましい。同様に、該脂肪族ポリエステルのガラス転移点は30℃以下が好ましく、0℃以下が特に好ましい。融点やガラス転移点が低い脂肪族ポリエステルは、100℃以下のアルカリ水溶液での、分解速度が大きい。
【0018】
組成物[B]の分子量は、特に限定されないが、重合体[A]と溶融複合紡糸するためには、溶融粘度が重合体[A]とほぼ等しいまたは近似していることが望ましく、組成物全体の重量平均分子量も重合体[A]のそれに近いことが好ましい。すなわち組成物[B]の平均分子量は、5万以上が好ましく、7万〜30万が特に好ましく、8〜20万の範囲が最も好ましい。
【0019】
組成物[B]は脂肪族ポリエステルと親水性化合物とを混合して得られる。混合方法は特に限定されないが、例えば両者のペレットや粉末を所定比率で混合し、スクリュー押出機や2軸押出混練機などで溶融混合しても良い。同様に、別々に溶融した両者を、機械的攪拌装置で混合してもよく、静止混合器で混合してもよい。静止混合器は、流れの案内装置によってポリマー流の分割と合流を繰り返すもので、機械的攪拌装置と併用してもよい。また、脂肪族ポリエステルの重合に支障がない場合は、重合工程で混合してもよい。組成物[B]は、加工工程で完全に分解除去され、最終製品には残らないことが多い。従って、その着色や染色堅牢度などはあまり問題にならないことが多い。しかし加水分解の生成物は、例えば活性汚泥法で完全に分解されることが好ましい。上記の親水化合物として、本質的に生分解性のものを選ぶのは容易である。
【0020】
本発明複合繊維断面において、組成物[B]が重合体[A]を少なくとも2つの部分(以下層と言うことがある)に分離していることが必要である。この複合構造によって、本発明繊維は、組成物[B]が分解除去されると、複数に分割可能となり、繊度が小さく特殊な断面の繊維が得られる。単繊維内の重合体[A]の層の数が多いほど、細く比表面積の大きい繊維が得られる。分割数は2以上の必要があり、3〜50程度、特に4〜30程度が最も広く用いられる。分割数が3〜10程度のものは、ドレス、ブラウス、女性下着などに好適であり、4〜30のものは超極細繊維として、超高密度編織物、不織布、人工スェード、人工皮革、フィルター、ワイピングクロスなどに好適である。
【0021】
本発明繊維の断面は、円形、長円形、偏平なもの、ひょうたん形、多角形、多葉形その他各種の非円形(異形)、中空形など任意に選ぶことが出来る。単糸繊度(分割前)も同様に、使用目的に応じて任意に選ばれるが、通常0.5〜50デニール、特に1〜30デニールの範囲が好ましく用いられ、1.5〜20デニールの範囲が最も広く用いられる。
【0022】
本発明繊維は、重合体[A]と組成物[B]とを、溶融、湿式、乾式、乾湿式その他の方法で複合紡糸して製造することが出来る。特に溶融紡糸は能率が高く好ましい。溶融紡糸は、例えば巻取速度500〜2000m/minの低速紡糸、巻取速度2000〜5000m/minの高速紡糸、巻取速度5000m/min以上の超高速紡糸が可能であり、必要に応じて延伸や熱処理をすることができる。一般に低速紡糸では3〜6倍程度、高速紡糸では1.5〜2.5倍程度の延伸を行い、超高速紡糸では延伸不要または2倍程度以下の延伸を行うことが多い。紡糸と延伸を連続して行ういわゆるスピンドロー方式も好ましく応用できる。
【0023】
同様に、重合体[A]と組成物[B]とを複合し、オリフィスより紡出すると同時に不織布化するメルトブロー法、フラッシュ紡糸法、スパンボンド法などの方法を応用することも出来る。
【0024】
本発明複合繊維は、連続フィラメント、モノィラメント、マルチフィラメント、切断したステープル、紡績糸等、使用目的に応じて任意の形態とすることが出来る。本発明複合繊維の中で、芯鞘型や海島型以外の複合構造を持ちシリコン成分を多目とし成分間の相互接着性を特に弱めたものは、延伸だけで剥離又は亀裂が見られることがある。加熱、膨潤、アルカリ処理などにより更に剥離・分割が進行する。アルカリ処理は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムその他のアルカリ性化合物の水溶液で、常温又は加熱下で行うことができる。アルカリ化合物の種類、濃度、PH、処理時間などは任意であるが、PH7.5以上、特に8以上が好ましいことが多い。但し、PHが高すぎると、重合体[A]も分解されるので、重合体[A]はあまり分解や損傷されない条件を選ぶことが好ましい。
【0025】
一方分解性や剥離性が弱いときは、加熱や膨潤の他、必要に応じ、仮撚、揉み、叩きなどの機械的方法を応用しても良い。すなわち、本発明複合繊維は、アルカリ処理による分割のほかに、その他の化学的方法や機械的方法による分割をも応用できる。機械的方法などによる剥離法は、組成物[B]をアルカリにより加水分解、完全除去し分割する方法に比べると、重量損失が少ないというメリットがある。一般に、繊維製造中や編織物などに加工中は、剥離や分割は潜在する程度に抑制し、編織物などにした後、例えば染色仕上げ工程で完全に剥離・分割することが好ましいことが多い。極細繊維、超極細繊維は、製造や加工工程の摩擦などで切断し易く、トラブルの原因となることが多いからである。
【0026】
本発明複合繊維には、各種顔料、染料、着色剤、撥水剤、吸水剤、難燃剤、安定剤、酸化防止剤、紫外線吸収剤、金属粒子、無機化合物粒子、結晶核剤、滑剤、可塑剤、抗菌剤、香料その他の添加剤を混合することが出来る。
【0027】
本発明繊維は単独で、又は他の繊維と混用して糸、紐、ロープ、編物、織物、不織布、紙、複合材料その他の構造物の製造に用いることが出来る。他の繊維と混用する場合、綿、羊毛、絹などの天然有機繊維、脂肪族ポリエステル繊維などの自然分解性繊維と混合使用すれば、完全に自然分解性の製品が得られるので特に好ましい。
【0028】
【発明実施の形態】
図1〜9に本発明の実施例である複合繊維の横断面を示す。図において、1は重合体[A]を、2は組成物[B]を、3は中空部をそれぞれ示す。図1は3層並列型で2分割型の例である。並列型とは、両成分が交互に配列されている構造を言う。図2は、放射状の組成物[B]の層により、重合体[A]が4つの層に分割されている例である。放射型とは、一方の成分、例えば組成物[B]が放射状の形態であるものを言う。図3は9層の放射型、図4は9層の多重並列型、図5は並列型と放射型の組合わせ、図6は芯が7個の芯鞘型、図7は不定形の多数の島が海の中に分散している海島型、図8は非円形放射型、図9は中空放射型の例である。図1〜9以外にも、本発明に従って、多種多様な複合が可能である。重合体[A]及び組成物[B]の他に第3の成分を複合することも出来る。例えば、図9の中空部の代わりに第3のポリマーを配置しても良い。
【0029】
重合体[A]と組成物[B]との複合比(断面積比)は、特に限定されず、目的に応じて任意に選択すればよい。多くの場合、複合比は20/1〜1/2の範囲が好ましく、10/1〜1/1の範囲が広く用いられる。すなわち、重合体[A]の比率が、組成物[B]のそれよりも大きいものが、アルカリ加水分解による重量損失が小さく好適であることが多い。
【0030】
【実施例】
以下の実施例において、%、部は特に断らない限り重量比である。脂肪族ポリエステルの分子量は、試料の0.1%クロロホルム溶液のGPC分析において、分子量1000以下の成分を除く高分子成分の分散の重量平均値である。
【0031】
実施例1
分子量8000で両末端が水酸基のポリエチレングリコール(PEG)3部、L−ラクチド98部、オクチル酸錫100ppm、チバガイギー社の酸化防止剤イルガノックス1010、0.1部を混合し、窒素雰囲気中188℃で12分間、2軸押出機中で溶融攪拌重合し、最後にシリコンオイル(ジメチルシロキサン)を0.1%混合した後、口金より押出し冷却チップ化後、140℃窒素雰囲気中で4時間処理(固相重合)し、塩酸を0.1%含むアセトンで洗浄し、続いてアセトンで5回洗浄した後乾燥して、ポリ乳酸(PLA)とPEGのブロック共重合ポリマーBP1を得た。ポリマーBP1は、分子量12.2万、PEG成分の含有率約3%、融点174℃、十分に配向結晶化したときの溶融吸熱量は55J/gで、融点、結晶性などはポリ乳酸ホモポリマーとほぼ同じだが、溶融流動性や延伸性に優れ、溶融複合紡糸が容易である。
【0032】
ポリブチレンサクシネート(PBS)とポリブチレンアジペート(PBA)とのモル比4/1のランダム共重合物で、両末端が水酸基で分子量12.5万、融点93℃のもの80部、分子量20000のPEG5部、L−ラクチド20部、オクチル酸錫30ppm、上記イルガノックス0.1部を混合し、以下上記ポリマーP1と同様に重合して、上記PBS/PBA共重合物とポリ乳酸とのブロック共重合物(PBS/PBA/PLA)と、ポリ乳酸とポリエチレングリコールとのブロック共重合物(PLA/PEG)との混合組成物で融点90℃のMP1を得た。各末端水酸基の反応性が等しくラクチドがすべて反応したと仮定すれば、PBS/PBA/PLAブロック共重合物中のPLA成分は約18%、分子量は約15万程度、PLA/PEGブロック共重合物中のPLA成分は約52%、分子量は約4万と推定され、両ポリマーはPLAという共通成分を持つため親和性がかなり高く、均一に混合されている。
【0033】
分子量20000のPEG80部に、L−ラクチド20部、上記イルガノックス0.2部、オクチル酸錫20ppmを混合し、180℃で30分間反応させて得たPEG/PLAブロック共重合物で分子量4万のものをBP2とする。分子量20000のPEG50部、ドデシルベンゼンスルホン酸ソーダ50部、上記イルガノックス0.3部を混合し、180℃、圧力1Torrで1時間攪拌し完全に脱水したもの1部と、BP2の4部とを180℃で溶融混合したものをMP3とする。MP3と上記MP1とを7/93の比率で220℃で溶融混合したものをMP4とする。
【0034】
BP1とMP4とを別々に220℃で溶融し、それぞれギアポンプで計量しながら複合紡糸口金に送り、BP1を成分1とし、MP4を成分2とし、複合比率(体積比)4/1で図2のような放射状に複合し、220℃、直径0.25mmのオリフィスから紡出し、空気中で冷却、オイリングしながら1500m/minの速度で巻取り、80℃で3,9倍に延伸し続いて緊張下100℃熱処理して、75デニール/25フイラメントの延伸糸F1を得た。比較のため、延伸糸F1と同様にして、但しシリコン化合物を混合しなかったBP1を成分1とし、融点116℃、分子量12.5万のポリブチレンサクシネートを成分2として得た複合繊維を延伸糸F2(比較例)とする。
【0035】
延伸糸F1を用いて丸編物を製造し、それを98℃の炭酸ソーダ3%水溶液に投入し10分間処理した後取り出し、乾燥後、サンドペーパーを巻付けた回転ロールに接触させて、起毛編物K1を得た。本発明繊維から得られた編物K1中の立毛繊維は、殆ど分割されており、編物は極めて柔らかい触感を持っていた。同様に、比較例の延伸糸F2から得た編物を煮沸、乾燥、起毛して得た起毛編物K2の中の立毛繊維は、殆ど分割されておらず、編物K2の触感は硬いものであった。
【0036】
実施例2
実施例1のPBS/PBAランダム共重合物(融点93℃)のかわりに、ポリブチレンサクシネート(ホモポリマー)で融点116℃、分子量12.5万のものを用い、以下実施例1延伸糸F1と同様にして延伸糸F3を得、それから得た丸編み物を実施例1の起毛編物K1と同様にして、起毛編物K3を得た。起毛編物K3は起毛編物K1と同様に立毛が完全に分割されており柔軟性に優れていた。
【0037】
【発明の効果】
本発明によって、自然環境中で分解可能であり、アルカリ性水溶液による処理で容易に分割可能な複合繊維が初めて得られた。本発明繊維は、極めて軟らかく高性能な編織物、不織布、人工スエード、人工皮革、その他の繊維構造物が得られ、衣料、非衣料(例えば高性能ワイピングクロス、カーテン、椅子張りなど)、産業資材(例えば高性能フィルター、吸水材、吸油材など)などの分野に、その特長や特性を生かして応用することが出来る。特に、農業、園芸、土木、水産、機械工業、包装、家庭用品などの分野で使い捨てされるもの、自然分解性が必要な用途に極めて有用で、環境保護にも大きく貢献することが期待される。
【図面の簡単な説明】
【図1】本発明の実施例である3層並列型複合繊維の横断面である。
【図2】本発明の実施例である4層放射型複合繊維の横断面である。
【図3】本発明の実施例である9層放射型複合繊維の横断面である。
【図4】本発明の実施例である9層並列型複合繊維の横断面である。
【図5】 本発明の実施例の並列型と放射型が組合わされた複合繊維の横断面である。
【図6】本発明の実施例である7つの芯を持つ芯鞘型複合繊維の横断面である。
【図7】本発明の実施例である海島型複合繊維の横断面である。
【図8】本発明の実施例である非円形放射型複合繊維の横断面である。
【図9】本発明の実施例である中空放射型複合繊維の横断面である。
【図10】走査型示差熱量計による非晶性ポリマーのDSC曲線の例である。
【符号の説明】
1重合体[A] 2組成物[B] 3中空部
4ガラス転移によるベースラインの変化
5結晶化による発熱ピーク 6結晶の溶融による吸熱ピーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel splittable composite fiber capable of producing fibers and fiber structures that are naturally degradable and have excellent flexibility and a large specific surface area, and an application product thereof.
[0002]
[Prior art]
Conventional synthetic fiber made of synthetic resin has a slow degradation rate in the natural environment, generates a large amount of heat during incineration, damages the furnace, and increases carbon dioxide in the air. is necessary. For this reason, naturally degradable fibers made of aliphatic polyester are being developed, and contribution to environmental protection is expected. Some aliphatic polyesters have excellent fiber performance and are expected as new characteristic fiber materials, but fibers and fibers with various functions based on higher flexibility, special cross-sectional shape and large specific surface area. A product is desired. In response to such demands, conventional synthetic fibers are divided into split-type composite fibers, and are knitted fabrics, nonwoven fabrics, artificial leather, artificial suedes, high-performance wiping cloths, high-performance filters that excel in flexibility and gloss. Have been developed and widely used. However, split-type composite fibers have not been proposed yet in the field of fibers that decompose in a natural environment. The reason is that a combination of spinning materials (polymers) suitable for division and a division method are not yet known.
[0003]
[Problems to be solved by the invention]
An object of the present invention is a novel composite fiber that is naturally degradable, has an improved splitting ability, can produce fibers and fiber structures having excellent flexibility and a large specific surface area, and applications thereof In providing products. The present inventors have intensively studied the degradation of biodegradable polymers by chemical treatment, and found the fiber of the present invention that can be divided by chemical treatment.
[0004]
[Means for Solving the Problems]
The purpose is as follows: (1) a crystalline polymer [A] of an aliphatic polyester having a melting point of 140 ° C. or higher and “ an organic compound having a sulfone group and an organic compound having a sulfate group ” with respect to the aliphatic polyester. A composition [B] in which at least one selected compound is mixed in an amount of 1 to 50% by weight is composited in a single fiber, and (2) the composition [B] is a polymer in a cross section. This is achieved by the composite fiber of the present invention, characterized in that [A] is separated into at least two parts.
[0005]
Here, the aliphatic polyester includes (1) a hydroxyalkyl carboxylic acid such as glycolic acid, lactic acid, and hydroxybutyl carboxylic acid, (2) an aliphatic lactone such as glycolide, lactide, butyrolactone, and caprolactone, (3 ) Aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, etc. (4) Polyalkylene glycols such as polyethylene glycol, polypropylene recall, polybutylene ether, copolymers thereof, (5) Diethylene glycol , Oligomers of polyalkylene ethers such as triethylene glycol, ethylene / propylene glycol, bishydroxyethoxybutane, (6) polypropylene carbonate, polybutylene carbonate , Polyalkylene carbonate glycols such as polyhexane carbonate, polyoctane carbonate, polydecane carbonate and their oligomers, (7) aliphatic such as succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid A component derived from an aliphatic polyester polymerization raw material such as dicarboxylic acid as a main component, that is, 50% by weight or more (especially 60% or more), which is a homopolymer of aliphatic polyester, a block or / and random of aliphatic polyester 50% by weight or less (block or / and lander) of other components such as aromatic polyester, polyether, polycarbonate, polyamide, polyurea, polyurethane, polyorganosiloxane, etc. in the copolymerized polymer and aliphatic polyester ) Includes all copolymerized ones and / or mixed ones.
[0006]
The purpose of modifying aliphatic polyesters by copolymerization and mixing is to reduce crystallinity, lower melting point (reduction in polymerization temperature and molding temperature), improve melt flowability, impact resistance, and improve flexibility and elastic recovery. , Decrease or increase in heat resistance, glass transition temperature and heat shrinkability, friction coefficient, dyeability, improvement in hydrophilicity and water repellency, improvement in adhesion with other components, improvement or suppression of decomposability, and the like.
[0007]
In the composite fiber of the present invention, a crystalline polymer [A] of an aliphatic polyester having a melting point of 140 ° C. or higher and an aliphatic polyester composition [B] in which a specific component is mixed are combined (bonded). . Since the composition [B] is more decomposable by an aqueous alkaline solution than the polymer [A], the fiber of the present invention is easily divided by the aqueous alkaline treatment.
[0008]
The polymer [A] has a relatively small decomposability with an alkaline aqueous solution, and specific examples of preferable ones include poly L-lactic acid (melting point 175 ° C.), poly D-lactic acid (175 ° C.), poly 3-hydroxybutyrate (the same 180 ° C.), polyglycols Lido (same 230 ° C.) homopolymer such, and they were mainly small amounts of other components copolymerized or / and mixed modified polyester and the like. In general, in block copolymerization, the crystallinity and melting point decrease slowly, and the ratio of copolymerization components is preferably 50% or less, particularly 1 to 40%, and in most cases 1 to 30%. And the change in the melting point is remarkable, and the ratio of the copolymer component is preferably 0.5 to 20%, particularly preferably 1 to 10%. Of course, changes in the melting point and crystallinity due to copolymerization vary greatly depending on the copolymerization component, so it is necessary to pay attention to the melting endotherm and melting point of the crystal due to DSC. Changes in melting point and crystallinity due to the mixing of other components also vary considerably depending on the mixing component and mixing ratio, but are often not as significant as random copolymerization.
[0009]
In order to suppress hydrolysis due to alkali, it is also preferable to introduce a water repellent component into the polymer [A] by mixing or copolymerization. Examples of the water repellent component include fatty acids having 10 or more carbon atoms, particularly 15 or more alkyl groups, aliphatic alcohols, esters, amides, waxes, polyethylene and derivatives thereof, polyorganosiloxanes (for example, polydimethylsiloxane) and the like. Derivatives and the like. The mixing ratio or copolymerization ratio (weight) is not particularly limited, but in most cases, a range of about 0.1 to 20%, particularly about 0.5 to 10% is preferably used. The molecular weight of the polymer [A] is not particularly limited, but is preferably 50,000 or more, particularly preferably in the range of 70,000 to 300,000, and most preferably in the range of 80,000 to 200,000.
[0010]
In the present invention, the melting point is about 10 mg of sample weight in nitrogen, heated at a rate of 10 ° C./min for a sample that has been sufficiently stretched or / and heat-treated and dried using a scanning differential calorimeter (hereinafter referred to as DSC). It is the endothermic peak value temperature due to melting of the polymer crystal when measured under conditions. FIG. 10 schematically shows a DSC curve. The figure shows an example of measurement of a quenched sample that is hardly crystallized, 4 shows the change in the baseline due to glass transition, 5 shows the exothermic peak of crystallization due to heating during measurement, and 6 shows the endothermic peak due to melting of the crystal. Show. In a sufficiently crystallized sample, the baseline change 4 and the exothermic peak 5 due to glass transition disappear and are hardly observed. The melting point is the temperature of the minimum value (center value) of the endothermic peak 6 due to melting of the crystal, and the total endothermic amount of the endothermic peak 6 (integral value, proportional to the area of the shaded portion in FIG. 7) is the endothermic amount at the time of melting. To do. The glass transition point is the central temperature of the baseline change 4, but the same applies to the peak value temperature of the main dispersion of mechanical loss in the measurement of viscoelasticity. The unit of endothermic amount is Joule / gram (hereinafter referred to as J / g). When there are a plurality of melting points in a mixture or a block copolymer, the highest melting point (in the present invention) is taken as the melting point. However, if the endothermic peak at the highest temperature is negligible, for example, less than 5 J / g, and if there is a main peak at a lower temperature, for example, 20 J / g or more, the substantial melting point (polymer Extremely softening and temperature at which flow begins) may be considered the main peak. The melting endotherm is the sum of all melting endothermic peaks.
[0011]
The polymer [A] is a component having high crystallinity and a low hydrolysis rate, but preferably has high heat resistance and low heat shrinkability. From the viewpoint of the strength and heat resistance of the product obtained from the fiber of the present invention, the melting point of the polymer [A] needs to be 140 ° C. or higher, preferably 150 ° C. or higher, particularly preferably 160 ° C. or higher, and 170 ° C. or higher. Most preferred. Similarly, from a practical standpoint, the endothermic amount when the polymer [A] is melted is preferably 20 J / g or more, particularly preferably 30 / g or more, and most preferably 40 J / g or more. In many cases, the melting endotherm of the homopolymer of the crystalline aliphatic polyester is about 50 J / g or more.
[0012]
The composition [B] is at least one selected from the group consisting of a crystalline or amorphous aliphatic polyester and a specific hydrophilic compound, ie, “ an organic compound having a sulfone group and an organic compound having a sulfate ester group”. It is a mixture of seed compounds. By this hydrophilic component, the composition [B] becomes extremely sensitive to water and an aqueous solution of an alkali metal (sodium, potassium, lithium, calcium, magnesium, etc.) compound, and is easily hydrolyzed. As a result, the composite fiber of the present invention Can be divided, or can be divided easily when other means such as mechanical means or chemical swelling method are used in combination. For this purpose, the decomposition rate of the composition [B] in a fibrous form in a weakly alkaline aqueous solution, for example, in an aqueous solution of 3% by weight of sodium carbonate (sodium carbonate) at 98 to 100 ° C., that is, the weight reduction rate per unit time. Of the polymer [A] . It is preferably 5 times or more, particularly preferably 2 times or more, particularly preferably 5 times or more, most preferably 10 times or more, and usually a range of about 5 to 200 times is widely used .
Most preferably, the hydrophilic compound to be mixed with the composition [B] can be melt-mixed with the aliphatic polyester, and the composition [B] can be melt compound-spun.
[0014]
Examples of the organic compound having a sulfone group and the organic compound having a sulfate ester group, which are hydrophilic compounds mixed in the composition [B], include vinyl sulfonic acid, sulfonated styrene (sodium salt), and sodium methallyl sulfonate. , Thermoplastic polymers obtained by polymerizing or copolymerizing vinyl monomers having a sulfone group (sodium salt, etc.) such as 2-acrylamido-2-methylpropane sulfonic acid soda, alkylbenzene sulfonate soda, sulfate esters of various higher alcohols (sodium salt), etc. These surfactants may be mentioned. Incidentally, these sulfone compounds and sulfates, it is when the thermoplastic is not necessarily high, and mixed with a polyether such as a non-ionic surfactant or polyethylene glycol, that excellent melt fluidity can be obtained Many. In particular, sulfone compounds have the highest practicality because they are excellent in heat resistance.
[0016]
The mixing ratio of the hydrophilic compound to be mixed in the set Narubutsu [B] is in the range of 1 to 50 wt%, often is suitable in the range of about 3 to 30 wt%, 5-20 wt % Range is most widely used.
[0017]
The main component (50% or more) of the composition [B] is an aliphatic polyester, which is easily hydrolyzed with an alkali. For that purpose, those having low crystallinity, for example, those having an endothermic amount of 30 J / g or less, particularly 20 J / g or less, are preferable. Similarly, the aliphatic polyester forming the composition [B] preferably has a melting point of 120 ° C. or less, particularly preferably 100 ° C. or less, and similarly, an aliphatic polyester component having a melting point of 120 ° C. or less, particularly 100 ° C. or less, of 10% by weight or more, It is also preferable that 20% or more is copolymerized or / and mixed. Similarly, the glass transition point of the aliphatic polyester is preferably 30 ° C. or lower, and particularly preferably 0 ° C. or lower. An aliphatic polyester having a low melting point and glass transition point has a high decomposition rate in an alkaline aqueous solution at 100 ° C. or lower.
[0018]
The molecular weight of the composition [B] is not particularly limited, but in order to perform melt composite spinning with the polymer [A], it is desirable that the melt viscosity is approximately equal to or close to that of the polymer [A]. The overall weight average molecular weight is preferably close to that of the polymer [A]. That is, the average molecular weight of the composition [B] is preferably 50,000 or more, particularly preferably 70,000 to 300,000, and most preferably in the range of 80,000 to 200,000.
[0019]
Composition [B] is obtained by mixing the aliphatic polyester and the hydrophilic compound. Although the mixing method is not particularly limited, for example, both pellets and powder may be mixed at a predetermined ratio and melt-mixed with a screw extruder, a twin-screw extrusion kneader, or the like. Similarly, both melted separately may be mixed with a mechanical stirring device or may be mixed with a static mixer. The static mixer repeats the division and merging of the polymer flow by a flow guide device, and may be used in combination with a mechanical stirring device. Moreover, when there is no hindrance to the polymerization of the aliphatic polyester, it may be mixed in the polymerization step. In many cases, the composition [B] is completely decomposed and removed in the processing step and does not remain in the final product. Therefore, the coloration and dyeing fastness are not often a problem. However, the hydrolysis product is preferably completely decomposed, for example, by an activated sludge process. It is easy to select a biodegradable substance as the hydrophilic compound.
[0020]
In the cross section of the composite fiber of the present invention, it is necessary that the composition [B] separates the polymer [A] into at least two parts (hereinafter sometimes referred to as layers). With this composite structure, when the composition [B] is decomposed and removed, the fiber of the present invention can be divided into a plurality of fibers, and a fiber with a small fineness and a special cross section can be obtained. As the number of layers of the polymer [A] in the single fiber increases, a thin fiber having a large specific surface area can be obtained. The number of divisions needs to be 2 or more, and about 3 to 50, especially about 4 to 30 is most widely used. Those having a division number of about 3 to 10 are suitable for dresses, blouses, women's underwear, etc., and those having 4 to 30 are ultra-fine fibers such as ultra-high density knitted fabric, nonwoven fabric, artificial suede, artificial leather, filter, Suitable for wiping cloth and the like.
[0021]
The cross section of the fiber of the present invention can be arbitrarily selected from a circular shape, an oval shape, a flat shape, a gourd shape, a polygonal shape, a multi-leaf shape, and other various non-circular shapes (an irregular shape) and a hollow shape. Similarly, the single yarn fineness (before division) is also arbitrarily selected according to the purpose of use, but usually 0.5 to 50 denier, particularly 1 to 30 denier is preferably used, and 1.5 to 20 denier. Is the most widely used.
[0022]
The fiber of the present invention can be produced by complex-spinning the polymer [A] and the composition [B] by melt, wet, dry, dry-wet or other methods. In particular, melt spinning is preferable because of its high efficiency. For example, melt spinning can be performed at a low speed of a winding speed of 500 to 2000 m / min, a high speed spinning of a winding speed of 2000 to 5000 m / min, or an ultra-high speed spinning of a winding speed of 5000 m / min or more. Or heat treatment. In general, stretching is performed about 3 to 6 times for low speed spinning and about 1.5 to 2.5 times for high speed spinning, and stretching is unnecessary or about 2 times or less for ultra high speed spinning. A so-called spin draw method in which spinning and drawing are continuously performed can also be preferably applied.
[0023]
Similarly, a method such as a melt blow method, a flash spinning method, or a spun bond method in which the polymer [A] and the composition [B] are combined and spun from an orifice and simultaneously made into a nonwoven fabric can be applied.
[0024]
The composite fiber of the present invention can be in any form depending on the purpose of use, such as continuous filament, monofilament, multifilament, cut staple, spun yarn and the like. Among the composite fibers of the present invention, those having a composite structure other than the core-sheath type or sea-island type and having a particularly weak silicon mutual component and weakened mutual adhesiveness between components may show peeling or cracking only by stretching. is there. Peeling and splitting further proceeds by heating, swelling, alkali treatment, and the like. The alkali treatment can be performed with an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate or other alkaline compounds at room temperature or under heating. The type, concentration, pH, treatment time and the like of the alkali compound are arbitrary, but PH of 7.5 or more, particularly 8 or more are often preferable. However, since the polymer [A] is also decomposed when the pH is too high, it is preferable to select conditions under which the polymer [A] is not significantly decomposed or damaged.
[0025]
On the other hand, when the decomposability and releasability are weak, a mechanical method such as false twisting, kneading, and tapping may be applied as necessary in addition to heating and swelling. That is, the composite fiber of the present invention can be applied to division by other chemical methods or mechanical methods in addition to division by alkali treatment. The peeling method using a mechanical method or the like has an advantage that the weight loss is small as compared with a method in which the composition [B] is hydrolyzed and completely removed by alkali and divided. In general, during fiber production or processing into a knitted fabric, it is often preferable that separation or division is suppressed to a latent level, and after making into a knitted fabric or the like, complete separation and division, for example, in a dyeing finishing process is often performed. This is because ultrafine fibers and ultrafine fibers are easy to cut due to friction in manufacturing and processing steps and often cause trouble.
[0026]
The composite fiber of the present invention includes various pigments, dyes, colorants, water repellents, water absorbents, flame retardants, stabilizers, antioxidants, ultraviolet absorbers, metal particles, inorganic compound particles, crystal nucleating agents, lubricants, plastics. Agents, antibacterial agents, fragrances and other additives can be mixed.
[0027]
The fibers of the present invention can be used alone or in combination with other fibers to produce yarns, strings, ropes, knitted fabrics, woven fabrics, non-woven fabrics, paper, composite materials and other structures. When mixed with other fibers, it is particularly preferable to use a mixture with natural organic fibers such as cotton, wool and silk, and natural degradable fibers such as aliphatic polyester fibers, since a completely natural degradable product can be obtained.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
The cross section of the composite fiber which is an Example of this invention to FIGS. 1-9 is shown. In the figure, 1 indicates a polymer [A], 2 indicates a composition [B], and 3 indicates a hollow portion. FIG. 1 is an example of a three-layer parallel type and a two-divided type. The parallel type refers to a structure in which both components are arranged alternately. FIG. 2 is an example in which the polymer [A] is divided into four layers by the layer of the radial composition [B]. The radial type means that one component, for example, the composition [B] is in a radial form. 3 is a 9-layer radial type, FIG. 4 is a 9-layer multiple parallel type, FIG. 5 is a combination of a parallel type and a radial type, FIG. 6 is a core-sheath type with 7 cores, and FIG. Is an island type in which the islands are dispersed in the sea, FIG. 8 is an example of a non-circular radiation type, and FIG. 9 is an example of a hollow radiation type. In addition to FIGS. 1-9, a wide variety of combinations are possible according to the present invention. In addition to the polymer [A] and the composition [B], a third component can be combined. For example, a third polymer may be disposed in place of the hollow portion in FIG.
[0029]
The composite ratio (cross-sectional area ratio) between the polymer [A] and the composition [B] is not particularly limited, and may be arbitrarily selected according to the purpose. In many cases, the composite ratio is preferably in the range of 20/1 to 1/2, and the range of 10/1 to 1/1 is widely used. That is, it is often preferable that the ratio of the polymer [A] is larger than that of the composition [B] because the weight loss due to alkali hydrolysis is small.
[0030]
【Example】
In the following examples,% and parts are by weight unless otherwise specified. The molecular weight of the aliphatic polyester is a weight average value of dispersion of polymer components excluding components having a molecular weight of 1000 or less in GPC analysis of a 0.1% chloroform solution of a sample.
[0031]
Example 1
3 parts of polyethylene glycol (PEG) having a molecular weight of 8000 and hydroxyl groups at both ends, 98 parts of L-lactide, 100 ppm of tin octylate, and 0.1 part of Ciba Geigy's antioxidant Irganox 1010 were mixed, and 188 ° C. in a nitrogen atmosphere. For 12 minutes in a twin-screw extruder and finally 0.1% of silicon oil (dimethylsiloxane) was mixed, extruded from the die, formed into a cooling chip, and treated in a nitrogen atmosphere at 140 ° C. for 4 hours ( (Solid phase polymerization), washed with acetone containing 0.1% hydrochloric acid, and then washed 5 times with acetone and dried to obtain a block copolymer BP1 of polylactic acid (PLA) and PEG. Polymer BP1 has a molecular weight of 122,000, a PEG component content of about 3%, a melting point of 174 ° C., and a melting endotherm of 55 J / g when fully oriented and crystallized. However, it is excellent in melt fluidity and stretchability, and melt compound spinning is easy.
[0032]
Random copolymer of polybutylene succinate (PBS) and polybutylene adipate (PBA) in a molar ratio of 4/1. Both ends are hydroxyl groups and have a molecular weight of 125,000, a melting point of 93 ° C., 80 parts, and a molecular weight of 20000. 5 parts of PEG, 20 parts of L-lactide, 30 ppm of tin octylate and 0.1 part of the above irganox were mixed, and then polymerized in the same manner as the polymer P1 to form a block copolymer of the PBS / PBA copolymer and polylactic acid. MP1 having a melting point of 90 ° C. was obtained from a mixed composition of a polymer (PBS / PBA / PLA) and a block copolymer of polylactic acid and polyethylene glycol (PLA / PEG). Assuming that the reactivity of each hydroxyl group is equal and all lactide has reacted, the PLA component in the PBS / PBA / PLA block copolymer is about 18%, the molecular weight is about 150,000, and the PLA / PEG block copolymer. The PLA component is estimated to be about 52%, and the molecular weight is estimated to be about 40,000. Both polymers have a common component called PLA, so the affinity is quite high and they are uniformly mixed.
[0033]
A PEG / PLA block copolymer obtained by mixing 20 parts of L-lactide, 20 parts of the above-mentioned Irganox, and 20 ppm of tin octylate with 80 parts of PEG having a molecular weight of 20000 is a PEG / PLA block copolymer obtained by reacting at 180 ° C. for 30 minutes. Is BP2. 50 parts of PEG having a molecular weight of 20,000, 50 parts of sodium dodecylbenzenesulfonate and 0.3 part of the above irganox were mixed and stirred at 180 ° C. under a pressure of 1 Torr for 1 hour to completely dehydrate 1 part and 4 parts of BP2. MP3 is melt-mixed at 180 ° C. MP4 is obtained by melt-mixing MP3 and MP1 at a ratio of 7/93 at 220 ° C.
[0034]
BP1 and MP4 are melted separately at 220 ° C. and sent to a composite spinneret while being metered by a gear pump. BP1 is component 1, MP4 is component 2, and a composite ratio (volume ratio) of 4/1 is shown in FIG. It is compounded radially and spun from an orifice with a diameter of 0.25 mm at 220 ° C., cooled in air, wound at a speed of 1500 m / min while being oiled, stretched 3.9 times at 80 ° C., and then tensioned Under heat treatment at 100 ° C., a drawn yarn F1 having a 75 denier / 25 filament was obtained. For comparison, similar to the drawn yarn F1, except that a composite fiber obtained by using BP1 not mixed with a silicon compound as a component 1 and a polybutylene succinate having a melting point of 116 ° C. and a molecular weight of 125,000 as a component 2 is drawn. The yarn is F2 (comparative example).
[0035]
A circular knitted fabric is produced using the drawn yarn F1, and it is put into a 3% aqueous solution of sodium carbonate at 98 ° C., treated for 10 minutes, taken out, dried, and contacted with a rotating roll wound with sandpaper, and a raised knitted fabric K1 was obtained. The napped fibers in the knitted fabric K1 obtained from the fibers of the present invention were almost divided, and the knitted fabric had a very soft touch. Similarly, the raised fibers in the raised knitted fabric K2 obtained by boiling, drying and raising the knitted fabric obtained from the drawn yarn F2 of the comparative example are hardly divided, and the knitted fabric K2 has a hard touch. .
[0036]
Example 2
Instead of the PBS / PBA random copolymer (melting point: 93 ° C.) of Example 1, polybutylene succinate (homopolymer) having a melting point of 116 ° C. and a molecular weight of 125,000 was used. In the same manner as above, a drawn yarn F3 was obtained, and the circular knitted fabric obtained therefrom was treated in the same manner as the raised knitted fabric K1 of Example 1 to obtain a raised knitted fabric K3. The raised knitted fabric K3 was excellent in flexibility because the nappings were completely divided like the raised knitted fabric K1.
[0037]
【The invention's effect】
According to the present invention, composite fibers that can be decomposed in a natural environment and can be easily divided by treatment with an alkaline aqueous solution have been obtained for the first time. The fibers of the present invention can be used to produce extremely soft and high-performance knitted fabrics, nonwoven fabrics, artificial suedes, artificial leather, and other fiber structures. It can be applied to fields such as high-performance filters, water-absorbing materials, oil-absorbing materials, etc., taking advantage of its features and characteristics. In particular, it is extremely useful for items that are disposable in fields such as agriculture, horticulture, civil engineering, fisheries, machinery industry, packaging, household goods, and other applications that require natural degradability, and is expected to contribute greatly to environmental protection. .
[Brief description of the drawings]
FIG. 1 is a cross section of a three-layer parallel type composite fiber according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a four-layer radiation type composite fiber that is an example of the present invention.
FIG. 3 is a cross-sectional view of a nine-layer radiating conjugate fiber that is an example of the present invention.
FIG. 4 is a cross-sectional view of a 9-layer parallel type composite fiber that is an example of the present invention.
FIG. 5 is a cross-sectional view of a composite fiber in which a parallel type and a radial type according to an embodiment of the present invention are combined.
FIG. 6 is a cross section of a core-sheath type composite fiber having seven cores according to an embodiment of the present invention.
FIG. 7 is a cross section of a sea-island type composite fiber that is an example of the present invention.
FIG. 8 is a cross-sectional view of a non-circular radiating conjugate fiber that is an example of the present invention.
FIG. 9 is a cross-sectional view of a hollow radiation type composite fiber that is an example of the present invention.
FIG. 10 is an example of a DSC curve of an amorphous polymer by a scanning differential calorimeter.
[Explanation of symbols]
1 Polymer [A] 2 Composition [B] 3 Hollow portion 4 Baseline change due to glass transition 5 Exothermic peak due to crystallization 6 Endothermic peak due to melting of crystal

Claims (4)

(1)融点140℃以上の脂肪族ポリエステルの結晶性重合体[A]と、脂肪族ポリエステルに対し「スルホン基を持つ有機化合物および硫酸エステル基を持つ有機化合物」よりなる群より選ばれた少なくとも1種の化合物が1〜50重量%混合された組成物[B]とが、単繊維内で複合されており、且つ(2)横断面において、組成物[B]が重合体[A]を少なくとも2つの部分に分離していることを特徴とする複合繊維。(1) At least selected from the group consisting of a crystalline polymer [A] of an aliphatic polyester having a melting point of 140 ° C. or higher and “ an organic compound having a sulfone group and an organic compound having a sulfate group ” with respect to the aliphatic polyester. The composition [B] in which 1 to 50% by weight of one compound is mixed is combined in a single fiber, and (2) the composition [B] is a polymer [A] in a cross section. A composite fiber characterized by being separated into at least two parts. 重合体[A]が、「ポリL−乳酸、ポリD−乳酸、ポリ3−ヒドロキシブチレート、ポリグリコリド及びそれらを主成分とする変成ポリエステル」の群から選ばれたものであり、組成物[B]を構成する脂肪族ポリエステルが、融点又は軟化点が120℃以下の成分を10重量%以上含有するものである、請求項1記載の複合繊維。  The polymer [A] is selected from the group of “poly L-lactic acid, poly D-lactic acid, poly 3-hydroxybutyrate, polyglycolide, and modified polyester containing them as a main component”, and the composition [ 2. The composite fiber according to claim 1, wherein the aliphatic polyester constituting B] contains 10% by weight or more of a component having a melting point or a softening point of 120 ° C. or less. 複合構造が、「放射型、並列型、多芯型、海島型及びそれらの組合わせ」の群から選ばれたものである、請求項1記載の複合繊維。  The composite fiber according to claim 1, wherein the composite structure is selected from the group of “radiation type, parallel type, multi-core type, sea-island type, and combinations thereof”. 請求項1〜3記載の複合繊維を少なくとも一部に用い、且つ該複合繊維を少なくとも一部分割したものである繊維および繊維構造物。  A fiber and a fiber structure in which the conjugate fiber according to claim 1 is used at least in part, and the conjugate fiber is at least partially divided.
JP12599896A 1996-05-14 1996-05-21 Naturally degradable composite fiber and its application products Expired - Fee Related JP3694103B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP12599896A JP3694103B2 (en) 1996-05-21 1996-05-21 Naturally degradable composite fiber and its application products
US09/180,628 US6174602B1 (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers and goods made thereof
EP04023800A EP1520918B1 (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers
PCT/JP1997/001588 WO1997043472A1 (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers and goods made by using the same
CNB971945241A CN1159476C (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers and goods made by using the same
EP97918408A EP0905292B1 (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers
DE69737075T DE69737075T2 (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers
DE69731290T DE69731290T2 (en) 1996-05-14 1997-05-12 SPONTANEABLE FIBERS
CNB2004100492695A CN1311113C (en) 1996-05-14 1997-05-12 Spontaneously degradable fibers and goods made thereof
TW86106390A TW396220B (en) 1996-05-14 1997-05-13 Fiber, composite fiber, and fiber aggregate
HK99103514A HK1018633A1 (en) 1996-05-14 1999-08-13 Spontaneously degradable fibers.
US09/713,033 US6322887B1 (en) 1996-05-14 2000-11-16 Spontaneously degradable fibers and goods made thereof
US09/938,578 US6440556B2 (en) 1996-05-14 2001-08-27 Spontaneously degradable fibers and goods made thereof
US10/187,280 US6579617B2 (en) 1996-05-14 2002-07-08 Spontaneously degradable fibers and goods made thereof
US10/426,797 US6844062B2 (en) 1996-05-14 2003-05-01 Spontaneously degradable fibers and goods made thereof
US10/863,775 US6844063B2 (en) 1996-05-14 2004-06-09 Spontaneously degradable fibers and goods made thereof
HK05108787A HK1074653A1 (en) 1996-05-14 2005-10-04 Spontaneously degradable fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12599896A JP3694103B2 (en) 1996-05-21 1996-05-21 Naturally degradable composite fiber and its application products

Publications (2)

Publication Number Publication Date
JPH09310229A JPH09310229A (en) 1997-12-02
JP3694103B2 true JP3694103B2 (en) 2005-09-14

Family

ID=14924199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12599896A Expired - Fee Related JP3694103B2 (en) 1996-05-14 1996-05-21 Naturally degradable composite fiber and its application products

Country Status (1)

Country Link
JP (1) JP3694103B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496620B2 (en) * 2000-08-02 2010-07-07 東レ株式会社 Artificial leather
JP2003003448A (en) * 2001-06-25 2003-01-08 Unitica Fibers Ltd Evaporation preventive sheet formed by making use of fiber floating in water
JP4693310B2 (en) * 2001-09-25 2011-06-01 ユニチカ株式会社 Evaporation prevention sheet
CN114622844B (en) * 2021-12-16 2024-05-28 中国石油天然气集团有限公司 Drilling rock-carrying sand cleaning liquid and preparation method thereof and borehole cleaning method

Also Published As

Publication number Publication date
JPH09310229A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US5593778A (en) Biodegradable copolyester, molded article produced therefrom and process for producing the molded article
EP0905292B1 (en) Spontaneously degradable fibers
EP0669358B1 (en) Biodegradable copolyester, molding produced therefrom, and process for producing the molding
KR101321738B1 (en) Sulfopolyesters, and multicomponent extrudates and fibrous articles comprising the sulfopolyesters
CN104136670B (en) The manufacture method of conjugated fibre, polyurethane elastomer cloth and silk and polyurethane elastomer cloth and silk
JP3320911B2 (en) Splittable composite fiber and its structure
JP3694103B2 (en) Naturally degradable composite fiber and its application products
JP5783046B2 (en) Synthetic fiber and method for producing the same
JP4661266B2 (en) Synthetic fiber and fiber structure comprising the same
JPH08325848A (en) Sheath/core-type biodegradable conjugate fiber
JP6370079B2 (en) Composite fiber made of thermoplastic elastomer
JP3694101B2 (en) Naturally degradable composite fiber and its application products
JP3694102B2 (en) Naturally degradable composite fiber and its application products
JP3694117B2 (en) Self-adhesive composite fiber and its application products
JP3694100B2 (en) Spontaneous crimpable composite fiber
JP3261028B2 (en) Self-adhesive composite fiber
JP3683048B2 (en) Naturally degradable fiber assembly
JP3557027B2 (en) Naturally degradable composite yarn and its product
JP2001123371A (en) Biodegradable spunbond nonwoven
JP2628502B2 (en) Composite elastic yarn and method for producing the same
JP3694118B2 (en) Spontaneous crimpable composite fiber
JPH11302926A (en) Polyester-based conjugate fiber
JP2000054227A (en) Polyolefin-based conjugate fiber
Naeimirad et al. A Review on Melt-Spun Biodegradable Fibers. Sustainability 2023, 15, 14474
JP3683036B2 (en) Naturally degradable composite yarn and its products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees