[go: up one dir, main page]

JP3689322B2 - Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell - Google Patents

Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3689322B2
JP3689322B2 JP2000256157A JP2000256157A JP3689322B2 JP 3689322 B2 JP3689322 B2 JP 3689322B2 JP 2000256157 A JP2000256157 A JP 2000256157A JP 2000256157 A JP2000256157 A JP 2000256157A JP 3689322 B2 JP3689322 B2 JP 3689322B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
electrode
ion exchange
polymer
meq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000256157A
Other languages
Japanese (ja)
Other versions
JP2002075403A (en
Inventor
昌昭 七海
洋一 浅野
長之 金岡
信広 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000256157A priority Critical patent/JP3689322B2/en
Priority to US09/897,426 priority patent/US20020045081A1/en
Priority to DE10132434A priority patent/DE10132434B4/en
Priority to CA002352356A priority patent/CA2352356C/en
Publication of JP2002075403A publication Critical patent/JP2002075403A/en
Application granted granted Critical
Publication of JP3689322B2 publication Critical patent/JP3689322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子型燃料電池の電解質膜−電極集成体,特に,電解質膜と,その電解質膜を挟む空気極および燃料極とを備え,それら電解質膜,空気極および燃料極がそれぞれ高分子イオン交換成分を有する電解質膜−電極集成体に関する。
【0002】
【従来の技術】
固体高分子型燃料電池において,発電中に生成された水が前記集成体内に滞留すると,発電性能が低下する。そこで,運転温度を85℃以上に設定して生成水の蒸気圧を高め,これにより,その生成水を前記集成体外に排出することが試みられている。
【0003】
【発明が解決しようとする課題】
しかしながら,前記のような高い運転温度下においては前記集成体内の水分が過度に排出される傾向があり,また従来の前記集成体は水分の過度排出に対応し得る低い電気抵抗を持たないことから発電性能の低下を招く,という問題を生じた。
【0004】
またセルスタックにおいては,複数のセルの積層による接触抵抗を低減すべく,それらセルを締付けているが,従来の前記集成体は,85℃といった運転温度下では前記締付けに起因したクリープによる薄膜化を来たし,ガス漏れの発生,それに伴う発電性能の低下,といった問題も生じた。
【0005】
【課題を解決するための手段】
本発明は,85℃以上の運転温度下において高い発電性能を維持し得る前記集成体を提供することを目的とする。
【0006】
前記目的を達成するため本発明によれば,電解質膜と,その電解質膜を挟む空気極および燃料極とを備え,それら電解質膜,空気極および燃料極がそれぞれ高分子イオン交換成分を有する,固体高分子型燃料電池の電解質膜−電極集成体において,前記高分子イオン交換成分が芳香族炭化水素系高分子のスルホン化物であり,イオン交換容量Icが0.9meq/g≦Ic≦5meq/gであり,85℃における動的粘弾性係数Dvが5×108 Pa≦Dv≦1×1010Paであり,前記空気極および燃料極に含まれる触媒粒子の重量をそれぞれWとし,また前記空気極および燃料極に含まれる前記高分子イオン交換成分の重量をそれぞれXとしたとき,それらW,Xの比X/Wが0.05≦X/W≦0.80である電解質膜−電極集成体が提供される。
【0007】
前記集成体のイオン交換容量Icを前記のように設定すると,85℃以上の運転温度下において前記集成体内の水分が過度に排出された場合にも,その集成体は低い電気抵抗を持つことから発電性能を高く維持することが可能である。ただし,イオン交換容量IcがIc<0.9meq/gでは前記集成体の電気抵抗を低く保持することができず,一方,Ic>5meq/gでは高電流密度下での発電性能が低下する。これは,Ic>5meq/gになると空気極および燃料極に水が滞留し易くなるからである,と考えられる。
【0008】
また前記集成体の85℃における動的粘弾性係数Dvを前記のように設定すると,前記集成体は,85℃以上の運転温度下におけるスタック構成上の締付圧に対し優れた耐クリープ性を発揮してその薄膜化が回避され,これにより発電性能を高く維持することが可能である。ただし,動的粘弾性係数DvがDv<5×108 Paでは前記集成体の前記運転温度下での耐クリープ性が低く,一方,Dv>1×1010Paでは電解質膜,空気極および燃料極の硬さが増すため,それらを接合して前記集成体を製作する際に,それらの接合性が悪化する。
【0009】
さらに空気極および燃料極における触媒粒子および高分子イオン交換成分の両重量の比X/Wを前記のように設定することは発電性能を高く維持する上で有効である。ただし,両重量の比X/Wが前記範囲を逸脱すると,この効果は得られない。
【0010】
【発明の実施の形態】
図1において,固体高分子型燃料電池(セル)1は,電解質膜2と,その両側にそれぞれ密着する空気極3および燃料極4と,それら両極3,4にそれぞれ密着する2つの拡散層5,6と,それら両拡散層5,6に密着する一対のセパレータ7,8とよりなる。これら電解質膜2,空気極3および燃料極4は電解質膜−電極集成体9を構成する。
【0011】
電解質膜2は高分子イオン交換成分より構成されている。空気極3および燃料極4は,それぞれ,カーボンブラック粒子の表面に複数のPt粒子を担持させた複数の触媒粒子と,前記と同一または異なる高分子イオン交換成分とよりなる。
【0012】
各拡散層5,6は,多孔質のカーボンペーパ,カーボンプレート等よりなり,また各セパレータ7,8は,同一の形態を有するように黒鉛化炭素より構成され,空気極3側のセパレータ7に存する複数の溝10に空気が,また燃料極4側のセパレータ8に在って前記溝10と交差する関係の複数の溝11に水素がそれぞれ供給される。
【0013】
固体高分子型燃料電池は85℃以上の高温下で運転されるもので,その高温運転中における発電性能の高度維持の観点から,電解質膜−電極集成体9のイオン交換容量Icは,0.9meq/g≦Ic≦5meq/gに,また85℃における動的粘弾性係数Dvは5×108 Pa≦Dv≦1×1010Paにそれぞれ設定される。
【0014】
高分子イオン交換成分には,ポリエーテルエーテルケトン(PEEK),ポリエーテルスルホン(PES),ポリスルホン(PSF),ポリエーテルイミド(PEI),ポリフェニレンスルフイド(PPS),ポリフェニレンオキシド(PPO)といった芳香族炭化水素系高分子のスルホン化物が該当する。
【0015】
空気極3および燃料極4に含まれる触媒粒子の重量をそれぞれWとし,また空気極3および燃料極4に含まれる高分子イオン交換成分の重量をそれぞれXとしたとき,1つの電極におけるそれらX,Wの比X/Wは0.05≦X/W≦0.80に設定される。
【0016】
以下,具体例について説明する。
【0017】
I.電解質膜−電極集成体の製造
カーボンブラック粒子(ファーネスブラック)に,平均粒径3nmのPt粒子を担持させて,そのPt粒子の含有量が50wt%の触媒粒子を調製した。Pt粒子の平均粒径はX線回折法によって測定されたものであり,これは以下同じである。
【0018】
〔例−I〕
高分子イオン交換成分である前記PEEKスルホン化物を製造すべく,PEEK(アルドリッチ社製)を発煙硫酸中に入れて,イオン交換容量IcがIc=2.4meq/gになるまでスルホン化を行った。
【0019】
このPEEKスルホン化物を用いて厚さ50μmの電解質膜2を成形した。またPEEKスルホン化物をNMP(N−メチルピロリドン,アルドリッチ社製)に還流溶解してPEEKスルホン化物の含有量が12wt%の溶液を調製した。
【0020】
PEEKスルホン化物含有溶液に,PEEKスルホン化物の重量X:触媒粒子の重量W=1.25:2(X/W≒0.63)となるように触媒粒子を混合し,次いでボールミルを用いて触媒粒子の分散を図り,空気極3および燃料極4用スラリを調製した。
【0021】
またカーボンブラック粒子およびPTFE粒子をエチレングリコールに混合分散させてスラリを調製し,そのスラリをカーボンペーパの一面に塗布し乾燥させて下地層を形成し,これによりカーボンペーパと下地層とよりなる拡散層5,6を製作した。
【0022】
両拡散層5,6の下地層上に空気極3および燃料極4用スラリを,Pt量が0.5mg/cm2 となるようにそれぞれ塗布し,60℃,10分間の乾燥,120℃での減圧乾燥を行って,空気極3および燃料極4を形成した。
【0023】
電解質膜2の両面に,両拡散層5,6と一体の空気極3および燃料極4をそれぞれ当て,80℃,5MPa,2分間の条件で1次ホットプレスを行い,次いで,160℃,4MPa,1分間の条件で2次ホットプレスを行って,一対の拡散層5,6を持つ電解質膜−電極集成体9を得た。これを実施例(1)とする。
【0024】
〔例−II
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を,また電解質膜2として,そのPEEKスルホン化物を用いて成形された厚さ50μmのもの,即ち,例−Iと同様のものをそれぞれ用意した。以後,空気極3および燃料極4の形成過程で60℃,10分間の乾燥後NMPが残存している状態で,それら空気極3および燃料極4を電解質膜2の両面にそれぞれ当て,160℃,4MPa,1分間の条件でホットプレスを行った,という点を除き,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを実施例()とする。
【0025】
〔例−III
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を,また電解質膜2として,そのPEEKスルホン化物を用いて成形された厚さ50μmのもの,即ち,例−Iと同様のものをそれぞれ用意した。以後,空気極3および燃料極4用スラリの調製に当り,PEEKスルホン化物の重量X:触媒粒子の重量W=0.1:2(X/W=0.05)に設定し,また空気極3および燃料極4の形成過程で60℃,10分間の乾燥後NMPが残存している状態で,それら空気極3および燃料極4を電解質膜2の両面にそれぞれ当て,160℃,4MPa,1分間の条件でホットプレスを行った,という点を除き,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを実施例()とする。
【0026】
〔例−IV
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を,また電解質膜2として,そのPEEKスルホン化物を用いて成形された厚さ50μmのもの,即ち,例−Iと同様のものをそれぞれ用意した。以後,空気極3および燃料極4用スラリの調製に当り,PEEKスルホン化物の重量X:触媒粒子の重量W=1.6:2(X/W=0.80)に設定し,また空気極3および燃料極4の形成過程で60℃,10分間の乾燥後NMPが残存している状態で,それら空気極3および燃料極4を電解質膜2の両面にそれぞれ当て,160℃,4MPa,1分間の条件でホットプレスを行った,という点を除き,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを実施例()とする。
【0027】
〔例−
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を用意した。またPEEK(アルドリッチ社製)とPEI(アルドリッチ社製)との混合物を発煙硫酸中に入れてイオン交換容量Ic≒0.95meq/gになるまでスルホン化を行い,そのPEEK−PEIスルホン化物を用いて成形された厚さ約80μmの電解質膜2を用意した。以後,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを実施例()とする。
【0028】
〔例−VI
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を用意した。またPEEK(アルドリッチ社製)とPEI(アルドリッチ社製)との混合物を発煙硫酸中に入れてイオン交換容量Ic≒5.1meq/gになるまでスルホン化を行い,そのPEEK−PEIスルホン化物を用いて成形された厚さ約80μmの電解質膜2を用意した。以後,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを実施例()とする。
【0029】
〔例−VII
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を用意した。またPEEK(アルドリッチ社製)とPEI(アルドリッチ社製)との混合物を発煙硫酸中に入れてイオン交換容量Ic≒0.90meq/gになるまでスルホン化を行い,そのPEEK−PEIスルホン化物を用いて成形された厚さ約80μmの電解質膜2を用意した。以後,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを比較例(1)とする。
【0030】
〔例−VIII
高分子イオン交換成分として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を用意した。またPEEK(アルドリッチ社製)とPEI(アルドリッチ社製)との混合物を発煙硫酸中に入れてイオン交換容量Ic≒5.5meq/gになるまでスルホン化を行い,そのPEEK−PEIスルホン化物を用いて成形された厚さ約80μmの電解質膜2を用意した。以後,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを比較例(2)とする。
【0031】
〔例− IX
高分子イオン交換成分として,イオン交換容量Ic=0.9meq/gのPTFEスル ホン化物を,また電解質膜2として,例−I同様に,イオン交換容量Ic=2.4meq/gのPEEKスルホン化物を用いて成形された厚さ50μmのものをそれぞれ用意した。以後,例−Iと同様の方法を実施して前記同様の電解質膜−電極集成体9を得た。これを参考例とする。
II.電解質膜−電極集成体のイオン交換容量Ic,動的粘弾性係数Dv,電流密度1A/cm2 時のセル電位および厚さ減少量の測定
実施例(1)〜(ならびに比較例(1),(2)及び参考例に関し,滴定法の適用下でイオン交換容量Icを測定し,また85℃において,周波数を10Hzに設定したときの引張りモード下での動的粘弾性係数Dvを測定した。
【0032】
実施例(1)を用いてセルスタックを組立て,実施例(1)の温度:85℃;空気極3のガス:空気,圧力100kPa,利用率50%;燃料極4のガス:純水素,圧力100kPa,利用率50%;各ガスの露点:80℃,の条件で発電を行い,電流密度1A/cm2 時のセル電位を測定した。また実施例(2)〜(ならびに比較例(1),(2)及び参考例を用いたセルスタックについて,前記同様の測定を行った。
【0033】
実施例(1)を用いたセルスタックについて,セル締付圧0.5MPa,実施例(1)の温度90℃,運転時間200時間の条件で発電を行い,実施例(1)の厚さ減少量を測定した。また実施例(2)〜(ならびに比較例(1),(2)及び参考例を用いたセルスタックについて,前記同様の測定を行った。
【0034】
表1は前記測定結果を示す。表中のセル電位は実施例(1)等を用いたセルスタックに関する値である。また表1には,便宜上,高分子イオン交換成分の重量Xと触媒粒子の重量Wとの比X/Wも掲載した。
【0035】
【表1】

Figure 0003689322
【0036】
図2は,実施例(1)〜(ならびに比較例(1),(2)及び参考例に関し,表1に基づいて,イオン交換容量Icと電流密度1A/cm2 時のセル電位との関係をグラフ化したものである。図2から明らかなように,実施例(1)〜()のようにイオン交換容量Icを0.9meq/g≦Ic≦5meq/gに設定すると,電流密度1A/cm2 時のセル電位を,実用レベルである0.4V以上に高く維持することができる。比較例(1),(2)はセル電位が低い。
【0037】
図3は,実施例(1)〜(ならびに比較例(1)及び参考例に関し,表1に基づいて,動的粘弾性係数Dvと,厚さ減少量および電流密度1A/cm2 時のセル電位との関係をグラフ化したものである。図3から明らかなように,実施例(1)〜(7)のごとく動的粘弾性係数Dvを5×108 Pa≦Dv≦1×1010Paに設定すると,厚さ減少量を10μm以下にし得ると共に電流密度1A/cm2 時のセル電位を0.40V以上に高く維持することができる。この場合,比較例(2)は動的粘弾性係数DvがDv=4×108 Paであって,Dv<5×108 Paであることから厚さ減少量が大となる。
【0038】
図4は,実施例(1)〜(6)及び参考例に関し,表1に基づいて,高分子イオン交換成分の重量Xと触媒粒子の重量Wとの比X/Wと,電流密度1A/cm2 時のセル電位との関係をグラフ化したものである。図4から明らかなように,実施例(1)〜(6)のごとく,イオン交換容量Icが0.9meq/g≦Ic≦5meq/gであり,また動的粘弾性係数Dvが5×108 Pa≦Dv≦1×1010Paである,ということを前提として比X/Wを0.05≦X/W≦0.80に設定すると,電流密度1A/cm2 時のセル電圧を0.47V以上に高く維持することができる。
【0039】
【発明の効果】
本発明によれば,前記のように構成することによって,85℃以上の運転温度下において発電性能を十分に高く維持し得る固体高分子型燃料電池の電解質膜−電極集成体を提供することができる。
【図面の簡単な説明】
【図1】 固体高分子型燃料電池(セル)の概略側面図である。
【図2】 イオン交換容量Icと電流密度1A/cm2 時のセル電位との関係を示すグラフである。
【図3】 動的粘弾性係数Dvと,厚さ減少量および電流密度1A/cm2 時のセル電位との関係を示すグラフである。
【図4】 高分子イオン交換成分の重量Xと触媒粒子の重量Wとの比X/Wと,電流密度1A/cm2 時のセル電位との関係を示すグラフである。
【符号の説明】
1…………固体高分子型燃料電池
2…………電解質膜
3…………空気極
4…………燃料極
9…………電解質膜−電極集成体[0001]
BACKGROUND OF THE INVENTION
The present invention includes an electrolyte membrane-electrode assembly of a solid polymer fuel cell, in particular, an electrolyte membrane, an air electrode and a fuel electrode sandwiching the electrolyte membrane, and each of the electrolyte membrane, the air electrode and the fuel electrode is a polymer. The present invention relates to an electrolyte membrane-electrode assembly having an ion exchange component.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, if water generated during power generation stays in the assembly, the power generation performance deteriorates. Therefore, an attempt has been made to increase the vapor pressure of the produced water by setting the operating temperature to 85 ° C. or higher, thereby discharging the produced water out of the assembly.
[0003]
[Problems to be solved by the invention]
However, the moisture in the assembly tends to be excessively discharged under the high operating temperature as described above, and the conventional assembly does not have a low electrical resistance that can cope with the excessive discharge of moisture. There was a problem that the power generation performance was reduced.
[0004]
In the cell stack, the cells are clamped to reduce the contact resistance due to the lamination of a plurality of cells, but the conventional assembly is thinned by creep due to the clamping at an operating temperature of 85 ° C. As a result, problems such as the occurrence of gas leaks and the accompanying decrease in power generation performance also occurred.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide the assembly capable of maintaining high power generation performance at an operating temperature of 85 ° C. or higher.
[0006]
In order to achieve the above object, according to the present invention, an electrolyte membrane, an air electrode and a fuel electrode sandwiching the electrolyte membrane, and each of the electrolyte membrane, the air electrode, and the fuel electrode have a polymer ion exchange component are provided. In the electrolyte membrane-electrode assembly of the polymer fuel cell, the polymer ion exchange component is a sulfonated aromatic hydrocarbon polymer, and the ion exchange capacity Ic is 0.9 meq / g ≦ Ic ≦ 5 meq / g. The dynamic viscoelastic coefficient Dv at 85 ° C. is 5 × 10 8 Pa ≦ Dv ≦ 1 × 10 10 Pa, the weight of the catalyst particles contained in the air electrode and the fuel electrode is W, and the air Electrolyte membrane-electrode assembly in which the ratio X / W of W and X is 0.05 ≦ X / W ≦ 0.80, where X is the weight of the polymer ion exchange component contained in the electrode and the fuel electrode Body is It is subjected.
[0007]
When the ion exchange capacity Ic of the assembly is set as described above, even when the moisture in the assembly is excessively discharged at an operating temperature of 85 ° C. or higher, the assembly has a low electrical resistance. It is possible to maintain high power generation performance. However, when the ion exchange capacity Ic is Ic <0.9 meq / g, the electrical resistance of the assembly cannot be kept low. On the other hand, when Ic> 5 meq / g, the power generation performance under a high current density is lowered. This is considered to be because water tends to stay in the air electrode and the fuel electrode when Ic> 5 meq / g.
[0008]
Further, when the dynamic viscoelastic coefficient Dv at 85 ° C. of the assembly is set as described above, the assembly has excellent creep resistance against the clamping pressure on the stack configuration at an operating temperature of 85 ° C. or higher. It can be used to avoid thinning the film, thereby maintaining high power generation performance. However, when the dynamic viscoelastic coefficient Dv is Dv <5 × 10 8 Pa, the creep resistance of the assembly is low at the operating temperature, whereas when Dv> 1 × 10 10 Pa, the electrolyte membrane, the air electrode, and the fuel Since the hardness of the poles increases, when they are joined to produce the assembly, their bondability deteriorates.
[0009]
Furthermore, setting the ratio X / W of the weights of the catalyst particles and the polymer ion exchange component in the air electrode and the fuel electrode as described above is effective in maintaining high power generation performance. However, if the ratio X / W of both weights deviates from the above range, this effect cannot be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, a polymer electrolyte fuel cell (cell) 1 includes an electrolyte membrane 2, an air electrode 3 and a fuel electrode 4 that are in close contact with both sides thereof, and two diffusion layers 5 that are in close contact with both electrodes 3 and 4, respectively. , 6 and a pair of separators 7 and 8 that are in close contact with both diffusion layers 5 and 6. These electrolyte membrane 2, air electrode 3 and fuel electrode 4 constitute an electrolyte membrane-electrode assembly 9.
[0011]
The electrolyte membrane 2 is composed of a polymer ion exchange component. Each of the air electrode 3 and the fuel electrode 4 includes a plurality of catalyst particles in which a plurality of Pt particles are supported on the surface of carbon black particles, and a polymer ion exchange component that is the same as or different from the above.
[0012]
Each of the diffusion layers 5 and 6 is made of porous carbon paper, carbon plate or the like, and each of the separators 7 and 8 is made of graphitized carbon so as to have the same form. Air is supplied to the plurality of existing grooves 10, and hydrogen is supplied to the plurality of grooves 11 in the separator 8 on the fuel electrode 4 side and intersecting the grooves 10.
[0013]
The polymer electrolyte fuel cell is operated at a high temperature of 85 ° C. or higher. From the viewpoint of maintaining a high power generation performance during the high temperature operation, the ion exchange capacity Ic of the electrolyte membrane-electrode assembly 9 is 0. 9 meq / g ≦ Ic ≦ 5 meq / g, and the dynamic viscoelastic coefficient Dv at 85 ° C. is set to 5 × 10 8 Pa ≦ Dv ≦ 1 × 10 10 Pa.
[0014]
Polymer ion exchange components include polyetheretherketone (PEEK), polyethersulfone (PES), polysulfone (PSF), polyetherimide (PEI), polyphenylenesulfide (PPS), and polyphenyleneoxide (PPO). A sulfonated product of an aromatic hydrocarbon polymer is applicable.
[0015]
When the weight of the catalyst particles contained in the air electrode 3 and the fuel electrode 4 is W, respectively, and the weight of the polymer ion exchange component contained in the air electrode 3 and the fuel electrode 4 is X, respectively, those X in one electrode , W ratio X / W is set to 0.05 ≦ X / W ≦ 0.80.
[0016]
Specific examples will be described below.
[0017]
I. Production of Electrolyte Membrane-Electrode Assembly Carbon black particles (furnace black) were supported with Pt particles having an average particle size of 3 nm, and catalyst particles having a Pt particle content of 50 wt% were prepared. The average particle size of the Pt particles is measured by the X-ray diffraction method, and this is the same hereinafter.
[0018]
[Example-I]
In order to produce the PEEK sulfonated product which is a polymer ion exchange component, PEEK (manufactured by Aldrich) was placed in fuming sulfuric acid and sulfonated until the ion exchange capacity Ic was Ic = 2.4 meq / g. .
[0019]
An electrolyte membrane 2 having a thickness of 50 μm was formed using this PEEK sulfonated product. The PEEK sulfonated product was reflux-dissolved in NMP (N-methylpyrrolidone, manufactured by Aldrich) to prepare a solution having a PEEK sulfonated content of 12 wt%.
[0020]
The catalyst particles are mixed with the PEEK sulfonated solution so that the weight of PEEK sulfonated product is X: the weight of catalyst particles W = 1.25: 2 (X / W≈0.63), and then the catalyst is mixed using a ball mill. The particles were dispersed to prepare a slurry for the air electrode 3 and the fuel electrode 4.
[0021]
Also, a slurry is prepared by mixing and dispersing carbon black particles and PTFE particles in ethylene glycol. The slurry is applied to one surface of carbon paper and dried to form a base layer, whereby a diffusion consisting of carbon paper and base layer is formed. Layers 5 and 6 were made.
[0022]
The slurry for the air electrode 3 and the fuel electrode 4 is applied on the base layers of the diffusion layers 5 and 6 so that the Pt amount is 0.5 mg / cm 2 , dried at 60 ° C. for 10 minutes, and at 120 ° C. The air electrode 3 and the fuel electrode 4 were formed by drying under reduced pressure.
[0023]
The air electrode 3 and the fuel electrode 4 integral with both diffusion layers 5 and 6 are applied to both surfaces of the electrolyte membrane 2, respectively, and primary hot pressing is performed at 80 ° C., 5 MPa for 2 minutes, and then 160 ° C., 4 MPa. Then, secondary hot pressing was performed under the conditions of 1 minute to obtain an electrolyte membrane-electrode assembly 9 having a pair of diffusion layers 5 and 6. This is referred to as Example (1).
[0024]
[Example- II ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g as in Example-I, and an electrolyte membrane 2 having a thickness of 50 μm formed using the PEEK sulfonated product. That is, the same thing as Example-I was prepared, respectively. Thereafter, in the process of forming the air electrode 3 and the fuel electrode 4, with the NMP remaining after drying at 60 ° C. for 10 minutes, the air electrode 3 and the fuel electrode 4 are applied to both surfaces of the electrolyte membrane 2, respectively. The same electrolyte membrane-electrode assembly 9 was obtained by carrying out the same method as in Example-I except that hot pressing was performed under the conditions of 4 MPa, 1 minute. This is designated as Example ( 2 ).
[0025]
[Example- III ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g as in Example-I, and an electrolyte membrane 2 having a thickness of 50 μm formed using the PEEK sulfonated product. That is, the same thing as Example-I was prepared, respectively. Thereafter, in preparing the slurry for the air electrode 3 and the fuel electrode 4, the weight of PEEK sulfonated product X: the weight of the catalyst particles W = 0.1: 2 (X / W = 0.05), and the air electrode 3 and the fuel electrode 4, with the NMP remaining after drying at 60 ° C. for 10 minutes, the air electrode 3 and the fuel electrode 4 are applied to both surfaces of the electrolyte membrane 2, respectively, at 160 ° C., 4 MPa, 1 The same electrolyte membrane-electrode assembly 9 as described above was obtained by carrying out the same method as in Example-I except that the hot pressing was performed under the condition of minutes. This is designated as Example ( 3 ).
[0026]
[Example- IV ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g as in Example-I, and an electrolyte membrane 2 having a thickness of 50 μm formed using the PEEK sulfonated product. That is, the same thing as Example-I was prepared, respectively. Thereafter, in the preparation of the slurry for the air electrode 3 and the fuel electrode 4, the weight of PEEK sulfonated product X: the weight of catalyst particles W = 1.6: 2 (X / W = 0.80) was set. 3 and the fuel electrode 4, with the NMP remaining after drying at 60 ° C. for 10 minutes, the air electrode 3 and the fuel electrode 4 are applied to both surfaces of the electrolyte membrane 2, respectively, at 160 ° C., 4 MPa, 1 The same electrolyte membrane-electrode assembly 9 as described above was obtained by carrying out the same method as in Example-I except that the hot pressing was performed under the condition of minutes. This is designated as Example ( 4 ).
[0027]
[Example- V ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g was prepared as in Example-I. Also, a mixture of PEEK (manufactured by Aldrich) and PEI (manufactured by Aldrich) is put into fuming sulfuric acid and subjected to sulfonation until the ion exchange capacity Ic≈0.95 meq / g, and the PEEK-PEI sulfonated product is used. An electrolyte membrane 2 having a thickness of about 80 μm was prepared. Thereafter, the same method as in Example-I was carried out to obtain the same electrolyte membrane-electrode assembly 9 as described above. This is designated as Example ( 5 ).
[0028]
[Example- VI ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g was prepared as in Example-I. Also, a mixture of PEEK (manufactured by Aldrich) and PEI (manufactured by Aldrich) is put into fuming sulfuric acid and subjected to sulfonation until the ion exchange capacity Ic≈5.1 meq / g, and the PEEK-PEI sulfonated product is used. An electrolyte membrane 2 having a thickness of about 80 μm was prepared. Thereafter, the same method as in Example-I was carried out to obtain the same electrolyte membrane-electrode assembly 9 as described above. This is designated as Example ( 6 ).
[0029]
[Example- VII ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g was prepared as in Example-I. Also, a mixture of PEEK (manufactured by Aldrich) and PEI (manufactured by Aldrich) is put into fuming sulfuric acid and subjected to sulfonation until the ion exchange capacity Ic≈0.90 meq / g, and the PEEK-PEI sulfonated product is used. An electrolyte membrane 2 having a thickness of about 80 μm was prepared. Thereafter, the same method as in Example-I was carried out to obtain the same electrolyte membrane-electrode assembly 9 as described above. This is referred to as Comparative Example (1).
[0030]
[Example- VIII ]
As a polymer ion exchange component, a PEEK sulfonated product having an ion exchange capacity Ic = 2.4 meq / g was prepared as in Example-I. Also, a mixture of PEEK (manufactured by Aldrich) and PEI (manufactured by Aldrich) is put into fuming sulfuric acid and subjected to sulfonation until the ion exchange capacity Ic≈5.5 meq / g, and the PEEK-PEI sulfonated product is used. An electrolyte membrane 2 having a thickness of about 80 μm was prepared. Thereafter, the same method as in Example-I was carried out to obtain the same electrolyte membrane-electrode assembly 9 as described above. This is designated as Comparative Example (2).
[0031]
[Example- IX ]
As polymer ion exchange component, the PTFE sul Hong product of ion-exchange capacity Ic = 0.9 meq / g, and as the electrolyte membrane 2, Example -I Similarly, PEEK sulfonated ion exchange capacity Ic = 2.4 meq / g Each having a thickness of 50 μm was prepared. Thereafter, the same method as in Example-I was carried out to obtain the same electrolyte membrane-electrode assembly 9 as described above. This is a reference example.
II. Membrane - electrode ion exchange capacity Ic of the assembly, the dynamic viscoelastic coefficient Dv, current density 1A / cm measured examples of cell potential and thickness reduction of 2:00 (1) to (6) and Comparative Example (1 ), (2) and the reference example , the ion exchange capacity Ic is measured under the application of the titration method, and the dynamic viscoelastic coefficient Dv is measured under the tensile mode when the frequency is set to 10 Hz at 85 ° C. did.
[0032]
The cell stack was assembled using the embodiment (1), the temperature of the embodiment (1): 85 ° C .; the gas in the air electrode 3: air, the pressure 100 kPa, the utilization factor 50%; the gas in the fuel electrode 4: pure hydrogen, the pressure Power generation was performed under the conditions of 100 kPa, utilization factor 50%; dew point of each gas: 80 ° C., and the cell potential at a current density of 1 A / cm 2 was measured. Moreover, the same measurement as described above was performed for the cell stacks using Examples (2) to ( 6 ) and Comparative Examples (1), (2) and Reference Example .
[0033]
For the cell stack using Example (1), power generation was performed under the conditions of a cell clamping pressure of 0.5 MPa, a temperature of 90 ° C. of Example (1), and an operation time of 200 hours, and the thickness reduction of Example (1) The amount was measured. Moreover, the same measurement as described above was performed for the cell stacks using Examples (2) to ( 6 ) and Comparative Examples (1), (2) and Reference Example .
[0034]
Table 1 shows the measurement results. The cell potential in the table is a value related to the cell stack using Example (1) and the like. Table 1 also shows the ratio X / W between the weight X of the polymer ion exchange component and the weight W of the catalyst particles for convenience.
[0035]
[Table 1]
Figure 0003689322
[0036]
FIG. 2 relates to Examples (1) to ( 6 ) and Comparative Examples (1), (2) and Reference Example , based on Table 1, the ion exchange capacity Ic and the cell potential at a current density of 1 A / cm 2. Is a graph of the relationship. As can be seen from FIG. 2, when the ion exchange capacity Ic is set to 0.9 meq / g ≦ Ic ≦ 5 meq / g as in Examples (1) to ( 6 ), the cell potential at a current density of 1 A / cm 2 is obtained. Can be maintained at a high practical level of 0.4 V or higher. In Comparative Examples (1) and (2), the cell potential is low.
[0037]
FIG. 3 shows dynamic viscoelasticity coefficient Dv, thickness reduction amount, and current density of 1 A / cm 2 based on Table 1 with respect to Examples (1) to ( 6 ) and Comparative Example (1) and Reference Example. This is a graph of the relationship with the cell potential. As is clear from FIG. 3, when the dynamic viscoelastic coefficient Dv is set to 5 × 10 8 Pa ≦ Dv ≦ 1 × 10 10 Pa as in Examples (1) to (7), the thickness reduction amount is 10 μm or less. And the cell potential at a current density of 1 A / cm 2 can be maintained at 0.40 V or higher. In this case, in the comparative example (2), the dynamic viscoelastic coefficient Dv is Dv = 4 × 10 8 Pa and Dv <5 × 10 8 Pa. Therefore, the thickness reduction amount is large.
[0038]
FIG. 4 relates to Examples (1) to (6) and the reference example , based on Table 1, the ratio X / W of the weight X of the polymer ion exchange component and the weight W of the catalyst particles, and the current density 1 A / The graph shows the relationship with the cell potential at cm 2 . As is clear from FIG. 4, as in Examples (1) to (6) , the ion exchange capacity Ic is 0.9 meq / g ≦ Ic ≦ 5 meq / g, and the dynamic viscoelastic coefficient Dv is 5 × 10 5. If the ratio X / W is set to 0.05 ≦ X / W ≦ 0.80 on the premise that 8 Pa ≦ Dv ≦ 1 × 10 10 Pa, the cell voltage at a current density of 1 A / cm 2 is reduced to 0. It can be kept higher than 47V.
[0039]
【The invention's effect】
According to the present invention, it is possible to provide an electrolyte membrane-electrode assembly of a polymer electrolyte fuel cell that can maintain power generation performance sufficiently high at an operating temperature of 85 ° C. or higher by being configured as described above. it can.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a polymer electrolyte fuel cell (cell).
FIG. 2 is a graph showing the relationship between ion exchange capacity Ic and cell potential at a current density of 1 A / cm 2 .
FIG. 3 is a graph showing a relationship between a dynamic viscoelastic coefficient Dv, a thickness reduction amount, and a cell potential at a current density of 1 A / cm 2 .
FIG. 4 is a graph showing the relationship between the ratio X / W between the weight X of the polymer ion exchange component and the weight W of the catalyst particles and the cell potential at a current density of 1 A / cm 2 .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ………… Solid polymer fuel cell 2 ………… Electrolyte membrane 3 ………… Air electrode 4 ………… Fuel electrode 9 ………… Electrolyte membrane-electrode assembly

Claims (2)

電解質膜(2)と,その電解質膜(2)を挟む空気極(3)および燃料極(4)とを備え,それら電解質膜(2),空気極(3)および燃料極(4)がそれぞれ高分子イオン交換成分を有する,固体高分子型燃料電池の電解質膜−電極集成体において,
前記高分子イオン交換成分が芳香族炭化水素系高分子のスルホン化物であり,イオン交換容量Icが0.9meq/g≦Ic≦5meq/gであり,85℃における動的粘弾性係数Dvが5×108 Pa≦Dv≦1×1010Paであり,前記空気極(3)および燃料極(4)に含まれる触媒粒子の重量をそれぞれWとし,また前記空気極(3)および燃料極(4)に含まれる前記高分子イオン交換成分の重量をそれぞれXとしたとき,それらW,Xの比X/Wが0.05≦X/W≦0.80であることを特徴とする固体高分子型燃料電池の電解質膜−電極集成体。
An electrolyte membrane (2), an air electrode (3) and a fuel electrode (4) sandwiching the electrolyte membrane (2) are provided, and the electrolyte membrane (2), air electrode (3) and fuel electrode (4) are respectively In an electrolyte membrane-electrode assembly of a polymer electrolyte fuel cell having a polymer ion exchange component,
The polymer ion exchange component is a sulfonated aromatic hydrocarbon polymer, the ion exchange capacity Ic is 0.9 meq / g ≦ Ic ≦ 5 meq / g, and the dynamic viscoelastic coefficient Dv at 85 ° C. is 5 × 10 8 Pa ≦ Dv ≦ 1 × 10 10 Pa, the weight of the catalyst particles contained in the air electrode (3) and the fuel electrode (4) is W, and the air electrode (3) and the fuel electrode ( 4) When the weight of the polymer ion exchange component contained in 4) is X, the ratio X / W of W and X is 0.05 ≦ X / W ≦ 0.80. An electrolyte membrane-electrode assembly of a molecular fuel cell.
前記芳香族炭化水素系高分子にはポリエーテルエーテルケトン,ポリエーテルスルホン,ポリスルホン,ポリエーテルイミド,ポリフェニレンスルフイドおよびポリフェニレンオキシドが該当する,請求項1記載の固体高分子型燃料電池の電解質膜−電極集成体。  2. The electrolyte membrane of a polymer electrolyte fuel cell according to claim 1, wherein the aromatic hydrocarbon polymer includes polyether ether ketone, polyether sulfone, polysulfone, polyether imide, polyphenylene sulfide, and polyphenylene oxide. An electrode assembly.
JP2000256157A 2000-07-05 2000-08-25 Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell Expired - Fee Related JP3689322B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000256157A JP3689322B2 (en) 2000-08-25 2000-08-25 Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell
US09/897,426 US20020045081A1 (en) 2000-07-05 2001-07-03 Electrolyte membrane/electrode assembly of solid polymer electrolyte fuel cell
DE10132434A DE10132434B4 (en) 2000-07-05 2001-07-04 Electrolyte membrane / electrode assembly of a solid polymer electrolyte fuel cell
CA002352356A CA2352356C (en) 2000-07-05 2001-07-04 Electrolyte membrane/electrode assembly of solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256157A JP3689322B2 (en) 2000-08-25 2000-08-25 Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002075403A JP2002075403A (en) 2002-03-15
JP3689322B2 true JP3689322B2 (en) 2005-08-31

Family

ID=18744810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256157A Expired - Fee Related JP3689322B2 (en) 2000-07-05 2000-08-25 Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3689322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153146A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221164B2 (en) * 2001-03-30 2009-02-12 本田技研工業株式会社 Polymer electrolyte fuel cell
JP4486340B2 (en) * 2003-10-22 2010-06-23 本田技研工業株式会社 Method for producing fuel cell electrode-membrane assembly
CN100379069C (en) * 2004-12-21 2008-04-02 松下电器产业株式会社 Direct methanol fuel cell
JP4972873B2 (en) * 2005-04-04 2012-07-11 株式会社カネカ Resin composition for use in polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153146A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP2002075403A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
Zhang et al. An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries
KR101531075B1 (en) Highly stable fuel cell membranes and methods of making them
Liu et al. High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery
EP2161770A1 (en) Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
US20100183941A1 (en) Assembly of membrane, electrode, gas diffusion layer and gasket, method for producing the same, and solid polymer fuel cell
US20040180250A1 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
JP2006114502A (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
US20100068589A1 (en) Membrane-electrode assembly
CN103996863A (en) Bipolar metal plate for fuel cell with proton exchange membrane
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
CN101689646A (en) Membrane-electrode assembly, method for production thereof, and solid polymer fuel cell
US6844097B2 (en) Solid polymer type fuel cell
US20100167162A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP3689322B2 (en) Electrolyte membrane-electrode assembly of polymer electrolyte fuel cell
JP2009021233A (en) Membrane-electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP3962548B2 (en) Polymer electrolyte fuel cell
KR20140129721A (en) Proton exchange membrane for fuel cell, preparation method thereof and fuel cell comprising the same
US20020045081A1 (en) Electrolyte membrane/electrode assembly of solid polymer electrolyte fuel cell
JP2004303541A (en) Polymer laminated film, method for producing the same and use thereof
JP2009032414A (en) Electrolyte membrane and electrolyte membrane-catalyst layer assembly for solid polymer fuel cell, fuel cell using the same electrolyte membrane-catalyst layer assembly, and laminated body for forming electrode catalyst layer of solid polymer fuel cell
JP3563372B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3563371B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2002216802A (en) Solid polymer electrolyte film type electrode structure, its manufacturing method and fuel cell using it
JP3730242B2 (en) Fuel cell and fuel cell manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees