[go: up one dir, main page]

JP3689804B2 - Surplus sludge zero emission type biological treatment method using hydrothermal reaction - Google Patents

Surplus sludge zero emission type biological treatment method using hydrothermal reaction Download PDF

Info

Publication number
JP3689804B2
JP3689804B2 JP02368499A JP2368499A JP3689804B2 JP 3689804 B2 JP3689804 B2 JP 3689804B2 JP 02368499 A JP02368499 A JP 02368499A JP 2368499 A JP2368499 A JP 2368499A JP 3689804 B2 JP3689804 B2 JP 3689804B2
Authority
JP
Japan
Prior art keywords
reaction
sludge
biological treatment
hydrothermal
hydrothermal reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02368499A
Other languages
Japanese (ja)
Other versions
JP2000218295A (en
Inventor
定瞭 村上
稔 谷口
宗孝 石川
豊 中村
Original Assignee
定瞭 村上
宗孝 石川
豊 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 定瞭 村上, 宗孝 石川, 豊 中村 filed Critical 定瞭 村上
Priority to JP02368499A priority Critical patent/JP3689804B2/en
Publication of JP2000218295A publication Critical patent/JP2000218295A/en
Application granted granted Critical
Publication of JP3689804B2 publication Critical patent/JP3689804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、排水処理により発生する汚泥中の有機物の完全な消滅或いは大幅な減量を可能とする、水熱反応を利用した水熱・生物法とでも言うべき、排水の新規な生物処理方法に関するものである。
【0002】
【従来の技術】
排水の処理としては、生物処理が最も一般的であり、下水や家庭排水、屎尿排水、家畜糞尿排水等は殆ど全てこの方法で行われている。ただ、処理の主体が微生物であるため、増殖微生物などが余剰汚泥としてどうしても残る。そのため、メタン発酵など嫌気的処理により汚泥の減量化が図られているが、完全に消滅させることはできず、その多くが脱水後焼却処理や埋め立て処理されているのが現状である。
【0003】
そこで、従来から、水熱反応を利用した余剰汚泥の処理方法が幾つか提案されている。ここに水熱反応とは、密封容器に水と物質を入れて加熱し、高温高圧の状態で物質を反応させることを言う。この従来の余剰汚泥の処理方法には、大きく分けて、1)汚泥の液状化、2)汚泥の油化及び3)汚泥の湿式酸化の3つがある。尚、高温高圧の状態は、水の臨界点(374℃、22MPa)を越える超臨界水状態と、臨界点以下の亜臨界水状態がある。
【0004】
1)の汚泥の液状化は、脱水汚泥を亜臨界水条件の比較的低い温度域で、固形の汚泥を水熱分解して液状・流動化させることにより、パイプ圧送などの輸送性或いは噴霧燃焼による焼却処理の利便性を向上させる技術であり、焼却処理を目的とするものである。尚、この液状化は、微生物細胞の破壊による細胞質の漏出により実現される。
【0005】
また、2)の汚泥の油化は、亜臨界水条件でアルカリ系触媒を用いて脱水汚泥を低分子化・縮合化・脱酸素化して油状物質へ変換し、エネルギー源として利用する技術である。ただ、油化率が40%前後で他は未反応物として残ることや、付随して生成する水相の処理が必要であるなどの難点がある。また、できた油分中にはNやSを含むため燃焼ガスの臭気が酷く、脱臭装置が必要になるなどの問題もある。
【0006】
最後に、3)の汚泥の湿式酸化は、脱水汚泥を触媒添加した超臨界水条件下で酸素や過酸化水素などの酸化剤と反応させ、炭酸ガスやアンモニアなどの無機物質へ変換する技術である。ただ、炭酸ガスなど単純な物質にまで酸化処理させるには、多量の触媒や超高温など過酷な条件が必要であり、コスト的にも引き合わないものである。更に、超臨界水は誘電率が低く無機塩類の析出が著しく、反応器やパイプ系の閉塞、有害な触媒使用など、多くの問題を抱えている。
【0007】
尚、汚泥の発生しない排水の生物処理法としては、好熱細菌を利用した生物法或いは腐蝕土を利用した生物法等があるが、いずれも特殊な微生物を利用するため、菌の育成や槽容量の大きさに難点がある。
【0008】
【発明が解決しようとする課題】
上述したように、水熱反応を利用する余剰汚泥の従来の処理方法には様々な難点があり、完全に余剰汚泥を処理することは不可能である。そこで、本発明者らは、鋭意研究した結果、水熱反応と微生物の代謝分解機能とを組み合わせることにより、発生汚泥の殆どを処理できる新規な技術を開発したものである。
【0009】
即ち、本発明は、水熱・生物法とでも言うべきもので、水熱反応装置内で亜臨界状態と大量の水(およそ90〜99%程度)の存在下で、汚泥中の有機成分をバクテリアが処理し易いように分解し、この処理液を生物処理装置で分解消滅させるものである。汚泥は、その大部分が微生物細胞であり、その他植物性、動物性の微細なものも含まれる。そして、水熱反応により、排水や汚泥の生物処理に利用するバクテリアが処理し易いように、汚泥中の難生分解性物質を糖やアミノ酸(或いはその分子の一部がさらに分解したもの)などの易生分解性物質に分解し、得られた処理液を、生物処理工程、例えば活性汚泥法の曝気槽に返送し、ここで、バクテリアにより分解・資化させるものである。
【0010】
尚、本発明の水熱反応装置は、通常、活性汚泥装置のように汚泥を発生する生物処理装置に付属して設置し、その水熱反応装置で得られた処理液を、元の活性汚泥処理装置の曝気槽や接触曝気槽に返送して、再度生物分解に供する。返送する箇所は、曝気槽に限らず、曝気槽以前の工程であれば、例えば原水槽や調整槽などどこでもよい。合併槽など小規模な生物処理装置の場合、生じた余剰汚泥を大型の活性汚泥装置に付属した水熱反応装置に移送して処理するようにしてもよい。この場合、水熱反応装置の容量が大きいことが前提となる。更に、活性汚泥処理装置などの生物処理装置から発生した余剰汚泥を、嫌気処理装置など他の生物処理装置で処理する場合に、嫌気処理装置などに水熱反応装置を付属して設け、ここで予め水熱・生物処理してから嫌気処理装置に投入するようにしてもよい。もっとも、汚泥の発生源である活性汚泥装置などにおいて本発明を実施すれば、余剰汚泥の発生は殆どなくなり、従来の消化槽における汚泥処理は不要となるものである。
【0011】
【課題を解決するための手段】
(水熱反応の分類による本技術の位置づけ)
前述したように、水熱反応(hydrothermal reaction )とは、密封容器に水と物質を入れて加熱し、高温高圧の状態で物質を反応させることを言い、高温高圧水反応とも言う。そして、臨界点(374℃、22MPa)以下の亜臨界では、気相と液相の二相が存在し、臨界点以上(超臨界)では液相と気相が消失して一相となる。亜臨界点の下限に明確な定義はないが、ほぼ200℃程度以上と言われている。
【0012】
亜臨界条件下では、図1に示すように液相反応と気相反応が同時に進行する。液相反応は、イオン反応が主体で、同時に反応活発な熱水分子による加水分解反応が起こる。気相反応は、ラジカル反応が主体的に起こり、熱分解、再結合、脱水縮合、脱水素、脱炭酸などの各反応が複雑にからみあって進行する。超臨界条件では、気相反応のみが進行する。亜臨界条件下の場合、容器内の水の占める割合、反応物質の量、温度、圧力、触媒の存在などによって、どの反応を優先的に行わせるか制御することが可能である。
【0013】
水熱反応を利用する汚泥処理の従来技術を、これらの反応に基づいて分類すると、次のようになる。1)液状化は、亜臨界条件下における液相及び気相の両反応を利用したもので、図1に示す全ての反応が進行する。2)油化は、亜臨界条件下における気相反応を優先化させたもので、熱分解、脱水縮合、脱酸素などの反応を進行させたものである。3)の汚泥の湿式酸化は、超臨界条件下の反応であり、液相反応は起こらない。
【0014】
気相反応は複雑で、分解(低分子化)と結合(高分子化)の全く反対の反応が進行するため、副生成物が多く、また、悪臭ガスの発生が起こり、さらに炭化、高粘性物質化、無機塩類の不溶化などの反応による容器内壁へのスケール形成が著しい。一方、液相反応は加水分解が主体であり、副生成物が少なく、無機塩類の析出は全く起こらず、容器内壁へのスケール形成も少ない。
【0015】
本発明は、亜臨界での液相反応を優先的に行わせる技術で加水分解を主体とするものであり、この点において、他の汚泥の水熱反応処理とは異なる。
【0016】
(加水分解反応による汚泥の易分解性物質への変換)
生体物の基本単位は細胞であり、生体物(または細胞)の形を保持したり運動機能に関係する生体物質は、多糖或いはタンパク質繊維でできている高分子である。これらの生体高分子物質は、基本物質である糖又はアミノ酸分子が脱水縮合により多数連結して鎖状物質を形成し、これらの鎖状物質がさらに架橋されて複雑な三次元構造を形成したもので、通常の生物機能による代謝分解は困難である。
【0017】
本システム技術は、これらの難生分解性生体高分子物質を熱水中での加水分解反応により鎖を切断し、基本物質である糖やアミノ酸の単量体(モノマー)或いは数量体(オリゴマー)へ変換し、得られた易生分解性の単量体或いは数量体を微生物機能により代謝分解することにより、難生分解性の生体構成物質を分解消滅する技術である。尚、単量体分子の一部が分解する場合もあるが、生分解性にかわりはない。
【0018】
引抜き汚泥の主体である細菌類の細胞壁はペプチドグリカンと呼ばれ、多糖の鎖(N−アセチルグリコサミン、NAGとN−アセチルムラミン酸、NAMが交互にβ(1→4)結合した鎖状物質)をペプチドが架橋して生物的・化学的・物理的に強固な三次元構造から構成されている。熱水中では、ペプチドグリカンの三次元構造が熱運動により不安定になる。反応活性の大きな熱水分子が、多糖鎖のグリコシド結合及びアミノ酸架橋のペプチド結合を攻撃して、加水分解による鎖の結合部位の切断がおこる。この切断の繰り返しにより、糖及びアミノ酸の分子が1〜数個連なったものや或いはさらに分子の一部が分解した低分子物質が生成される。このようにして、通常の微生物では分解できない細胞壁を易生分解性の糖及びアミノ酸へ変換すれば、微生物機能により容易に代謝分解できる。
【0019】
また、下水処理などの初沈汚泥には様々な植物性・動物性の汚泥が含まれている。これらの汚泥中の難生分解性物質についても、加水分解反応により易生分解性物質へ変換できる。例えば、植物の細胞壁はセルロースの板が多層になったものであるが、水熱反応により加水分解されてD−グルコースの単量体或いは数量体へ変換される。また、動物の骨・軟骨や動物性繊維などは繊維タンパク質の複合構造体であるが、水熱反応により繊維の基本物質であるアミノ酸へ変換される。このようにして、初沈汚泥及び増殖微生物細胞を構成する各種の生体高分子を、それぞれの基本単位である糖、アミノ酸、核酸、脂質などの単量体や数量体、或いは更にこれらの分子の一部が分解したものなどからなる易生分解性の低分子物質群へ変換し、これらを曝気槽へ返送して微生物機能により代謝分解するシステムである。
【0020】
水熱反応の条件は、引き続いて水熱反応処理液を生物処理する生物処理法(活性汚泥法、高速処理法、嫌気処理法等)によって異なる。反応時間の短い高速生物処理では、短時間で代謝分解される程度にまで細胞構成物を低分子化しなければならないので、高い温度・圧力或いは長時間の反応条件(処理条件)が必要となる。長時間の嫌気処理などにおいては、高分子の複合構造をある程度まで解体し、後は生物機能により代謝分解すればよい。即ち、温度・圧力及び時間の反応条件は、適用する生物プロセスに応じて決定することができる。従って、嫌気処理においては、より低い温度・圧力或いは短時間の反応条件で処理すればよいため、水熱反応装置の設備費・運転費は低コストとなる。
【0021】
(本技術の特徴)
水熱・生物法は、固液分離された引抜き汚泥を沈降濃縮し、その一部又は全部を被処理汚泥として水熱反応器(水熱反応装置)へ送液し、被処理汚泥中の有機成分(難生分解性物質)を易成分解性物質に分解し、この処理液を生物反応槽へ返送することにより、余剰汚泥を大幅に減量する、または余剰汚泥が全く発生しない処理システムである。
【0022】
本発明の水熱反応と生物反応の組み合わせは、次に示すように多くの利点がある。即ち、水熱・生物法は多様性、操作性、処理性、コンパクト性、安全性、設備費、運転費などを総合的に評価して、他の様々な余剰汚泥の処理技術よりも優れた技術である。
(1) 水熱処理液の生物処理は、余剰汚泥を発生する生物処理装置、或いは余剰汚泥を処理する生物処理装置をそのまま利用するので、水熱反応装置だけを新設すればよく、既存設備の大幅な改造をする必要がないため低コストで済む。
(2) 水熱反応の特徴は、水と固形物の割合、及び温度・圧力・時間など多くの操作因子があるので、反応装置に多様性があること、更に、温度・圧力・時間は現在の先端技術により正確に設定できるので、処理成績に確実性があることである。
(3) 有害な副生成物が発生しない安全性の高いシステムである。例えば、燃焼法では酸化・還元反応が複雑に進行する気相反応であるため、有害な副生成物(ダイオキシン、NOxなど)及び重金属糖が濃縮された灰分が生じる。このため、排ガス処理や焼却灰の処理・処分が必要となる。本技術は、亜臨界条件での加水分解反応が主体であるため、有害な副生成物がなく、また無機塩類は処理液中に溶解して含まれている。尚、仮にダイオキシンなどの有機塩素化合物が汚泥中に含まれていたとしても、脱塩素化されて無害化される。
(4) 但し、水熱反応により悪臭成分を含むガスが発生する。活性汚泥法等においては、気液分離器によりガスを分離し、曝気槽へ散気することにより生物脱臭できる。水熱反応系は密封系であり、悪臭ガスが系外へ漏れることはない。
(5) 水熱反応装置は、小型から大型まで装置化が可能であること、及び生物法も多様であることから、水熱・生物法は地域の実情や事業の形態に応じた処理施設の建設が可能である。
(6) 水熱反応終了後の冷却により回収した熱を加熱へ利用する熱リサイクルにより、省エネルギーシステムが達成できる。
【0023】
【実施例】
本実施例では、人工下水Wを用いて水熱・活性汚泥法を実施した。システム1の基本構成は、図1に示すように曝気槽2、固液分離槽3及び水熱反応装置4より構成される。固液分離槽3で分離して沈降濃縮された汚泥を引き抜いて、引抜き汚泥Hとする。そして、その一部が被処理汚泥H1として水熱反応装置4に送液され、ここで汚泥中の難生分解性物質が易生分解性の低分子物質群に変換処理され、得られた処理液Sを曝気槽へ投入して微生物機能により代謝分解した。
【0024】
引抜き汚泥Hの一部は、返送汚泥H2となる。また更に引抜き汚泥H量が多ければ、余剰汚泥H3として系外に排出する。但し、本発明の場合、水熱反応装置の能力が不足すれば余剰汚泥H3が発生するが、水熱反応装置が十分な能力を持っていれば、通常は、従来に言ういわゆる余剰汚泥は発生しない。もっとも、汚泥中の鉱物質などの無機物や、脱水素や脱酸素により生じた微量の炭素粒子などは、固液分離槽などから系外に除去する必要がある。尚、本実験では、水熱反応は、回分式及び連続式の双方で行なった。
【0025】
図2の曝気槽2(有効容量8L)及び固液分離槽3(有効容量3L)は、標準活性汚泥法に利用されているものを小型化したものである。また、水熱反応装置4の具体例としては、図3に示す回分式水熱反応装置4A、図4に示す連続式水熱反応装置4Bを用いた。回分式水熱反応装置4Aは、容量100mLのインコネル製反応容器41に複数のステンレス球42を入れたもので、これを振盪機43に取り付けて反応液を攪拌するようにした。連続式水熱反応装置4Bは、高圧ポンプ44、加熱部45、反応部46、冷却部47及び気液分離部48より構成された。反応部46のステンレス管46aの全長は60cm、内径3mm、容積17mLであった。
【0026】
まず、人工下水Wを原水槽5から曝気槽2へ投入し、曝気処理後、固液分離槽3に送り、ここで汚泥を沈降濃縮した。この沈降濃縮汚泥100mL(汚泥濃度約10,500mg/L)を、被処理汚泥H1として水熱反応器4により処理した。生成ガスGは、気液分離して供給空気Aとともに曝気槽2へ散気し、処理液Sは曝気槽2へ投入した。
【0027】
回分式では、被処理汚泥H1を50mLずつ2回に分けて処理した。各温度における圧力は、それぞれの温度における水の飽和蒸気圧と一致した。昇温時間は約30分、所定の温度に達してからの反応時間は1時間、反応終了後の冷却時間は約30分であった。水熱処理液Sを減圧濾過し、CF/C濾紙に阻止された部分を固形分、通過した成分を溶解成分とした。
【0028】
連続式では、高圧ポンプ44により0.28mL/分で被処理汚泥H1を反応装置4Bへ送液して処理した。処理圧力は、圧力調整弁で設定し、回分式と同じ温度・圧力の条件で反応させた。加熱部45(熱交換部分を含む)、反応部46及び冷却部47での被処理汚泥H1の滞留時間を30分、1時間、30分として、回分式と同じ温度操作になるように装置を製作して運転した。
【0029】
回分法における各反応温度における被処理汚泥H1の水熱反応処理後の性状を、図5に示す。図5(a)は、反応温度とpHの関係を示すグラフで、反応前の被処理汚泥H1のpHにはバラツキがあるにもかかわらず、処理液SのpHには一定の傾向が認められる。即ち、250〜260℃以上ではpH8前後を示し、この温度以下ではpHは温度とともに低下している。また、図5(b)は、反応温度と吸光度との関係を示すグラフで、濾過した試料液の各波長における吸光度も、250〜260℃を境にして挙動が異なっている。もっとも、この境界温度は、明確なものではない。
【0030】
反応後の処理液S中の残留固形分及び汚泥の可溶化率を、図6に示す。図6(a)は、反応温度と残留固形分の関係を示すグラフで、残留固形分は、反応温度の上昇とともに減少し、約350℃でほぼ消失している。図6(b)は、反応温度と汚泥の可溶化率の関係を示すグラフで、250〜260℃を境にして、低温側では未分解の汚泥量が増加した。また高温側では、汚泥は全て可溶化し固形分は炭素粒子のみであった。炭素粒子の生成量は、温度依存性は余り観測されなかった。さらに、油状物質の生成量はわずかであったが、温度上昇とともに少しずつ増加した。
【0031】
処理液S中の溶解性TOCを図7(a)、CODを図7(b)、BODを図7(c)に示す。各指標とも、200℃前後に最大値が見られる。反応温度の上昇とともに、ガス発生量が増加し、反応温度の低下とともに汚泥の可溶・低分子化が抑制される2つの効果のため、200℃前後に最大値が現れたものと思われる。水熱反応の最適条件は、汚泥が全て可溶・低分子化し、また、ガス化がなるべく少ないことである。水熱反応1時間の本実験条件下では、320〜350℃が最適条件のように思われる。
【0032】
本実施例では、温度320℃、圧力12.1MPaで引抜いた汚泥を水熱反応させ、この処理液Sを曝気槽2へ投入して、水熱・活性汚泥法を行なった。表1に示すように、従来型活性汚泥法と水熱・活性汚泥法の処理液を比較すると、BOD、COD及びTOCの各値ともほとんど同じ値を示しており、水熱処理した汚泥は完全に代謝分解されていることがわかる。
【0033】
【表1】

Figure 0003689804
【0034】
人工下水を用いた本実施例では、水熱処理のBOD負荷量より計算すると、従来型活性汚泥法に比べて、水熱・活性汚泥法の酸素消費量は10%程度増加することが推測されたが、実際の消費量もほぼ同じ増加量であった。
【0035】
【発明の効果】
以上詳述したように、本発明は排水の生物処理装置で発生する汚泥を水熱反応装置に送り込み、水熱反応を利用して汚泥中の難生分解性有機物を亜臨界条件下で易生分解性物質に分解処理し、その処理液を元の或いは他の生物処理装置に送液して生物処理するものである。
【0036】
従って、本発明方法は、
(1) 水熱反応と生物処理を組み合わせるので、余剰汚泥の完全な消滅が可能になる。
(2) しかも、亜臨界状態での水熱反応を利用するのでランニングコストが低く、且つ、反応結果物は易生分解性物質であればその内容や分解の程度は問わないので管理が簡単で操作性に優れ、他の余剰汚泥処理方法よりも優れている。
(3) 既存の生物処理装置を大幅に改造することなくそのまま利用でき、単に水熱処理装置のみを新設すればよいので、当初設備費用は、極めて少なくてすむ。
(4) 水熱反応装置の処理能力や規模は設計自在であり、また排水や汚泥の生物処理法も多様であることから、水熱・生物法は地域の実情や事業の形態に応じた処理施設の建設が可能である。
(5) 有害な副生成物が発生しない安全性の高いシステムである。
(6) 水熱反応終了後の冷却により回収した熱を加熱へ利用する熱リサイクルにより、省エネルギーシステムが達成できる。
など、多くの優れた利点を有するものである。
【図面の簡単な説明】
【図1】水熱反応の分類を示す説明図である。
【図2】水熱・活性汚泥法の概略図である。
【図3】回分式水熱反応装置の概略図である。
【図4】連続式水熱反応装置の概略図である。
【図5】被処理汚泥の水熱反応処理後の性状を示すグラフで、(a)はpHと反応温度の関係を示すグラフ、(b)は吸光度と反応温度の関係を示すグラフである。
【図6】水熱反応による被処理汚泥の改質を示すグラフで、(a)は残留固形分と反応温度の関係を示すグラフ、(b)は汚泥の可溶化率と反応温度の関係を示すグラフである。
【図7】水熱反応による被処理汚泥の改質を示すグラフで、(a)は可溶性TOC量と反応温度の関係を示すグラフ、(b)は可溶性COD量と反応温度の関係を示すグラフ、(c)は可溶性BOD量と反応温度の関係を示すグラフである。
【符号の説明】
1 水熱・活性汚泥システム
2 曝気槽
3 固液分離槽
4 水熱反応装置
4A 回分式水熱反応装置
4B 連続式水熱反応装置
41 インコネル製反応容器
42 ステンレス球
43 振盪機
44 高圧ポンプ
45 加熱部
46 反応部
46a ステンレス管
47 冷却部
48 気液分離部
H 引抜き汚泥
H1 被処理汚泥
H2 返送汚泥
H3 余剰汚泥
W 人工下水
S 処理液
G 生成ガス
A 空気[0001]
[Industrial application fields]
The present invention relates to a novel biological treatment method for wastewater, which can be said to be a hydrothermal / biological method using a hydrothermal reaction, which enables complete elimination or significant reduction of organic matter in sludge generated by wastewater treatment. Is.
[0002]
[Prior art]
Biological treatment is the most common wastewater treatment, and almost all sewage, domestic wastewater, manure wastewater, livestock manure wastewater and the like are carried out by this method. However, since the main subject of the treatment is microorganisms, the growing microorganisms and the like always remain as excess sludge. For this reason, sludge is reduced by anaerobic treatment such as methane fermentation, but it cannot be completely extinguished, and most of them are incinerated after dehydration or landfilled.
[0003]
Thus, several methods for treating excess sludge using a hydrothermal reaction have been proposed. Here, the hydrothermal reaction means that water and a substance are put in a sealed container and heated to cause the substance to react in a high temperature and high pressure state. The conventional methods for treating excess sludge can be broadly divided into three categories: 1) sludge liquefaction, 2) sludge liquefaction, and 3) sludge wet oxidation. The high temperature and high pressure state includes a supercritical water state exceeding the critical point of water (374 ° C., 22 MPa) and a subcritical water state below the critical point.
[0004]
In 1) sludge liquefaction, dewatered sludge is hydrothermally decomposed and liquidized and fluidized by hydrothermal decomposition of solid sludge in a relatively low temperature range under subcritical water conditions, or spray combustion or spray combustion. This is a technique for improving the convenience of incineration processing by means of incineration, and is intended for incineration processing. This liquefaction is realized by leakage of cytoplasm due to destruction of microbial cells.
[0005]
2) Sludge oiling is a technology that uses an alkaline catalyst under subcritical water conditions to convert dehydrated sludge into an oily substance by lowering, condensing and deoxygenating it, and using it as an energy source. . However, the oil conversion rate is around 40%, and others remain as unreacted substances, and there is a difficulty in that it is necessary to treat the accompanying aqueous phase. Moreover, since the produced oil contains N and S, there is a problem that the odor of the combustion gas is severe and a deodorizing device is required.
[0006]
Finally, the wet oxidation of sludge in 3) is a technology that reacts with oxidizing agents such as oxygen and hydrogen peroxide under supercritical water conditions with dehydrated sludge as a catalyst to convert them into inorganic substances such as carbon dioxide and ammonia. is there. However, in order to oxidize even a simple substance such as carbon dioxide, harsh conditions such as a large amount of catalyst and ultra-high temperature are necessary, and this is not cost effective. Furthermore, supercritical water has a low dielectric constant, and precipitation of inorganic salts is remarkable, which has many problems such as blocking of reactors and pipe systems, and the use of harmful catalysts.
[0007]
In addition, as biological treatment methods of wastewater that does not generate sludge, there are biological methods using thermophilic bacteria or biological methods using corrosive soil. There is a difficulty in the size of the capacity.
[0008]
[Problems to be solved by the invention]
As described above, the conventional method for treating excess sludge using a hydrothermal reaction has various difficulties, and it is impossible to completely treat the excess sludge. Therefore, as a result of earnest research, the present inventors have developed a novel technique capable of treating most of the generated sludge by combining a hydrothermal reaction and a metabolic decomposition function of microorganisms.
[0009]
That is, the present invention should be called a hydrothermal / biological method. In the hydrothermal reactor, the organic component in the sludge is removed in the presence of a subcritical state and a large amount of water (about 90 to 99%). Bacteria are decomposed so that they can be easily treated, and this treatment liquid is decomposed and extinguished by a biological treatment apparatus. Most of the sludge is microbial cells, and other plant and animal fines are also included. And in order to make it easier for bacteria used for biological treatment of waste water and sludge to be treated by hydrothermal reaction, sugar and amino acids (or a part of the molecule is further decomposed) are converted to the biodegradable substances in sludge. The treatment liquid obtained by decomposing into an easily biodegradable substance is returned to a biological treatment process, for example, an aeration tank of an activated sludge method, where it is decomposed and assimilated by bacteria.
[0010]
The hydrothermal reactor of the present invention is usually installed attached to a biological treatment device that generates sludge, such as an activated sludge device, and the treatment liquid obtained by the hydrothermal reactor is used as the original activated sludge. It is returned to the aeration tank or the contact aeration tank of the processing apparatus, and again subjected to biodegradation. The part to be returned is not limited to the aeration tank, and may be any place such as a raw water tank or an adjustment tank as long as it is a process before the aeration tank. In the case of a small-scale biological treatment apparatus such as a combined tank, the generated excess sludge may be transferred to a hydrothermal reactor attached to a large activated sludge apparatus for treatment. In this case, it is assumed that the capacity of the hydrothermal reactor is large. Furthermore, when surplus sludge generated from a biological treatment device such as an activated sludge treatment device is treated with another biological treatment device such as an anaerobic treatment device, a hydrothermal reaction device is attached to the anaerobic treatment device. You may make it throw into an anaerobic processing apparatus after hydrothermal and biological treatment beforehand. However, if the present invention is carried out in an activated sludge apparatus that is a generation source of sludge, excess sludge is hardly generated, and sludge treatment in a conventional digester is not required.
[0011]
[Means for Solving the Problems]
(Positioning of this technology by classification of hydrothermal reaction)
As described above, the hydrothermal reaction means that water and a substance are put in a sealed container and heated to react the substance in a high temperature and high pressure state, and is also called a high temperature and high pressure water reaction. In the subcritical state below the critical point (374 ° C., 22 MPa), there are two phases, a gas phase and a liquid phase. Above the supercritical point (supercritical), the liquid phase and the gas phase disappear and become one phase. Although there is no clear definition of the lower limit of the subcritical point, it is said to be about 200 ° C. or higher.
[0012]
Under subcritical conditions, a liquid phase reaction and a gas phase reaction proceed simultaneously as shown in FIG. The liquid phase reaction is mainly an ionic reaction, and at the same time, a hydrolytic reaction with active hydrothermal molecules occurs. In the gas phase reaction, a radical reaction mainly occurs, and the reactions such as thermal decomposition, recombination, dehydration condensation, dehydrogenation, and decarboxylation proceed in a complicated manner. Under supercritical conditions, only gas phase reactions proceed. Under subcritical conditions, it is possible to control which reaction is preferentially performed by the proportion of water in the vessel, the amount of reactants, temperature, pressure, presence of catalyst, and the like.
[0013]
The conventional sludge treatment technology utilizing hydrothermal reaction is classified as follows based on these reactions. 1) Liquefaction uses both liquid phase and gas phase reactions under subcritical conditions, and all the reactions shown in FIG. 1 proceed. 2) Oiling gives priority to gas phase reactions under subcritical conditions, and proceeds with reactions such as thermal decomposition, dehydration condensation and deoxygenation. The wet oxidation of sludge in 3) is a reaction under supercritical conditions, and no liquid phase reaction occurs.
[0014]
The gas phase reaction is complicated, and the reverse reaction of decomposition (lower molecular weight) and bonding (polymerization) proceeds, so there are many by-products, generation of malodorous gases, carbonization, high viscosity Scale formation on the inner wall of the container is remarkable due to reactions such as materialization and insolubilization of inorganic salts. On the other hand, the liquid phase reaction mainly consists of hydrolysis, there are few by-products, inorganic salts do not precipitate at all, and there is little scale formation on the inner wall of the container.
[0015]
The present invention is a technique that preferentially performs a subcritical liquid phase reaction, and mainly involves hydrolysis. In this respect, it differs from other sludge hydrothermal reaction treatments.
[0016]
(Conversion of sludge to easily decomposable substance by hydrolysis reaction)
The basic unit of a biological object is a cell, and the biological substance that retains the shape of the biological object (or cell) and is related to the motor function is a polymer made of polysaccharides or protein fibers. In these biopolymers, sugar or amino acid molecules as basic substances are linked together by dehydration condensation to form chain substances, and these chain substances are further cross-linked to form a complex three-dimensional structure. Therefore, metabolic degradation by normal biological functions is difficult.
[0017]
In this system technology, these hardly biodegradable biopolymers are cleaved by hydrolysis reaction in hot water, and the basic substance sugar or amino acid monomer (monomer) or quantifier (oligomer) This is a technique for decomposing and extinguishing a biodegradable bioconstituent substance by metabolizing the readily biodegradable monomer or quantity obtained by the microbial function by microbial function. Although some of the monomer molecules may be decomposed, there is no change in biodegradability.
[0018]
The cell wall of bacteria, which is the main component of the extracted sludge, is called peptidoglycan, and is a chained substance in which polysaccharide chains (N-acetylglycosamine, NAG and N-acetylmuramic acid, NAM are alternately linked by β (1 → 4). ) Is cross-linked with a peptide and is composed of a three-dimensional structure that is biologically, chemically and physically strong. In hot water, the three-dimensional structure of peptidoglycan becomes unstable due to thermal motion. Hydrothermal molecules with high reaction activity attack the glycosidic bonds of polysaccharide chains and peptide bonds of amino acid bridges, and the chain binding sites are cleaved by hydrolysis. By repeating this cleavage, a low molecular weight substance in which one or several sugar and amino acid molecules are linked or a part of the molecule is further decomposed is generated. Thus, if cell walls that cannot be decomposed by ordinary microorganisms are converted into readily biodegradable sugars and amino acids, they can be easily metabolized by the function of microorganisms.
[0019]
In addition, various types of plant and animal sludge are contained in the first settling sludge such as sewage treatment. The hardly biodegradable substances in these sludges can also be converted into easily biodegradable substances by a hydrolysis reaction. For example, a cell wall of a plant is made of a multi-layered cellulose plate, but is hydrolyzed by a hydrothermal reaction and converted into a monomer or quantity of D-glucose. Animal bones / cartilages, animal fibers, and the like are complex structures of fiber proteins, but are converted to amino acids, which are basic substances of fibers, by hydrothermal reaction. In this way, the various biopolymers constituting the initial sedimentation sludge and the proliferating microbial cells are converted into monomers and quantifiers such as sugars, amino acids, nucleic acids, lipids, and the like, which are the basic units. This is a system that converts to a group of easily biodegradable low-molecular substances consisting of partially decomposed substances, etc., returns them to the aeration tank, and metabolizes them by microbial function.
[0020]
The conditions of the hydrothermal reaction vary depending on the biological treatment method (the activated sludge method, the high-speed treatment method, the anaerobic treatment method, etc.) for biologically treating the hydrothermal reaction treatment liquid. In high-speed biological treatment with a short reaction time, the cell constituents must be depolymerized to such an extent that they can be metabolized in a short time, so high temperature / pressure or long-time reaction conditions (treatment conditions) are required. In long-term anaerobic treatment, the polymer composite structure may be disassembled to a certain extent, and then metabolized by biological functions. That is, the reaction conditions of temperature, pressure and time can be determined according to the biological process to be applied. Accordingly, the anaerobic treatment may be performed at a lower temperature / pressure or reaction conditions for a short time, so that the equipment cost / operating cost of the hydrothermal reactor is low.
[0021]
(Features of this technology)
In the hydrothermal / biological method, the extracted sludge separated into solid and liquid is settled and concentrated, and a part or all of the sludge is sent to the hydrothermal reactor (hydrothermal reactor) as the treated sludge, and the organic matter in the treated sludge This is a treatment system that significantly reduces the amount of excess sludge or does not generate any excess sludge by decomposing components (refractory biodegradable substances) into easily decomposable substances and returning this treatment liquid to the biological reaction tank. .
[0022]
The combination of hydrothermal reaction and biological reaction of the present invention has many advantages as shown below. That is, the hydrothermal / biological method is comprehensively evaluated for diversity, operability, processability, compactness, safety, equipment costs, operating costs, etc., and is superior to various other surplus sludge treatment technologies. Technology.
(1) Biological treatment of hydrothermal treatment liquid uses biological treatment equipment that generates surplus sludge or biological treatment equipment that treats surplus sludge as it is. Since there is no need to make any remodeling, the cost is low.
(2) The characteristics of the hydrothermal reaction are that there are many operating factors such as the ratio of water and solids, temperature, pressure, and time. Because it can be set accurately by advanced technology, there is certainty in processing results.
(3) It is a highly safe system that does not generate harmful by-products. For example, the combustion method is a gas phase reaction in which oxidation / reduction reactions proceed in a complicated manner, so that ash is formed in which harmful by-products (dioxins, NOx, etc.) and heavy metal sugars are concentrated. For this reason, exhaust gas treatment and incineration ash treatment / disposal are required. Since the present technology is mainly based on hydrolysis under subcritical conditions, there are no harmful by-products, and inorganic salts are dissolved and contained in the processing solution. Even if an organic chlorine compound such as dioxin is contained in the sludge, it is dechlorinated and rendered harmless.
(4) However, a gas containing a malodorous component is generated by a hydrothermal reaction. In the activated sludge method or the like, biological deodorization can be achieved by separating the gas with a gas-liquid separator and diffusing it into an aeration tank. The hydrothermal reaction system is a sealed system, and malodorous gas does not leak out of the system.
(5) Hydrothermal reactors can be made small to large, and there are various biological methods. Hydrothermal / biological methods are used in treatment facilities according to local conditions and business forms. Construction is possible.
(6) An energy saving system can be achieved by heat recycling that uses the heat recovered by cooling after completion of the hydrothermal reaction for heating.
[0023]
【Example】
In the present Example, the hydrothermal / activated sludge method was implemented using the artificial sewage W. The basic configuration of the system 1 includes an aeration tank 2, a solid-liquid separation tank 3, and a hydrothermal reaction device 4 as shown in FIG. The sludge separated and concentrated in the solid-liquid separation tank 3 is drawn out to obtain a drawn sludge H. And a part of it is sent to the hydrothermal reactor 4 as the treated sludge H1, where the hardly biodegradable substance in the sludge is converted into a group of easily biodegradable low molecular substances, and the obtained treatment The liquid S was put into the aeration tank and metabolized by microbial function.
[0024]
A part of the extracted sludge H becomes return sludge H2. Further, if the amount of extracted sludge H is large, it is discharged out of the system as excess sludge H3. However, in the case of the present invention, if the capacity of the hydrothermal reactor is insufficient, excess sludge H3 is generated. However, if the hydrothermal reactor has sufficient capacity, so-called excess sludge is usually generated. do not do. However, minerals such as minerals in the sludge and trace amounts of carbon particles generated by dehydrogenation or deoxygenation need to be removed from the system from a solid-liquid separation tank or the like. In this experiment, the hydrothermal reaction was carried out both batchwise and continuously.
[0025]
The aeration tank 2 (effective capacity 8L) and the solid-liquid separation tank 3 (effective capacity 3L) in FIG. 2 are the ones used for the standard activated sludge method and are miniaturized. Moreover, as a specific example of the hydrothermal reactor 4, a batch type hydrothermal reactor 4A shown in FIG. 3 and a continuous hydrothermal reactor 4B shown in FIG. 4 were used. The batch-type hydrothermal reactor 4A is a 100 mL Inconel reaction vessel 41 in which a plurality of stainless steel balls 42 are placed, which are attached to a shaker 43 to stir the reaction solution. The continuous hydrothermal reactor 4 </ b> B includes a high-pressure pump 44, a heating unit 45, a reaction unit 46, a cooling unit 47, and a gas-liquid separation unit 48. The total length of the stainless tube 46a of the reaction unit 46 was 60 cm, the inner diameter was 3 mm, and the volume was 17 mL.
[0026]
First, artificial sewage W was introduced from the raw water tank 5 into the aeration tank 2, and after aeration treatment, it was sent to the solid-liquid separation tank 3, where sludge was settled and concentrated. 100 mL of this sedimented and concentrated sludge (sludge concentration of about 10,500 mg / L) was treated by the hydrothermal reactor 4 as the treated sludge H1. The produced gas G was gas-liquid separated and diffused together with the supply air A into the aeration tank 2, and the treatment liquid S was introduced into the aeration tank 2.
[0027]
In the batch system, the treated sludge H1 was treated in 50 mL portions in two portions. The pressure at each temperature was consistent with the saturated vapor pressure of water at that temperature. The temperature raising time was about 30 minutes, the reaction time after reaching the predetermined temperature was 1 hour, and the cooling time after completion of the reaction was about 30 minutes. The hydrothermal treatment liquid S was filtered under reduced pressure, the portion blocked by the CF / C filter paper was taken as the solid content, and the component passed through was taken as the dissolved component.
[0028]
In the continuous type, the sludge H1 to be treated was fed to the reactor 4B by the high-pressure pump 44 at 0.28 mL / min for treatment. The treatment pressure was set with a pressure regulating valve and reacted under the same temperature and pressure conditions as in the batch system. The residence time of the sludge H1 to be treated in the heating part 45 (including the heat exchange part), the reaction part 46 and the cooling part 47 is set to 30 minutes, 1 hour, and 30 minutes, and the apparatus is operated so as to operate at the same temperature as the batch type. Produced and operated.
[0029]
The property after the hydrothermal reaction process of the to-be-processed sludge H1 in each reaction temperature in a batch method is shown in FIG. FIG. 5A is a graph showing the relationship between the reaction temperature and the pH. Although the pH of the treated sludge H1 before the reaction varies, the pH of the treatment liquid S has a certain tendency. . That is, at about 250-260 ° C. or higher, pH of around 8 is shown, and below this temperature, the pH decreases with temperature. FIG. 5B is a graph showing the relationship between the reaction temperature and the absorbance, and the absorbance at each wavelength of the filtered sample solution also behaves differently at 250 to 260 ° C. However, this boundary temperature is not clear.
[0030]
The residual solid content in the treatment liquid S after the reaction and the solubilization rate of sludge are shown in FIG. FIG. 6A is a graph showing the relationship between the reaction temperature and the residual solid content. The residual solid content decreases with an increase in the reaction temperature and almost disappears at about 350 ° C. FIG. 6 (b) is a graph showing the relationship between the reaction temperature and the sludge solubilization rate, and the amount of undecomposed sludge increased on the low temperature side from 250 to 260 ° C. On the high temperature side, all sludge was solubilized and the solid content was only carbon particles. The temperature dependence of the amount of carbon particles produced was not observed. Furthermore, although the amount of oily product was slight, it gradually increased with increasing temperature.
[0031]
FIG. 7A shows the soluble TOC in the treatment liquid S, FIG. 7B shows the COD, and FIG. 7C shows the BOD. For each index, a maximum value is observed around 200 ° C. It seems that the maximum value appeared at around 200 ° C. because of the two effects that the gas generation amount increases as the reaction temperature increases, and that the sludge solubility and molecular weight reduction are suppressed as the reaction temperature decreases. The optimum conditions for the hydrothermal reaction are that all sludge is soluble and low molecular, and gasification is as small as possible. Under the experimental conditions of 1 hour hydrothermal reaction, 320-350 ° C seems to be the optimum condition.
[0032]
In this example, the sludge extracted at a temperature of 320 ° C. and a pressure of 12.1 MPa was subjected to a hydrothermal reaction, and the treatment liquid S was introduced into the aeration tank 2 to perform a hydrothermal / activated sludge method. As shown in Table 1, when comparing the treatment liquid of the conventional activated sludge method and the hydrothermal / activated sludge method, the BOD, COD and TOC values are almost the same, and the hydrothermally treated sludge is completely It turns out that it is metabolically decomposed.
[0033]
[Table 1]
Figure 0003689804
[0034]
In the present example using artificial sewage, it was estimated that the oxygen consumption of the hydrothermal activated sludge method increased by about 10% compared to the conventional activated sludge method when calculated from the BOD load of hydrothermal treatment. However, the actual consumption was almost the same.
[0035]
【The invention's effect】
As described above in detail, the present invention feeds sludge generated in a biological wastewater treatment device to a hydrothermal reactor, and uses the hydrothermal reaction to readily produce biodegradable organic matter in the sludge under subcritical conditions. Decomposition processing into a degradable substance, and the processing solution is sent to the original or other biological processing apparatus for biological processing.
[0036]
Therefore, the method of the present invention
(1) Since hydrothermal reaction and biological treatment are combined, surplus sludge can be completely eliminated.
(2) Moreover, since the hydrothermal reaction in the subcritical state is used, the running cost is low, and if the reaction result is an easily biodegradable substance, its contents and the degree of decomposition are not important, so management is simple. Excellent operability and superior to other surplus sludge treatment methods.
(3) Since the existing biological treatment equipment can be used as it is without any major modification, and only the hydrothermal treatment equipment needs to be newly installed, the initial equipment cost is extremely low.
(4) The treatment capacity and scale of the hydrothermal reactor can be freely designed, and the biological treatment methods for waste water and sludge are diverse, so the hydrothermal and biological methods are treated according to local conditions and business forms. Construction of facilities is possible.
(5) A highly safe system that does not generate harmful by-products.
(6) An energy saving system can be achieved by heat recycling that uses the heat recovered by cooling after completion of the hydrothermal reaction for heating.
Have many excellent advantages.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing classification of hydrothermal reactions.
FIG. 2 is a schematic view of a hydrothermal / activated sludge method.
FIG. 3 is a schematic view of a batch hydrothermal reactor.
FIG. 4 is a schematic view of a continuous hydrothermal reactor.
FIG. 5 is a graph showing the properties of the treated sludge after the hydrothermal reaction treatment, (a) is a graph showing the relationship between pH and reaction temperature, and (b) is a graph showing the relationship between absorbance and reaction temperature.
FIG. 6 is a graph showing the modification of treated sludge by hydrothermal reaction, (a) is a graph showing the relationship between residual solid content and reaction temperature, and (b) is a graph showing the relationship between sludge solubilization rate and reaction temperature. It is a graph to show.
FIG. 7 is a graph showing the modification of treated sludge by hydrothermal reaction, (a) is a graph showing the relationship between the soluble TOC amount and the reaction temperature, and (b) is a graph showing the relationship between the soluble COD amount and the reaction temperature. (C) is a graph which shows the relationship between the amount of soluble BOD and reaction temperature.
[Explanation of symbols]
1 Hydrothermal / activated sludge system 2 Aeration tank 3 Solid-liquid separation tank 4 Hydrothermal reactor 4A Batch hydrothermal reactor 4B Continuous hydrothermal reactor 41 Inconel reaction vessel 42 Stainless steel ball 43 Shaker 44 High-pressure pump 45 Heating Unit 46 reaction unit 46a stainless steel pipe 47 cooling unit 48 gas-liquid separation unit H drawn sludge H1 treated sludge H2 return sludge H3 surplus sludge W artificial sewage S processing liquid G generated gas A air

Claims (5)

排水の生物処理装置で発生する汚泥を該生物処理装置に付属する水熱反応装置に送り込み、汚泥中の難生分解性有機物を、亜臨界状態と90〜99%の水の存在下で、水熱反応により易生分解性物質に加水分解処理し、その処理液を該生物処理装置に返送して該易生分解性物質を分解消滅することを特徴とする、水熱反応を利用する余剰汚泥ゼロエミッション型生物処理法。Sludge generated in the biological treatment apparatus for waste water is sent to a hydrothermal reactor attached to the biological treatment apparatus, and the hardly biodegradable organic matter in the sludge is treated with water in the subcritical state and in the presence of 90 to 99% water. Surplus sludge using hydrothermal reaction, characterized in that it is hydrolyzed into a readily biodegradable substance by a thermal reaction, and the treated liquid is returned to the biological treatment apparatus to decompose and extinguish the easily biodegradable substance. Zero-emission biological treatment method. 一の生物処理装置に付属した水熱反応装置の処理能力が十分ある場合に、汚泥を発生する他の生物処理装置からの余剰汚泥を、該一の生物処理装置から発生する汚泥とともに付属の水熱反応装置に輸送して加水分解処理し、得られた処理液を該一の生物処理装置に返送して易生分解性物質を分解消滅するものである、請求項1記載の水熱反応を利用する余剰汚泥ゼロエミッション型生物処理法。  When the treatment capacity of the hydrothermal reactor attached to one biological treatment device is sufficient, excess sludge generated from other biological treatment devices that generate sludge is added to the attached water together with sludge generated from the one biological treatment device. The hydrothermal reaction according to claim 1, wherein the hydrothermal reaction is carried out by hydrolyzing by transporting to a thermal reaction apparatus, returning the obtained treatment liquid to the one biological treatment apparatus and decomposing and extinguishing the readily biodegradable substance. Surplus sludge zero emission type biological treatment method to be used. 排水の生物処理装置で発生する余剰汚泥を、他の生物処理装置に付属した水熱反応装置に送り込み、汚泥中の難生分解性有機物を、亜臨界状態と90〜99%の水の存在下で、水熱反応により易生分解性物質に加水分解処理し、その処理液を該他の生物処理装置に送液して該易生分解性物質を分解消滅することを特徴とする、水熱反応を利用する余剰汚泥ゼロエミッション型生物処理法。Surplus sludge generated in the wastewater biological treatment equipment is sent to the hydrothermal reactor attached to other biological treatment equipment, and the biodegradable organic matter in the sludge is subcritical and in the presence of 90-99% water. in, to hydrolysis to readily biodegradable materials by hydrothermal reaction, characterized by decomposing eliminate the easily biodegradable material by feeding the processing liquid to the another biological treatment device, hydrothermal Surplus sludge zero emission type biological treatment method using reaction. 水熱反応における加熱温度は250〜260℃以上である、請求項1、請求項2又は請求項3記載の水熱反応を利用する余剰汚泥ゼロエミッション型生物処理法。  The surplus sludge zero emission type biological treatment method using a hydrothermal reaction according to claim 1, wherein the heating temperature in the hydrothermal reaction is 250 to 260 ° C. or higher. 水熱反応の条件は、得られた水熱反応処理液を返送或いは送液する生物処理装置が、反応時間の短い高速生物処理の場合は高い温度・圧力或いは長時間の反応とし、長時間の嫌気処理の場合はより低い温度・圧力或いは短時間の反応とするなど、温度・圧力及び時間の反応条件は、適用する生物プロセスに応じて決定するものである、請求項1、請求項2、請求項3又は請求項4記載の水熱反応を利用する余剰汚泥ゼロエミッション型生物処理法。  The conditions of the hydrothermal reaction are that the biological treatment apparatus that returns or sends the obtained hydrothermal reaction treatment liquid is a high temperature / pressure or long time reaction in the case of high speed biological treatment with a short reaction time. In the case of anaerobic treatment, the reaction conditions of temperature, pressure and time are determined according to the biological process to be applied, such as a lower temperature / pressure or a short-time reaction. A surplus sludge zero emission type biological treatment method using the hydrothermal reaction according to claim 3 or 4.
JP02368499A 1999-02-01 1999-02-01 Surplus sludge zero emission type biological treatment method using hydrothermal reaction Expired - Fee Related JP3689804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02368499A JP3689804B2 (en) 1999-02-01 1999-02-01 Surplus sludge zero emission type biological treatment method using hydrothermal reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02368499A JP3689804B2 (en) 1999-02-01 1999-02-01 Surplus sludge zero emission type biological treatment method using hydrothermal reaction

Publications (2)

Publication Number Publication Date
JP2000218295A JP2000218295A (en) 2000-08-08
JP3689804B2 true JP3689804B2 (en) 2005-08-31

Family

ID=12117292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02368499A Expired - Fee Related JP3689804B2 (en) 1999-02-01 1999-02-01 Surplus sludge zero emission type biological treatment method using hydrothermal reaction

Country Status (1)

Country Link
JP (1) JP3689804B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805963B2 (en) * 2000-09-12 2006-08-09 定瞭 村上 Biological organic waste treatment method and apparatus
CN1328193C (en) * 2002-09-02 2007-07-25 古贺健 Method of reducing volume of sludge and apparatus therefor
JP4655618B2 (en) * 2004-12-14 2011-03-23 株式会社Ihi Sewage treatment apparatus and method
CN115554645B (en) * 2022-09-27 2023-09-05 丽珠集团福州福兴医药有限公司 Method for treating antibiotic residues by using hydrothermal synergistic nZVI activated persulfate

Also Published As

Publication number Publication date
JP2000218295A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
Lin et al. Advanced oxidation processes (AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal: A critical review
Neyens et al. Pilot-scale peroxidation (H2O2) of sewage sludge
Camacho et al. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge
Øegaard Sludge minimization technologies-an overview
Neyens et al. Hot acid hydrolysis as a potential treatment of thickened sewage sludge
US5492624A (en) Waste treatment process employing oxidation
JP3754979B2 (en) Sludge reduction method and apparatus
CN109477011B (en) Method for liquid phase oxidation in hydrothermal carbonization process
KR20060002888A (en) Methods and apparatus for converting organics, wastes or low value substances into useful products
US20220227643A1 (en) Method and Apparatus to Reduce Wastewater Greenhouse Gas Emissions, Nitrogen and Phosphorous Without Bioreactor Processing
US5762809A (en) Process for treating a medium containing organic constituents
Liu et al. Treatment of sewage sludge hydrothermal carbonization aqueous phase by Fe (II)/CaO2 system: Oxidation behaviors and mechanism of organic compounds
JP3689804B2 (en) Surplus sludge zero emission type biological treatment method using hydrothermal reaction
JP3763460B2 (en) Biological treatment method and apparatus for organic wastewater
JP3654789B2 (en) Sludge treatment method and apparatus
WO2022067440A1 (en) Volatilization and oxidation of organic waste
KR20160033967A (en) System for Reduction Treating and Energy Producing of Organic Waste
Hii et al. Hydrothermal processing of Sludge–A review
CN115554645B (en) Method for treating antibiotic residues by using hydrothermal synergistic nZVI activated persulfate
JP2000061497A (en) Treatment of organic wastewater and equipment therefor
JP3223145B2 (en) Organic wastewater treatment method
Harada et al. Treatment of wastewater and sludge by a catalytic wet oxidation process
JP4004766B2 (en) Excess sludge biological treatment method using hydrothermal reaction
JPH11277087A (en) Method and apparatus for treating organic wastewater
JP3809989B2 (en) Solubilized sludge treatment method and apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees