[go: up one dir, main page]

JP3688314B2 - Ammonia decomposition method - Google Patents

Ammonia decomposition method Download PDF

Info

Publication number
JP3688314B2
JP3688314B2 JP30166594A JP30166594A JP3688314B2 JP 3688314 B2 JP3688314 B2 JP 3688314B2 JP 30166594 A JP30166594 A JP 30166594A JP 30166594 A JP30166594 A JP 30166594A JP 3688314 B2 JP3688314 B2 JP 3688314B2
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
ruthenium
gas
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30166594A
Other languages
Japanese (ja)
Other versions
JPH0884910A (en
Inventor
宏一 北原
健二 大塚
登 武政
弘 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP30166594A priority Critical patent/JP3688314B2/en
Publication of JPH0884910A publication Critical patent/JPH0884910A/en
Application granted granted Critical
Publication of JP3688314B2 publication Critical patent/JP3688314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアンモニアの分解方法に関し、さらに詳細にはアンモニアを比較的低温で効率よく、しかも、安全に分解しうるアンモニアの分解方法に関する。
アンモニアの分解による窒素、水素の製造、あるいは、ガス中に有害成分として含まれるアンモニアの分解による排ガスの浄化などアンモニアの分解技術は各種の産業で広く使用されている。
【0002】
【従来の技術】
従来、アンモニアを分解する方法としては、▲1▼アルミナなどの無機質担体にニッケル、鉄、パラジウムまたは白金を担持させた触媒と加熱下に接触させて窒素と水素に分解させる方法、▲2▼白金網、白金ロジウム合金網または白金パラジウム合金網からなる触媒と接触させて分解させる方法、▲3▼吸着剤を用い、前段でアンモニアを吸着除去し、後段で脱着させた高濃度のアンモニアを燃焼させる方法などがある。
【0003】
【発明が解決しようとする課題】
▲1▼のニッケル、鉄、パラジウムまたは白金をアルミナなどに担持させた触媒を用いた場合のアンモニア分解操作温度は、通常は700〜900℃のような高温域でおこなうこととされている。さらに、ニッケル、鉄などを用いた触媒では処理ガス中に酸素が存在する場合や装置の保守時など空気との接触によって著しい発熱を生ずるという危険性がある。
【0004】
また、▲2▼の白金、ロジウム、パラジウムなどの網状物は耐腐食性は優れているが、分解操作温度はやはり600℃以上と高い温度が要求されるばかりでなく、貴金属自体を網状にしているため、著しく高価である。
さらに、▲1▼、▲2▼の方法では一般的に分解温度が高いため、触媒が劣化し易いばかりでなく、空気などが存在すると有害な窒素酸化物を生成するという問題点もある。
一方、▲3▼の吸着剤を用いる方法は、装置が大型化するので保守が面倒であり、また、アンモニアの濃度が高いときなどには十分に処理しきれないという不都合がある。
【0005】
【課題を解決するための手段】
本発明者らはこれら従来技術における課題を解決し、比較的低温で、長時間にわたり効率よくアンモニアを分解しうる方法を得るべく、研究を重ねた結果、αアルミナにルテニウムを担持させた比表面積が8.5〜100m /gのものを分解触媒として用いることにより、目的を達成できることを見い出し、本発明に到達した。すなわち本発明は、アンモニアまたはアンモニア含有ガスを、αアルミナにルテニウムを担持させてなる比表面積が8.5〜100m /gの触媒と加熱下に接触させて、該アンモニアを窒素および水素に分解することを特徴とするアンモニアの分解方法である。本発明はアンモニア単独、または、窒素、水素、希ガスなどで希釈されたアンモニア(以下総称してアンモニアガスと記す)の分解に適用される。
【0006】
本発明において、ルテニウムをαアルミナに担持させてなるアンモニア分解触媒が用いられる。ルテニウムを担持させて触媒とした場合に、一般的に比表面積が小さく、耐熱性に優れ、高く安定した分解率で長期間の連続使用に耐えうるためである。
【0007】
αアルミナにルテニウムを担持させる方法としては、例えば、(1)塩化ルテニウムの水溶液を担体に含浸させたものを水素で還元する方法、(2)ルテニウム酸塩の水溶液を担体に含浸させたものを水素で還元する方法、(3)ルテニウムの酸化物または水酸化物を担体上に析出させてこれを水素還元する方法などがあり、これらによって触媒を調製することができる。
【0008】
ルテニウムが担持された触媒の比表面積は、BET法で通常は8.5〜100m /gとされるが、耐熱性、耐久性などの面からは、8.5〜50m/g程度のものが好適である。また、αアルミナに担持されるルテニウムの量は分解の対象となるガス中のアンモニアの濃度、流量、処理温度などの条件によって異なり一概に特定はできないが、実用上、通常は金属ルテニウム換算で触媒全体の0.05〜8.0重量%、好ましくは0.1〜4.0重量%程度である。ルテニウムの担持量が0.05重量%よりも少なくなると、アンモニアの分解効率が低下し、一方、8.0重量%よりも多くなると高価になるばかりでなく、ルテニウムの担持状態が不安定となり、却ってアンモニアの分解効率が低下する恐れもある。
【0009】
触媒の形状および大きさは、充填される反応筒の仕様、操作条件などに応じて定められるが、通常は、球形、円柱形などであり、球形であれば直径が2〜12mm、円柱形(ペレット)では直径が1〜10mm、高さが2〜10mm程度の範囲とされる。
また、これらの触媒を反応筒に充填した場合の充填密度は0.7〜1.5g/ml程度である。
【0010】
本発明において、処理対象となるアンモニアの濃度には特に制限はなく、通常は上記のようなルテニウム担持触媒が充填された反応筒に、加熱下で、アンモニア単独またはアンモニアを含有する窒素、水素、希ガスなどのアンモニアガスを通すことによっておこなわれ、アンモニアは触媒と接触することによって窒素と水素に分解される。
【0011】
アンモニアガスと触媒との接触は、従来技術におけるニッケル、鉄、パラジウム系の触媒などと同様に700〜900℃のような高温でおこなうことも可能であるが、本発明におけるルテニウム触媒は低温域でも活性を有しており、接触温度は通常は、300〜800℃とされる。さらに、分解効率、触媒の耐久性、エネルギーの節減、窒素酸化物の発生防止などなどを含めた見地から、実用上は400〜600℃のような比較的低温域でおこなうことが好ましい。
【0012】
処理対象となるアンモニアガスの流量は、体積空間速度で通常は3000hr- 1 以下、好ましくは500〜2000hr- 1 とされる。
また、アンモニア系ガスと触媒との接触時の圧力は、通常は常圧であるが、5kg/cm2 Gのような加圧下での操作も可能である。
【0013】
【実施例】
実施例1
無機質担体としてαアルミナに塩化ルテニウムの水溶液を含浸させた後、水素還元することによって得られた触媒で、ルテニウムの担持量が0.5重量%、比表面積8.5m2 /gで粒径約3mmとされた球状の触媒を用いた。
内径28.4mm、外径34.0mm、長さ800mmのステンレス鋼製の管内に、上記の触媒を充填長で400mm(充填密度1.0g/ml)になるように充填し、外部には加熱用のマイクロシースヒーターを取り付けてアンモニア分解用の反応筒とした。
【0014】
反応筒を所定の温度に加熱し、これにマスフローコントロラーを用いてアンモニア濃度が20vol%になるように窒素ガスで希釈調整したアンモニアガスを0.5kgf/cm2 の圧力で3.0Nl/minの流量で供給しながら、400℃、500℃および600℃のそれぞれの温度について、アンモニアの分解能力の測定をおこなった。引続き、600℃でアンモニアの分解を150時間続けた後についても、分解能力の測定をおこなった。
反応筒出口の分解ガス中の未分解アンモニアの濃度はTCDガスクロマトグラフを用いて測定した。各温度および150時間後における出口ガス中の未分解アンモニア濃度ならびにそれより求めたアンモニアの分解率を表1に示す。
【0015】
実施例2
αアルミナ担体にルテニウムが3.0重量%になるように担持させた触媒で、比表面積14m2 /g、粒径約3mmの触媒を充填(充填密度1.0g/ml)した他は、実施例1におけると同様にして各温度および150時間後におけるアンモニアの分解能力の測定をおこなった。結果を表1に示す。
【0016】
実施例3
濃度100%のアンモニアガスを供給した他は実施例1におけると同様にして各温度および150時間後におけるアンモニアの分解能力の測定をおこなった。結果を表1に示す。
【0017】
実施例4(参考例1)
γアルミナ担体にルテニウムが0.5重量%になるように担持させた比表面積100m/gで粒径約3mmとされたペレット状の触媒を充填(充填密度0.98g/ml)した他は、実施例1におけると同様にして各温度および150時間後におけるアンモニアの分解能力の測定をおこなった。結果を表1に示す。
【0018】
実施例5(参考例2)
実施例4と同様のγアルミナ担体にルテニウムの担持量が0.3重量%になるように担持させた比表面積110mm/g、粒径約3mmの触媒を充填(充填密度0.96g/ml)した他は、実施例1におけると同様にして各温度および150時間後におけるアンモニアの分解能力の測定をおこなった。結果を表1に示す。
【0019】
比較例1
ルテニウムを担持させる代わりに、γアルミナ担体にパラジウムを0.3重量%になるように担持させた触媒を用いた他は、実施例1におけると同様にして各温度におけるアンモニアの分解能力の測定をおこなった。結果を表2に示す。
【0020】
比較例2
ルテニウムを担持させる代わりに、γアルミナ担体にニッケルを3重量%になるように担持させた触媒を用いた他は、実施例1におけると同様にして各温度におけるアンモニアの分解能力の測定をおこなった。結果を表2に示す。
【0021】
比較例3
ルテニウムを担持させる代わりに、αアルミナ担体に白金を0.1重量%になるように担持させた触媒を用いた他は、実施例1におけると同様にして各温度におけるアンモニアの分解能力の測定をおこなった。結果を表2に示す。
【0022】
【表1】

Figure 0003688314
【0023】
【表2】
Figure 0003688314
【0024】
【発明の効果】
本発明はαアルミナにルテニウムを担持させた比表面積が8.5〜100m /gの触媒を用いるものであり、高濃度のアンモニアガスを600℃以下のような低温で、効率よく分解することができる。しかも、ガス中に酸素、空気などが存在しても異常発熱を生じたり、窒素酸化物など有害な副生物を発生したりすることなく、優れた安全性を有している。また、低温で操作できるため、反応筒には強度の高いステンレス鋼など金属材料が使用できると同時に装置は小型化され、例えば半導体製造工場のクリーンルーム内など費用負担の大きい限られた空間への設置も容易となった。[0001]
[Industrial application fields]
The present invention relates to a method for decomposing ammonia, and more particularly to a method for decomposing ammonia that can efficiently and safely decompose ammonia at a relatively low temperature.
Ammonia decomposition technology such as production of nitrogen and hydrogen by decomposition of ammonia, or purification of exhaust gas by decomposition of ammonia contained as a harmful component in gas is widely used in various industries.
[0002]
[Prior art]
Conventionally, ammonia can be decomposed by (1) a method in which nickel, iron, palladium or platinum is supported on an inorganic carrier such as alumina and brought into contact with heating to decompose into nitrogen and hydrogen, and (2) platinum. (3) Using an adsorbent, the ammonia is adsorbed and removed at the former stage, and the high-concentration ammonia desorbed at the latter stage is burned using a catalyst comprising a net, a platinum rhodium alloy net or a platinum palladium alloy net. There are methods.
[0003]
[Problems to be solved by the invention]
In the case of using the catalyst (1), in which nickel, iron, palladium or platinum is supported on alumina or the like, the ammonia decomposition operation temperature is usually carried out in a high temperature range of 700 to 900 ° C. Furthermore, a catalyst using nickel, iron, or the like has a risk of generating significant heat due to contact with air when oxygen is present in the processing gas or during maintenance of the apparatus.
[0004]
In addition, (2) reticulates such as platinum, rhodium and palladium are excellent in corrosion resistance, but the decomposition operation temperature is not only required to be as high as 600 ° C., but the noble metal itself is reticulated. Therefore, it is extremely expensive.
Further, in the methods (1) and (2), since the decomposition temperature is generally high, not only is the catalyst easily deteriorated, but there is also a problem that harmful nitrogen oxides are produced when air or the like is present.
On the other hand, the method using the adsorbent (3) has a disadvantage that maintenance is troublesome because the apparatus becomes large, and that the treatment cannot be sufficiently performed when the concentration of ammonia is high.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have solved the problems in the prior art, and as a result of repeated research to obtain a method capable of efficiently decomposing ammonia at a relatively low temperature for a long time, the specific surface area in which ruthenium is supported on α-alumina. Of 8.5 to 100 m 2 / g was found to be able to achieve the object by using as a decomposition catalyst, and the present invention was achieved. That is, in the present invention, ammonia or an ammonia-containing gas is brought into contact with a catalyst having a specific surface area of 8.5 to 100 m 2 / g obtained by supporting ruthenium on α-alumina , and the ammonia is decomposed into nitrogen and hydrogen. This is a method for decomposing ammonia. The present invention is applied to the decomposition of ammonia alone or ammonia diluted with nitrogen, hydrogen, rare gas or the like (hereinafter collectively referred to as ammonia gas).
[0006]
In the present invention, an ammonia decomposition catalyst obtained by supporting ruthenium on α-alumina is used. This is because when ruthenium is supported as a catalyst, the specific surface area is generally small, the heat resistance is excellent, and it can withstand long-term continuous use with a high and stable decomposition rate .
[0007]
Examples of the method of loading ruthenium on α-alumina include, for example, (1) a method in which an aqueous solution of ruthenium chloride impregnated in a carrier is reduced with hydrogen, and (2) an aqueous solution of ruthenate in which the carrier is impregnated. There are a method of reducing with hydrogen, and (3) a method of depositing a ruthenium oxide or hydroxide on a support and reducing it with hydrogen, and these can prepare a catalyst.
[0008]
The specific surface area of the catalyst on which ruthenium is supported is usually 8.5 to 100 m 2 / g by the BET method, but from the viewpoint of heat resistance and durability, it is about 8.5 to 50 m 2 / g. Those are preferred. In addition, the amount of ruthenium supported on α-alumina varies depending on the conditions such as the concentration of ammonia in the gas to be decomposed, the flow rate, and the processing temperature, and cannot be specified. However, in practice, it is usually a catalyst in terms of metal ruthenium. The total amount is 0.05 to 8.0% by weight, preferably about 0.1 to 4.0% by weight. When the loading amount of ruthenium is less than 0.05% by weight, the decomposition efficiency of ammonia is lowered. On the other hand, when the loading amount is more than 8.0% by weight, not only is the cost increased, but the loading state of ruthenium becomes unstable. On the other hand, ammonia decomposition efficiency may be reduced.
[0009]
The shape and size of the catalyst are determined according to the specifications of the reaction cylinder to be filled, the operating conditions, etc., but are usually spherical, cylindrical, etc., and if spherical, the diameter is 2-12 mm, cylindrical ( Pellets) have a diameter of 1 to 10 mm and a height of about 2 to 10 mm.
Moreover, the packing density when these catalysts are packed in the reaction cylinder is about 0.7 to 1.5 g / ml.
[0010]
In the present invention, the concentration of ammonia to be treated is not particularly limited. Normally, a reaction tube filled with a ruthenium-supported catalyst as described above is heated under nitrogen alone or with nitrogen, hydrogen containing ammonia, This is done by passing ammonia gas such as rare gas, and ammonia is decomposed into nitrogen and hydrogen by contacting with the catalyst.
[0011]
The contact between the ammonia gas and the catalyst can be performed at a high temperature such as 700 to 900 ° C. as in the case of the nickel, iron, and palladium-based catalysts in the prior art. However, the ruthenium catalyst in the present invention can be used at a low temperature range. The contact temperature is usually 300 to 800 ° C. Furthermore, from a viewpoint including decomposition efficiency, durability of the catalyst, energy saving, prevention of generation of nitrogen oxides, etc., it is practically performed at a relatively low temperature range of 400 to 600 ° C.
[0012]
Flow rate of the ammonia gas to be processed is usually 3000hr volume space velocity of - 1 or less, preferably 500~2000Hr - it is 1.
The pressure at the time of contact between the ammonia-based gas and the catalyst is usually normal pressure, but operation under a pressure such as 5 kg / cm 2 G is also possible.
[0013]
【Example】
Example 1
A catalyst obtained by impregnating an α-alumina as an inorganic carrier with an aqueous solution of ruthenium chloride and then hydrogen reduction. The amount of ruthenium supported is 0.5% by weight, the specific surface area is 8.5 m 2 / g, and the particle size is about A spherical catalyst of 3 mm was used.
The above catalyst is filled in a stainless steel tube having an inner diameter of 28.4 mm, an outer diameter of 34.0 mm, and a length of 800 mm so that the filling length is 400 mm (packing density: 1.0 g / ml), and the outside is heated. A reaction tube for ammonia decomposition was prepared by attaching a microsheath heater.
[0014]
The reaction tube is heated to a predetermined temperature, and ammonia gas diluted with nitrogen gas so that the ammonia concentration becomes 20 vol% using a mass flow controller is added at 3.0 Nl / min at a pressure of 0.5 kgf / cm 2. The ammonia decomposition ability was measured at temperatures of 400 ° C., 500 ° C. and 600 ° C. Subsequently, after the decomposition of ammonia at 600 ° C. was continued for 150 hours, the decomposition ability was also measured.
The concentration of undecomposed ammonia in the cracked gas at the outlet of the reaction tube was measured using a TCD gas chromatograph. Table 1 shows the undecomposed ammonia concentration in the outlet gas at each temperature and after 150 hours, and the decomposition rate of ammonia determined therefrom.
[0015]
Example 2
A catalyst in which ruthenium is supported at 3.0% by weight on an α-alumina carrier and filled with a catalyst having a specific surface area of 14 m 2 / g and a particle size of about 3 mm (packing density: 1.0 g / ml) In the same manner as in Example 1, the ammonia decomposition ability at each temperature and after 150 hours was measured. The results are shown in Table 1.
[0016]
Example 3
The ammonia decomposition ability at each temperature and after 150 hours was measured in the same manner as in Example 1 except that ammonia gas having a concentration of 100% was supplied. The results are shown in Table 1.
[0017]
Example 4 (Reference Example 1)
The catalyst was packed with a pellet-shaped catalyst having a specific surface area of 100 m 2 / g and a particle size of about 3 mm supported on a γ-alumina support so that the content of ruthenium was 0.5% by weight (packing density 0.98 g / ml). In the same manner as in Example 1, the ammonia decomposition ability at each temperature and after 150 hours was measured. The results are shown in Table 1.
[0018]
Example 5 (Reference Example 2)
A catalyst having a specific surface area of 110 mm 2 / g and a particle size of about 3 mm supported on a γ-alumina support similar to that in Example 4 so that the supported amount of ruthenium is 0.3% by weight is packed (packing density: 0.96 g / ml). In the same manner as in Example 1, the ammonia decomposition ability at each temperature and after 150 hours was measured. The results are shown in Table 1.
[0019]
Comparative Example 1
Instead of supporting ruthenium, the ammonia decomposition ability at each temperature was measured in the same manner as in Example 1 except that a catalyst in which palladium was supported on a γ-alumina support at 0.3% by weight was used. I did it. The results are shown in Table 2.
[0020]
Comparative Example 2
Instead of supporting ruthenium, ammonia decomposition ability at each temperature was measured in the same manner as in Example 1 except that a catalyst having nickel supported on a γ-alumina support at 3% by weight was used. . The results are shown in Table 2.
[0021]
Comparative Example 3
Instead of supporting ruthenium, the ammonia decomposition ability at each temperature was measured in the same manner as in Example 1 except that a catalyst in which platinum was supported at 0.1 wt% on an α-alumina support was used. I did it. The results are shown in Table 2.
[0022]
[Table 1]
Figure 0003688314
[0023]
[Table 2]
Figure 0003688314
[0024]
【The invention's effect】
The present invention uses a catalyst having a specific surface area of 8.5 to 100 m 2 / g in which ruthenium is supported on α-alumina , and efficiently decomposes high-concentration ammonia gas at a low temperature of 600 ° C. or less. Can do. In addition, even if oxygen, air, or the like is present in the gas, it has excellent safety without causing abnormal heat generation or generating harmful by-products such as nitrogen oxides. In addition, because it can be operated at low temperatures, metal materials such as high-strength stainless steel can be used for the reaction cylinder, and at the same time, the equipment is miniaturized. It became easier.

Claims (4)

アンモニアまたはアンモニア含有ガスを、αアルミナにルテニウムを担持させてなる比表面積が8.5〜100m /gの触媒と加熱下に接触させて、該アンモニアを窒素および水素に分解することを特徴とするアンモニアの分解方法。 Contacting ammonia or an ammonia-containing gas with a catalyst having ruthenium supported on α-alumina and having a specific surface area of 8.5 to 100 m 2 / g under heating to decompose the ammonia into nitrogen and hydrogen To decompose ammonia. アンモニア含有ガスが、アンモニアと窒素、水素または希ガスとの混合ガスである請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the ammonia-containing gas is a mixed gas of ammonia and nitrogen, hydrogen, or a rare gas. アンモニアと触媒との接触温度が300〜800℃である請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the contact temperature between ammonia and the catalyst is 300 to 800 ° C. ルテニウムの担持量が触媒全体に対し、金属換算で0.05〜8.0重量%である請求項1に記載の分解方法。  The decomposition method according to claim 1, wherein the amount of ruthenium supported is 0.05 to 8.0% by weight in terms of metal based on the whole catalyst.
JP30166594A 1994-07-21 1994-11-11 Ammonia decomposition method Expired - Fee Related JP3688314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30166594A JP3688314B2 (en) 1994-07-21 1994-11-11 Ammonia decomposition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19106494 1994-07-21
JP6-191064 1994-07-21
JP30166594A JP3688314B2 (en) 1994-07-21 1994-11-11 Ammonia decomposition method

Publications (2)

Publication Number Publication Date
JPH0884910A JPH0884910A (en) 1996-04-02
JP3688314B2 true JP3688314B2 (en) 2005-08-24

Family

ID=26506473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30166594A Expired - Fee Related JP3688314B2 (en) 1994-07-21 1994-11-11 Ammonia decomposition method

Country Status (1)

Country Link
JP (1) JP3688314B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936126A (en) * 1996-06-19 1999-08-10 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a supported ruthenium catalyst
JP2009035458A (en) * 2007-08-03 2009-02-19 Tama Tlo Kk Hydrogen generator
JP5389525B2 (en) * 2009-05-15 2014-01-15 日本パイオニクス株式会社 Ammonia decomposition cylinder
JP5371542B2 (en) * 2009-05-21 2013-12-18 日立造船株式会社 Hydrogen production system
JP5430224B2 (en) * 2009-05-21 2014-02-26 日立造船株式会社 Hydrogen production system
JP5690158B2 (en) * 2011-02-03 2015-03-25 Agcセイミケミカル株式会社 Ammonia decomposition catalyst and ammonia decomposition method
JP5677358B2 (en) * 2012-04-13 2015-02-25 日立造船株式会社 Method for producing ruthenium-supported catalyst
JP2012223768A (en) * 2012-08-20 2012-11-15 Nippon Shokubai Co Ltd Catalyst and method for decomposing ammonia
US20150217278A1 (en) 2012-09-20 2015-08-06 Tokyo Institute Of Technology Catalyst for producing hydrogen and method for producing hydrogen
JP2014214060A (en) * 2013-04-26 2014-11-17 日本パイオニクス株式会社 Hydrogen recovery method, and hydrogen reuse method using the same
US20140322124A1 (en) * 2013-04-26 2014-10-30 Japan Pionics Co., Ltd. Method of processing discharge gas discharged from production process of gallium nitride compound semiconductor
JP6403135B2 (en) * 2014-07-24 2018-10-10 国立大学法人群馬大学 Method for producing ammonia-decomposing hydrogen from ammonia nitrogen-containing waste
JP7264154B2 (en) * 2018-03-26 2023-04-25 株式会社レゾナック Ammonia decomposition catalyst, method for producing the same, and method for producing hydrogen gas
KR102697796B1 (en) * 2021-11-16 2024-08-21 아주대학교산학협력단 Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst
KR102697807B1 (en) * 2021-11-16 2024-08-21 아주대학교산학협력단 Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst

Also Published As

Publication number Publication date
JPH0884910A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JP3688314B2 (en) Ammonia decomposition method
JP5134587B2 (en) Exhaust gas purification method
JP4573320B2 (en) Nitrous oxide decomposition catalyst, production method thereof, and decomposition method of nitrous oxide
EP0306945A1 (en) Oxidation of carbon monoxide and catalyst therefor
JPS58216719A (en) Removal of hydrogen from gas
JP3347478B2 (en) Exhaust gas purification method
JP2002253967A (en) Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide
AU669612B2 (en) Catalyst for use in oxidation
EP0107465B1 (en) Purification of gases
JPS62201648A (en) Catalyst for decomposing ozone
JPH07256118A (en) Regenerating method of impregnated noble metal catalyst and processing method of waste water
GB2234450A (en) Low temperature oxidation catalysts
JP3902670B2 (en) Method for removing nitrogen oxides in exhaust gas
WO2000033955A1 (en) Process for producing a catalyst composition
JP5503155B2 (en) Carbon monoxide removal filter
JPH11179204A (en) Gas methanation catalyst containing carbon monoxide and carbon dioxide and method for producing the same
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
EP1289652A1 (en) Decomposition catalyst for nitrous oxide, process for producing the same and process for decomposing nitrous oxide
WO2023084825A1 (en) Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide
JP2000061307A (en) Highly dispersed steam reforming catalyst and hydrogen production method
JP3302402B2 (en) Ammonia decomposition catalyst
JPS6145487B2 (en)
JP2006142160A (en) Nitrous oxide decomposition catalyst and nitrous oxide decomposition method using the catalyst
JP2008246437A (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
EP4389259A1 (en) Nitrous oxide decomposition method and nitrous oxide decomposition device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees