[go: up one dir, main page]

JP3684886B2 - Semiconductor chip mounting structure, liquid crystal device and electronic device - Google Patents

Semiconductor chip mounting structure, liquid crystal device and electronic device Download PDF

Info

Publication number
JP3684886B2
JP3684886B2 JP35907098A JP35907098A JP3684886B2 JP 3684886 B2 JP3684886 B2 JP 3684886B2 JP 35907098 A JP35907098 A JP 35907098A JP 35907098 A JP35907098 A JP 35907098A JP 3684886 B2 JP3684886 B2 JP 3684886B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
terminal
semiconductor chip
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35907098A
Other languages
Japanese (ja)
Other versions
JP2000183112A (en
Inventor
永至 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP35907098A priority Critical patent/JP3684886B2/en
Publication of JP2000183112A publication Critical patent/JP2000183112A/en
Application granted granted Critical
Publication of JP3684886B2 publication Critical patent/JP3684886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Liquid Crystal (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップを基板上に実装して成る半導体チップの実装構造に関する。また本発明は、その半導体チップの実装構造を用いて構成される液晶装置に関する。また本発明は、その液晶装置を用いて構成される電子機器に関する。
【0002】
【従来の技術】
現在、携帯電話機、携帯電子端末機等といった電子機器において液晶装置が広く用いられている。多くの場合は、文字、数字、絵柄等といった情報を表示するためにその液晶装置が用いられている。
【0003】
この液晶装置は、一般に、一対の液晶基板によって挟持される液晶を有し、その液晶に印加する電圧を制御することによってその液晶の配向を制御し、もって該液晶に入射する光を変調する。この液晶装置は、液晶に印加する電圧を制御するために液晶駆動用IC、すなわち半導体チップを使用する必要があり、そのICは上記液晶基板に直接に又は配線基板を介して間接的に接続される。
【0004】
配線基板を介して液晶駆動用ICを間接的に液晶基板に接続する場合には、例えば、液晶駆動用ICを配線基板上に実装して半導体チップの実装構造を作製した後、その実装構造の配線基板を液晶装置の液晶基板に導電接続する。液晶駆動用ICは一般にその接合面、すなわち能動面に複数のバンプを有する。また、配線基板の表面には所定の配線パターンが形成され、その配線パターンのうち液晶駆動用ICが実装される領域にある部分は端子となっている。液晶駆動用ICを配線基板上に実装する際には、例えばACF(Anisotropic Conductive Film:異方性導電膜)等といった導電接着剤を用いて液晶駆動用ICを配線基板に接着すると共に、液晶駆動用ICのバンプを配線基板の端子に導電接続する。
【0005】
【発明が解決しようとする課題】
上記のようにして液晶駆動用ICを配線基板に実装した場合には、液晶駆動用ICのバンプが配線基板の端子に正確に導電接続されたかどうかを確認する必要がある。このような確認作業を行うとき、配線基板及びその上に形成した端子の両方が透明であれば、半導体側のバンプと配線基板側の端子との接続部分を配線基板を通して視覚的に直接に確認することができる。
【0006】
しかしながら、半導体チップの実装構造の中には、ポリイミド等といった透明性が低い材料によって配線基板が形成されることがあり、また、銅(Cu)等といった透明性が低い材料によって配線パターンすなわち端子が形成されることがある。このような構造の半導体チップの実装構造に関しては、バンプと配線基板側の端子との接続部分を配線基板を通して視覚的に直接に確認することが困難であり、従来はその確認のために、製造された複数の半導体チップの実装構造の中からいくつかを抜き取って半導体チップと配線基板との接続部分を分解し、その分解状態で接続状態を確認していた。
【0007】
このような従来方法では、バンプすなわち半導体側端子と配線基板側の端子との接続部分が分解の際に実際の状態と異なった状態になることがあるので、その接続状態を正確に確認することが難しいという問題があった。また、出来上がった製品を検査のために破壊しなければならないという問題もあった。
【0008】
本発明は、上記の問題点に鑑みて成されたものであって、透明性の低い配線基板又は基板側端子を用いる構造の半導体チップの実装構造に関して、バンプ等といった半導体側端子とそれと導電接続される基板側端子との間の接続状態を、それらを分解することなく、しかも視覚によって正確に検査できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る半導体チップの実装構造は、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記基板側端子は銅によって、前記配線基板はポリイミドによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらにその基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積に形成されることを特徴とする。
【0010】
配線基板がポリイミド等といった透明性の低い材料によって形成されたり、その配線基板上に設けられる端子がCu等といった透明性の低い材料によって形成される場合、その基板側の端子とそれに導電接続される半導体チップ側の端子との間の接続状態を半導体チップの実装構造の外部から視覚によって確認することは非常に難しい。
【0011】
これに対し、本発明に係る半導体チップの実装構造では、▲1▼半導体チップの接合面に半導体側ダミー端子を設け、▲2▼基板の接合面に基板側ダミー端子を設け、さらに、▲3▼基板側ダミー端子のうち半導体側ダミー端子と重なる部分を半導体側ダミー端子及び信号伝送のための本来の基板側端子の両方よりも小さい面積となるように形成した。
【0012】
その結果、仮に配線基板又は基板側端子が透明性の低い材料によって形成される場合でも、小さい面積で形成された基板側ダミー端子からはみ出る領域に存在する半導体チップ側のダミー端子を配線基板を通して視覚によって確認することが可能となり、それ故、端子同士の接続状態を配線基を通して視覚によって正確に確認できる。例えば、端子同士を導電接続している導電接着剤中に気泡が有るか無いか、導電接着剤中に含まれる導電粒子が端子同士の間に適正な数だけ存在するか等といったことを確認できる。
【0013】
この視覚による確認は、半導体チップの実装構造を分解することなく行うことができるので、端子同士の接続状態を正確に確認できると共に、実装構造を無駄に破壊することも無くなる。
【0014】
ところで、端子同士の接続状態を確認することだけを考えることにすると、半導体チップ側のダミー端子に対向する位置の基板上には、どちらかと言えば、基板側ダミー端子が全く存在しないほうが良いかもしれない。その理由は、半導体側ダミー端子の全領域が基板側ダミー端子によって邪魔されることなく基板越しに視覚によって確認できるようになるからである。
【0015】
しかしながら、そのように基板側ダミー端子を割愛すると、基板が可撓性材料によって形成される場合に、その基板側ダミー端子を割愛した部分の基板に窪みが出来、そのために本来導電接続しなければならない端子間部分に接続不良が発生するおそれがある。このことに関して、本発明のように、半導体側ダミー端子に対向させて常に基板側ダミー端子を設けるようにすれば、仮に基板を可撓性材料によって形成したとしても、その基板に上記のような窪みが発生することを防止でき、よって、安定した端子間接属を確保できる。
【0016】
つまり、本発明に係る半導体チップの実装構造は、半導体側ダミー端子に対向させて基板側ダミー端子を設けるという構成を採用するが故に、基板を可撓性材料によって形成する場合に、端子間の接続安定性を確保することに関して特に有効である。
【0017】
上記構成の半導体チップの実装構造において、前記基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、前記基板側端子よりも幅の狭い直線パターンに形成することができる。こうすれば、導電接着剤として導電粒子を含むものを用いる場合に、必要以上の数の導電粒子が基板側ダミー端子によって捕獲、すなわち集められることを防止でき、よって、導電接続に与かる導電粒子の数を正確に把握できる。
【0018】
上記構成の半導体チップの実装構造において、前記基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、前記基板側端子よりも幅の狭い環状パターンに形成することもできる。この構成によれば、基板側ダミー端子を上記のように幅の狭い直線パターンに形成する場合に比べて、基板側ダミー端子と半導体側ダミー端子との間の安定性、ひいては基板側端子と半導体側端子との間の電気的な接続信頼性を安定化することができる。
【0019】
上記構成の半導体チップの実装構造において、前記基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、前記基板側端子よりも幅の狭い十字形状パターンに形成することもできる。この構成によれば、基板側ダミー端子を上記のように幅の狭い直線パターンに形成する場合に比べて、基板側ダミー端子と半導体側ダミー端子との間の安定性、ひいては基板側端子と半導体側端子との間の電気的な接続信頼性を安定化することができる。
【0020】
次に、本発明に係る液晶装置は、液晶を挟む一対の基板と、それらの基板の少なくともいずれか1つに接続される半導体チップの実装構造とを有する液晶装置において、前記半導体チップの実装構造が、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記基板側端子は銅によって、前記配線基板はポリイミドによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらにその基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積に形成されることを特徴とする。
【0021】
この構成の液晶装置においては、それに含まれる半導体チップの実装構造に関して、▲1▼半導体チップの接合面に半導体側ダミー端子を設け、▲2▼基板の接合面に基板側ダミー端子を設け、さらに、▲3▼基板側ダミー端子のうち半導体側ダミー端子と重なる部分を半導体側ダミー端子及び信号伝送のための本来の基板側端子の両方よりも小さい面積となるように形成した。
【0022】
その結果、仮に配線基板又はその上に形成される基板側端子が透明性の低い材料によって形成される場合でも、小さい面積で形成された基板側ダミー端子からはみ出る領域に存在する半導体チップ側のダミー端子を配線基板を通して視覚によって確認することが可能となり、それ故、端子同士の接続状態を基板越しに視覚によって正確に確認できる。例えば、端子同士を導電接続している導電接着剤中に気泡が有るか無いか、導電接着剤中に含まれる導電粒子が端子同士の間に適正な数だけ存在するか等といったことを確認できる。
【0023】
この視覚による確認は、半導体チップの実装構造を分解することなく行うことができるので、端子同士の接続状態を正確に確認できると共に、実装構造を無駄に破壊することも無くなる。
【0024】
また、上記の目的を達成するため、本発明に係る半導体チップの実装構造は、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらに
その基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記基板側端子よりも幅の狭い直線パターンに形成されることを特徴とする。
さらに、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらにその基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記基板側端子よりも幅の狭い環状パターンに形成され、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記半導体側ダミー端子と前記基板側端子の環状パターンの全周とが重なることを特徴とする。
また、本発明に係る液晶装置は、液晶を挟む一対の基板と、それらの基板の少なくともいずれか1つに接続される半導体チップの実装構造とを有する液晶装置において、前記半導体チップの実装構造は、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらにその基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記基板側端子よりも幅の狭い直線パターンに形成されることを特徴とする。
さらに、液晶を挟む一対の基板と、それらの基板の少なくともいずれか1つに接続される半導体チップの実装構造とを有する液晶装置において、前記半導体チップの実装構造は、接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらにその基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記基板側端子よりも幅の狭い環状パターンに形成され、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記半導体側ダミー端子と前記基板側端子の環状パターンとが重なることを特徴とする液晶装置。
また、本発明に係る電子機器は、液晶装置と、その液晶装置を収容する筐体とを有する電子機器であって、前記のような液晶装置を備えることを特徴とする。
【0025】
この構成の電子機器においては、それに含まれる半導体チップの実装構造に関して、▲1▼半導体チップの接合面に半導体側ダミー端子を設け、▲2▼基板の接合面に基板側ダミー端子を設け、さらに、▲3▼基板側ダミー端子のうち半導体側ダミー端子と重なる部分を半導体側ダミー端子及び信号伝送のための本来の基板側端子の両方よりも小さい面積となるように形成した。
【0026】
その結果、仮に配線基板又は基板側端子が透明性の低い材料によって形成される場合でも、小さい面積で形成された基板側ダミー端子からはみ出る領域に存在する半導体チップ側のダミー端子を配線基板を通して視覚によって確認することが可能となり、それ故、端子同士の接続状態を基板越しに視覚によって正確に確認できる。例えば、端子同士を導電接続している導電接着剤中に気泡が有るか無いか、導電接着剤中に含まれる導電粒子が端子同士の間に適正な数だけ存在するか等といったことを確認できる。
【0027】
この視覚による確認は、半導体チップの実装構造を分解することなく行うことができるので、端子同士の接続状態を正確に確認できると共に、実装構造を無駄に破壊することも無くなる。
【0028】
【発明の実施の形態】
(第1実施形態)
図1は、本発明に係る半導体チップの実装構造を用いた液晶装置の一実施形態を示している。ここに示す液晶装置1は、液晶パネル2に半導体チップの実装構造3を接続することによって形成される。また、必要に応じて、バックライト等といった照明装置、その他の付帯機器が液晶パネル2に付設される。
【0029】
液晶パネル2は、シール材4によって接着された一対の基板6a及び6bを有し、それらの基板間に形成される間隙、いわゆるセルギャップに液晶が封入される。基板6a及び6bは一般には透光性材料、例えばガラス、プラスチック等によって形成される。基板6a及び6bの外側表面には偏光板8が貼着される。
【0030】
一方の基板6aの内側表面には電極7aが形成され、他方の基板6bの内側表面には電極7bが形成される。これらの電極はストライプ状又は文字、数字、その他の適宜のパターン状に形成される。また、これらの電極7a及び7bは、ITO(Indium Tin Oxide:インジウムスズ酸化物)等といった透光性材料によって形成される。
【0031】
一方の基板6aは他方の基板6bから張り出す張出し部を有し、その張出し部に複数の端子9が形成される。これらの端子9は、基板6a上に電極7aを形成するときに同時に形成され、従って、例えばITOによって形成される。これらの端子9には、電極7aから一体に延びるもの及び導通材(図示せず)を介して電極7bに接続するものが含まれる。
【0032】
なお、電極7a,7b及び端子9は、実際には極めて狭い間隔で多数本が基板6a上及び基板6b上に形成されるが、図1では、構造を分かり易く示すためにそれらの間隔を拡大して模式的に示し、さらにそれらのうちの数本を図示することにして他の部分を省略してある。また、端子9と電極7aとの接続状態及び端子9と電極7bとの接続状態も図1では省略してある。
【0033】
半導体チップの実装構造3は、半導体チップとしての液晶駆動用IC11を導電接着剤としてのACF( Anisotropic Conductive Film:異方性導電膜)12によって配線基板13上の所定位置に接着することによって形成される。液晶駆動用IC11の接合面すなわち能動面には、半導体側端子としての複数のバンプ14が形成される。
【0034】
ACF12は、周知の通り、一対の端子間を電気的に一括接続するために用いられる導電性のある高分子フィルムであって、例えば図2に示すように、熱可塑性又は熱硬化性の樹脂フィルム18の中に多数の導電粒子19を分散させることによって形成され、熱圧着することによって単一方向の導電性を持つ接続をすることができるものである。
【0035】
配線基板13は、FPC(Flexible Printed Circuit:可撓性プリント基板)として構成されており、具体的には、ポリイミド等といった可撓性フィルム15の上にCu等によって配線パターン16を形成することによって作製される。図1に示すように配線パターン16には、配線基板13の外周の1側辺部に形成される出力用端子16a及びそれに対向する側辺部に形成される入力用端子16bが含まれる。また、配線パターン16のうち液晶駆動用IC11を装着するための領域に臨み出る部分は基板側端子17を構成する。
【0036】
図2に示すように、液晶駆動用IC11はACF12内の樹脂部分によって配線基板13に接着され、また、液晶駆動用IC11のバンプ14がACF12内の導電粒子19によって配線パターン16の基板側端子17に導電接続される。なお、図2において符号24は絶縁膜を示している。
【0037】
以上のようにして構成された半導体チップの実装構造3は、図1において、ACF21によって液晶パネル2の基板6aの張出し部に接着される。より具体的には、図2に示すように、ACF21の樹脂部分によって半導体チップの実装構造3と基板6aとが接着され、そして、ACF21内の導電粒子によって半導体チップの実装構造3の出力用端子16aと基板6a側の端子9とが導電接続される。
【0038】
本実施形態の液晶装置は以上のように構成されているので、図1において半導体チップの実装構造3の入力用端子16bに必要な信号及び必要な電力を供給すれば、液晶駆動用IC11が作動して液晶パネル2内の複数の電極7a及び7bのうちの希望するいくつかが選択されてそれらに所定の電圧が印加され、これにより対応する部分の液晶の配向が制御され、その結果、液晶パネル2の表示領域内に文字、数字、絵柄等といった像が表示される。
【0039】
図1に示す半導体チップの実装構造3において、配線基板13のうち符号Aで示す部分、すなわち液晶駆動用IC11の隅部に相当する部分を矢印Bのように配線基板13越しに見ると、図3に示す通りである。図3では、説明の便宜上、可撓性フィルム15を取外した状態を図示してある。
【0040】
図3に示す通り、液晶駆動用IC11は、斜線で示すACF12の樹脂部分18によって可撓性樹脂フィルム15に接着され、そして、液晶駆動用IC11のバンプ14と配線基板13側の基板側端子17とがACF12内の導電粒子19によって導電接続される。なお、図3においてバンプ14や導電粒子19は、理解し易い大きさで描かれており、必ずしも実際の寸法比率と同じであるとは限らない。
【0041】
バンプ14と基板側端子17との間に安定した導電接続状態を確保するためには、バンプ14と基板側端子17との間のACF12の状態が適正でなければならない。例えば、ACF12の樹脂部分18内に気泡その他の異常があってはならない。また、バンプ14と基板側端子17との間に所定数、例えば10個程度の導電粒子が介在する必要がある。
【0042】
本実施形態のように、可撓性フィルム15をポリイミドによって形成し、配線パターン16すなわち基板側端子17をCuによって形成すれば、両者は全くの透明体ではないので、配線基板13を通してバンプ14と基板側端子17との接続部分を見たとき、それらの間のACF12の状態を視覚によって明確に確認することが非常に困難である。
【0043】
そこで、本実施形態では、液晶駆動用IC11の能動面の隅部に、バンプ14と同じ形状の半導体側ダミー端子としてのダミーバンプ22を形成し、さらに、配線基板13側の可撓性フィルム15上におけるダミーバンプ22に対応する所定位置に基板側ダミー端子23Aを形成する。
【0044】
そして本実施形態では、基板側ダミー端子23Aの高さ(すなわち、図3の紙面垂直方向の寸法)は導電接続に与かる基板側端子17と同じに設定する。また、基板側ダミー端子23Aの形状は、基板側端子17よりも幅の狭い直線状パターンに形成する。つまり、基板側ダミー端子23Aは、ダミーバンプ22及び基板側端子17の両方よりも小さい面積に設定する。
【0045】
ダミーバンプ22及び基板側ダミー端子23Aを以上のように形成したので、観察者が図1の矢印B方向から配線基板13の裏側を見ると、図3に示すように、基板側ダミー端子23Aから外れる領域にあるダミーバンプ22の部分を視覚によって鮮明に確認することができる。
【0046】
そしてその結果、ダミーバンプ22の下側に位置するACF12の状態、例えば、気泡が有るか無いか、導電粒子19が所定数有るかどうか等を正確に検査できる。そして、この検査により、導電接続に与かるバンプ14と基板側端子17との間のACF12の状態を正確に把握できる。しかもこの検査は、非破壊で行うことができる。
【0047】
なお、ダミーバンプ22に対向する位置に基板側ダミー端子23Aを設けないと、可撓性フィルム15のその部分に窪みが発生し、それに起因して、バンプ14と基板側端子17との間の導電接続が不安定になるおそれがある。これに対し本実施形態のように、ダミーバンプ22に対応して必ず基板側ダミー端子23Aを設けるようにすれば、そのような可撓性フィルム15の窪みの発生を確実に防止でき、従って、安定した接続安定性を確保できる。
【0048】
(第2実施形態)
図4は、本発明に係る半導体チップの実装構造の他の実施形態を示している。この実施形態が図3に示した実施形態と異なる点は、基板側ダミー端子の形状に改変を加えたことであり、その他の点に関しては変更はない。従って、図4において図3と同じ部材は同じ符号を付して示すことにして、それらの説明は省略する。
【0049】
図4に示す実施形態では、配線基板13側の可撓性フィルム15上におけるダミーバンプ22に対応する位置に設けられる基板側ダミー端子23Bを、図3に示すような直線パターンに代えて、幅の狭い環状パターンに形成してある。
【0050】
この構成によっても、基板側ダミー端子23Bから外れる領域においてダミーバンプ22を視覚によって確認することができ、よって、その部分のACF12の状態を確認することによって、導電接続部分の接続状態を非破壊で正確に把握することができる。
【0051】
(第3実施形態)
図5は、本発明に係る半導体チップの実装構造のさらに他の実施形態を示している。この実施形態が図3に示した実施形態と異なる点は、基板側ダミー端子の形状に改変を加えたことであり、その他の点に関しては変更はない。従って、図5において図3と同じ部材は同じ符号を付して示すことにして、それらの説明は省略する。
【0052】
図5に示す実施形態では、配線基板13側の可撓性フィルム15上におけるダミーバンプ22に対応する位置に設けられる基板側ダミー端子23Cを、図3に示すような直線パターンに代えて、幅の狭い十字形状パターンに形成してある。
【0053】
この構成によっても、基板側ダミー端子23Cから外れる領域においてダミーバンプ22を視覚によって確認することができ、よって、その部分のACF12の状態を確認することによって、導電接続部分の接続状態を非破壊で正確に把握することができる。
【0054】
(第4実施形態)
図6は、本発明に係る半導体チップの実装構造のさらに他の実施形態を示している。この実施形態は図4に示す実施形態に改変を加えたものであり、具体的には、基板側ダミー端子23Dが一部を開放した状態の環状パターン、すなわちコ字形状パターン又はU字形状パターンに形成されている。
【0055】
(第5実施形態)
図7は、本発明に係る半導体チップの実装構造のさらに他の実施形態を示している。この実施形態は図5に示す実施形態に改変を加えたものであり、具体的には、基板側ダミー端子23Eが図5に示した十字形状パターンのダミー端子23Cを略45°の角度だけ回転させたパターン形状に形成されている。
【0056】
(第6実施形態)
図8は、本発明に係る電子機器の一実施形態である携帯電話機を示している。ここに示す携帯電話機30は、アンテナ31、スピーカ32、液晶装置1、キースイッチ33、マイクロホン34等といった各種構成要素を、筐体としての外装ケース36に格納することによって構成される。また、外装ケース36の内部には、上記の各構成要素の動作を制御するための制御回路を搭載した制御回路基板37が設けられる。液晶装置1は図1に示した液晶装置1によって構成される。
【0057】
この携帯電話機30では、キースイッチ33及びマイクロホン34を通して入力される信号や、アンテナ31によって受信した受信データ等が制御回路基板37上の制御回路へ入力される。そしてその制御回路は、入力した各種データに基づいて液晶装置1の表示面内に数字、文字、絵柄等といった像を表示し、さらに、アンテナ31から送信データを送信する。
【0058】
この携帯電話機30に用いられる液晶装置1では、図3に示すように、液晶駆動用IC11の能動面の隅部に、バンプ14と同じ形状のダミーバンプ22を形成し、さらに、それに対向して基板側ダミー端子23Aを形成した。そしてその場合、基板側ダミー端子23Aの高さは導電接続に与かる基板側端子17と同じに設定し、しかし、基板側ダミー端子23Aの面積はダミーバンプ22及び基板側端子17の両方よりも小さい面積に形成した。
【0059】
以上の結果、基板側ダミー端子23Aから外れる領域にあるダミーバンプ22を視覚によって確認することにより、ダミーバンプ22の下側に位置するACF12の状態、例えば、気泡が有るか無いか、導電粒子19が所定数有るかどうか等を正確に検査できるようになった。そして、この検査により、導電接続に与かるバンプ14と基板側端子17との間のACF12の状態を非破壊状態で正確に把握できるようになった。
【0060】
(その他の実施形態)
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はその実施形態に限定されるものでなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
【0061】
例えば、図1では、本発明に係る半導体チップの実装構造を液晶装置の構成要素として用いる場合を示したが、本発明に係る半導体チップの実装構造は液晶装置以外の任意の機器の構成要素として用いることができる。
【0062】
また、図1に示す実施形態では、液晶パネルに1個の半導体チップの実装構造を接続する構造の液晶装置を例示したが、液晶パネルに複数個の半導体チップの実装構造を接続する構造の液晶装置や実装基板上に半導体チップ以外の電子部品を実装した構造を持つ液晶表示装置にも本発明を適用できることはもちろんである。
【0063】
また、図8の実施形態では、電子機器としての携帯電話機に本発明の液晶装置を用いる場合を例示したが、本発明の液晶装置はそれ以外の電子機器、例えば携帯情報端末、電子手帳、ビデオカメラのファインダー等に適用することもできる。
【0064】
【発明の効果】
本発明に係る半導体チップの実装構造によれば、▲1▼半導体チップの接合面すなわち能動面に半導体側ダミー端子を設け、▲2▼基板の接合面に基板側ダミー端子を設け、さらに、▲3▼基板側ダミー端子のうち半導体側ダミー端子と重なる部分を半導体側ダミー端子及び信号伝送のための本来の基板側端子の両方よりも小さい面積となるように形成した。
【0065】
その結果、仮に基板又は基板側端子が透明性の低い材料によって形成される場合でも、小さい面積で形成された基板側ダミー端子からはみ出る領域に存在する半導体チップ側のダミー端子を配線基板を通して視覚によって確認することが可能となり、それ故、端子同士の接続状態を基板越しに視覚によって正確に確認できる。
【0066】
また、この視覚による確認は、半導体チップの実装構造を分解することなく行うことができるので、端子同士の接続状態を正確に確認できると共に、実装構造を無駄に破壊することも無くなる。
【図面の簡単な説明】
【図1】本発明に係る半導体チップの実装構造及び液晶装置の一実施形態を分解して示す斜視図である。
【図2】図1の液晶装置の要部を示す側面断面図である。
【図3】本発明に係る半導体チップの実装構造の一実施形態を示す平面断面図である。
【図4】本発明に係る半導体チップの実装構造の他の実施形態を示す平面断面図である。
【図5】本発明に係る半導体チップの実装構造のさらに他の実施形態を示す平面断面図である。
【図6】本発明に係る半導体チップの実装構造のさらに他の実施形態を示す平面断面図である。
【図7】本発明に係る半導体チップの実装構造のさらに他の実施形態を示す平面断面図である。
【図8】本発明に係る電子機器の一実施形態を示す斜視図である。
【符号の説明】
1 液晶装置
2 液晶パネル
3 半導体チップの実装構造
6a,6b 基板
7a,7b 電極
11 液晶駆動用IC(半導体チップ)
12 ACF(導電接着剤)
13 配線基板
14 バンプ(半導体側端子)
15 可撓性フィルム
16 配線パターン
16a,16b 端子
17 基板側端子
22 ダミーバンプ(半導体側ダミー端子)
23A,23B,23C,23D,23E 基板側ダミー端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor chip mounting structure in which a semiconductor chip is mounted on a substrate. The present invention also relates to a liquid crystal device configured using the semiconductor chip mounting structure. The present invention also relates to an electronic apparatus configured using the liquid crystal device.
[0002]
[Prior art]
Currently, liquid crystal devices are widely used in electronic devices such as mobile phones and portable electronic terminals. In many cases, the liquid crystal device is used to display information such as letters, numbers, and pictures.
[0003]
This liquid crystal device generally has a liquid crystal sandwiched between a pair of liquid crystal substrates, and controls the orientation of the liquid crystal by controlling the voltage applied to the liquid crystal, thereby modulating the light incident on the liquid crystal. This liquid crystal device needs to use a liquid crystal driving IC, that is, a semiconductor chip, in order to control the voltage applied to the liquid crystal, and the IC is directly connected to the liquid crystal substrate or indirectly through the wiring substrate. The
[0004]
When the liquid crystal driving IC is indirectly connected to the liquid crystal substrate via the wiring substrate, for example, after mounting the liquid crystal driving IC on the wiring substrate to produce a semiconductor chip mounting structure, the mounting structure The wiring substrate is conductively connected to the liquid crystal substrate of the liquid crystal device. A liquid crystal driving IC generally has a plurality of bumps on its joint surface, that is, an active surface. A predetermined wiring pattern is formed on the surface of the wiring board, and a portion of the wiring pattern in a region where the liquid crystal driving IC is mounted serves as a terminal. When mounting the liquid crystal driving IC on the wiring board, the liquid crystal driving IC is adhered to the wiring board using a conductive adhesive such as an ACF (Anisotropic Conductive Film), for example. The bumps of the IC are conductively connected to the terminals of the wiring board.
[0005]
[Problems to be solved by the invention]
When the liquid crystal driving IC is mounted on the wiring board as described above, it is necessary to confirm whether or not the bumps of the liquid crystal driving IC are accurately conductively connected to the terminals of the wiring board. When performing such confirmation work, if both the wiring board and the terminals formed on it are transparent, the connection part between the bump on the semiconductor side and the terminal on the wiring board side is visually confirmed directly through the wiring board. can do.
[0006]
However, in a semiconductor chip mounting structure, a wiring board may be formed of a material with low transparency such as polyimide, and a wiring pattern, that is, a terminal is formed of a material with low transparency such as copper (Cu). Sometimes formed. With regard to the mounting structure of the semiconductor chip having such a structure, it is difficult to visually confirm the connection portion between the bump and the terminal on the wiring board through the wiring board. Some of the mounting structures of the plurality of semiconductor chips were extracted to disassemble the connection portion between the semiconductor chip and the wiring board, and the connection state was confirmed in the disassembled state.
[0007]
In such a conventional method, the connection part between the bump, that is, the terminal on the semiconductor side and the terminal on the wiring board side may be different from the actual state at the time of disassembly, so check the connection state accurately. There was a problem that was difficult. Another problem is that the finished product must be destroyed for inspection.
[0008]
The present invention has been made in view of the above-described problems, and relates to a semiconductor chip mounting structure having a structure using a low-transparency wiring board or board-side terminal, and a semiconductor-side terminal such as a bump and a conductive connection therewith. It is an object of the present invention to make it possible to accurately inspect the connection state between the printed circuit board side terminals without visually disassembling them and visually.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor chip mounting structure according to the present invention includes a semiconductor chip having a plurality of semiconductor side terminals on a bonding surface, and a wiring board having a plurality of substrate side terminals on the bonding surface. The semiconductor-side terminal and the substrate-side terminal are formed by bonding with a conductive adhesive so that they are electrically connected to each other, the substrate-side terminal is formed of copper, the wiring board is formed of polyimide, and the semiconductor chip A semiconductor-side dummy terminal formed on the bonding surface of the wiring board, and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and a portion of the substrate-side dummy terminal that overlaps the semiconductor-side dummy terminal, The semiconductor-side dummy terminal and the substrate-side terminal are formed in a smaller area.
[0010]
When the wiring board is formed of a low-transparency material such as polyimide, or the terminal provided on the wiring board is formed of a low-transparency material such as Cu, the terminal on the board side is electrically connected to the terminal. It is very difficult to visually confirm the connection state between the terminals on the semiconductor chip side from the outside of the semiconductor chip mounting structure.
[0011]
On the other hand, in the semiconductor chip mounting structure according to the present invention, (1) a semiconductor side dummy terminal is provided on the bonding surface of the semiconductor chip, (2) a substrate side dummy terminal is provided on the bonding surface of the substrate, and (3) The portion of the substrate side dummy terminal that overlaps the semiconductor side dummy terminal was formed to have a smaller area than both the semiconductor side dummy terminal and the original substrate side terminal for signal transmission.
[0012]
As a result, even if the wiring board or the board-side terminal is formed of a material with low transparency, the semiconductor chip-side dummy terminal existing in a region protruding from the board-side dummy terminal formed with a small area is visually observed through the wiring board. Therefore, the connection state between the terminals can be accurately confirmed visually through the wiring board. For example, it can be confirmed that there are no bubbles in the conductive adhesive that conductively connects the terminals, or that there is an appropriate number of conductive particles contained in the conductive adhesive between the terminals. .
[0013]
This visual confirmation can be performed without disassembling the mounting structure of the semiconductor chip, so that the connection state between the terminals can be confirmed accurately and the mounting structure is not destroyed unnecessarily.
[0014]
By the way, if we consider only checking the connection state between the terminals, it may be better that there is no dummy terminal on the substrate side on the substrate at the position facing the dummy terminal on the semiconductor chip side. unknown. The reason is that the entire region of the semiconductor-side dummy terminal can be visually confirmed through the substrate without being disturbed by the substrate-side dummy terminal.
[0015]
However, if the substrate-side dummy terminals are omitted in this way, when the substrate is formed of a flexible material, a recess is formed in the portion of the substrate where the substrate-side dummy terminals are omitted. There is a risk of poor connection between the terminals that do not become necessary. In this regard, if the substrate side dummy terminal is always provided facing the semiconductor side dummy terminal as in the present invention, even if the substrate is formed of a flexible material, the substrate as described above is used. It is possible to prevent the depression from occurring, and thus it is possible to secure a stable terminal indirect genus.
[0016]
That is, the semiconductor chip mounting structure according to the present invention employs a configuration in which the substrate-side dummy terminals are provided so as to face the semiconductor-side dummy terminals. Therefore, when the substrate is formed of a flexible material, This is particularly effective for ensuring connection stability.
[0017]
In the semiconductor chip mounting structure configured as described above, a portion of the substrate-side dummy terminal that overlaps with the semiconductor-side dummy terminal can be formed in a linear pattern having a narrower width than the substrate-side terminal. In this way, when using a conductive adhesive containing conductive particles, it is possible to prevent an excessive number of conductive particles from being trapped, that is, collected by the substrate-side dummy terminals, and thus to be applied to the conductive connection. Can accurately grasp the number of
[0018]
In the semiconductor chip mounting structure configured as described above, a portion of the substrate-side dummy terminal that overlaps the semiconductor-side dummy terminal may be formed in an annular pattern having a narrower width than the substrate-side terminal. According to this configuration, the stability between the substrate-side dummy terminal and the semiconductor-side dummy terminal as compared with the case where the substrate-side dummy terminal is formed in a narrow linear pattern as described above, and consequently the substrate-side terminal and the semiconductor The electrical connection reliability between the side terminals can be stabilized.
[0019]
In the semiconductor chip mounting structure configured as described above, a portion of the substrate-side dummy terminal that overlaps the semiconductor-side dummy terminal may be formed in a cross-shaped pattern having a narrower width than the substrate-side terminal. According to this configuration, the stability between the substrate-side dummy terminal and the semiconductor-side dummy terminal as compared with the case where the substrate-side dummy terminal is formed in a narrow linear pattern as described above, and consequently the substrate-side terminal and the semiconductor The electrical connection reliability between the side terminals can be stabilized.
[0020]
Next, the liquid crystal device according to the present invention is a liquid crystal device having a pair of substrates sandwiching the liquid crystal and a semiconductor chip mounting structure connected to at least one of the substrates. However, a semiconductor chip having a plurality of semiconductor-side terminals on the bonding surface and a wiring board having a plurality of substrate-side terminals on the bonding surface, such that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. It is formed by bonding using a conductive adhesive, the substrate-side terminal is made of copper, the wiring substrate is made of polyimide, a semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip, and the wiring substrate A substrate-side dummy terminal formed on the bonding surface, and a portion of the substrate-side dummy terminal that overlaps the semiconductor-side dummy terminal includes the semiconductor-side dummy terminal and Characterized in that it is formed in a smaller area than the serial board-side terminal.
[0021]
In the liquid crystal device having this configuration, the semiconductor chip mounting structure included therein includes: (1) a semiconductor-side dummy terminal is provided on the bonding surface of the semiconductor chip, and (2) a substrate-side dummy terminal is provided on the bonding surface of the substrate. (3) The portion of the substrate side dummy terminal that overlaps the semiconductor side dummy terminal is formed to have a smaller area than both the semiconductor side dummy terminal and the original substrate side terminal for signal transmission.
[0022]
As a result, even if the wiring board or the board-side terminal formed thereon is formed of a material with low transparency, the dummy on the semiconductor chip side that exists in the region protruding from the board-side dummy terminal formed with a small area The terminals can be visually confirmed through the wiring board. Therefore, the connection state between the terminals can be accurately confirmed visually through the board. For example, it can be confirmed that there are no bubbles in the conductive adhesive that conductively connects the terminals, or that there is an appropriate number of conductive particles contained in the conductive adhesive between the terminals. .
[0023]
This visual confirmation can be performed without disassembling the mounting structure of the semiconductor chip, so that the connection state between the terminals can be confirmed accurately and the mounting structure is not destroyed unnecessarily.
[0024]
In order to achieve the above object, a semiconductor chip mounting structure according to the present invention includes a semiconductor chip having a plurality of semiconductor side terminals on a bonding surface, and a wiring board having a plurality of substrate side terminals on the bonding surface. The semiconductor side dummy terminals formed on the bonding surface of the semiconductor chip, and the wirings, so that the semiconductor side terminals and the substrate side terminals are bonded to each other using a conductive adhesive A substrate-side dummy terminal formed on the bonding surface of the substrate, and
The portion of the substrate-side dummy terminal that overlaps the semiconductor-side dummy terminal has a smaller area than the semiconductor-side dummy terminal and the substrate-side terminal, and the substrate-side dummy terminal and the semiconductor-side dummy terminal pass through the wiring substrate. The linear pattern is narrower than the board-side terminal so that the connection state can be confirmed.
Further, a semiconductor chip having a plurality of semiconductor side terminals on the bonding surface and a wiring board having a plurality of substrate side terminals on the bonding surface, such that the semiconductor side terminals and the substrate side terminals are electrically connected to each other, A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip, and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and formed by bonding using a conductive adhesive; Of the substrate-side dummy terminal, a portion overlapping the semiconductor-side dummy terminal has a smaller area than the semiconductor-side dummy terminal and the substrate-side terminal, and is formed in an annular pattern having a narrower width than the substrate-side terminal, and the wiring An annular pattern of the semiconductor-side dummy terminal and the substrate-side terminal so that the connection state of the substrate-side dummy terminal and the semiconductor-side dummy terminal can be confirmed through the substrate Characterized in that the entire circumference overlap.
The liquid crystal device according to the present invention includes a pair of substrates sandwiching the liquid crystal and a semiconductor chip mounting structure connected to at least one of the substrates, wherein the mounting structure of the semiconductor chip is The semiconductor chip having a plurality of semiconductor side terminals on the bonding surface and the wiring board having the plurality of substrate side terminals on the bonding surface are electrically connected so that the semiconductor side terminals and the substrate side terminals are electrically connected to each other. A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip, and a substrate-side dummy terminal formed on the bonding surface of the wiring board, which are formed by bonding using an adhesive; The portion of the side dummy terminal that overlaps with the semiconductor side dummy terminal has a smaller area than the semiconductor side dummy terminal and the substrate side terminal, and the substrate side Characterized in that it is formed in the narrow linear pattern width than the substrate-side terminals to be able to confirm the over terminal connection state of the semiconductor side dummy terminal.
Furthermore, in the liquid crystal device having a pair of substrates sandwiching the liquid crystal and a semiconductor chip mounting structure connected to at least one of the substrates, the semiconductor chip mounting structure has a plurality of semiconductor sides on the bonding surface. Bonding a semiconductor chip having terminals and a wiring board having a plurality of substrate-side terminals on a bonding surface using a conductive adhesive so that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and of the substrate-side dummy terminals, the semiconductor side The portion overlapping with the dummy terminal has an area smaller than that of the semiconductor-side dummy terminal and the substrate-side terminal, and is formed in an annular pattern having a narrower width than the substrate-side terminal. A liquid crystal device comprising said that a semiconductor-side dummy terminal and the annular pattern of the substrate-side terminals are overlapped so as to be able to check the connection state of the semiconductor side dummy terminal and the substrate-side dummy terminal through the wiring board.
An electronic apparatus according to the present invention is an electronic apparatus having a liquid crystal device and a housing for housing the liquid crystal device, and includes the liquid crystal device as described above.
[0025]
In the electronic device having this configuration, regarding the mounting structure of the semiconductor chip included therein, (1) a semiconductor-side dummy terminal is provided on the bonding surface of the semiconductor chip, (2) a substrate-side dummy terminal is provided on the bonding surface of the substrate, (3) The portion of the substrate side dummy terminal that overlaps the semiconductor side dummy terminal is formed to have a smaller area than both the semiconductor side dummy terminal and the original substrate side terminal for signal transmission.
[0026]
As a result, even if the wiring board or the board-side terminal is formed of a material with low transparency, the semiconductor chip-side dummy terminal existing in a region protruding from the board-side dummy terminal formed with a small area is visually observed through the wiring board. Therefore, the connection state between the terminals can be accurately confirmed visually through the board. For example, it can be confirmed that there are no bubbles in the conductive adhesive that conductively connects the terminals, or that there is an appropriate number of conductive particles contained in the conductive adhesive between the terminals. .
[0027]
This visual confirmation can be performed without disassembling the mounting structure of the semiconductor chip, so that the connection state between the terminals can be confirmed accurately and the mounting structure is not destroyed unnecessarily.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows an embodiment of a liquid crystal device using a semiconductor chip mounting structure according to the present invention. The liquid crystal device 1 shown here is formed by connecting a semiconductor chip mounting structure 3 to a liquid crystal panel 2. In addition, an illumination device such as a backlight or other auxiliary equipment is attached to the liquid crystal panel 2 as necessary.
[0029]
The liquid crystal panel 2 has a pair of substrates 6a and 6b bonded by a sealing material 4, and liquid crystal is sealed in a gap formed between the substrates, a so-called cell gap. The substrates 6a and 6b are generally formed of a translucent material such as glass or plastic. A polarizing plate 8 is attached to the outer surfaces of the substrates 6a and 6b.
[0030]
An electrode 7a is formed on the inner surface of one substrate 6a, and an electrode 7b is formed on the inner surface of the other substrate 6b. These electrodes are formed in stripes or letters, numbers, or other appropriate patterns. The electrodes 7a and 7b are formed of a light-transmitting material such as ITO (Indium Tin Oxide).
[0031]
One substrate 6a has an overhanging portion that protrudes from the other substrate 6b, and a plurality of terminals 9 are formed in the overhanging portion. These terminals 9 are formed at the same time as the electrodes 7a are formed on the substrate 6a, and are thus formed of, for example, ITO. These terminals 9 include one that extends integrally from the electrode 7a and one that is connected to the electrode 7b through a conductive material (not shown).
[0032]
In practice, a large number of electrodes 7a, 7b and terminals 9 are formed on the substrate 6a and the substrate 6b at extremely narrow intervals, but in FIG. 1, the intervals are enlarged for easy understanding of the structure. These are schematically shown, and some of them are illustrated, and other portions are omitted. The connection state between the terminal 9 and the electrode 7a and the connection state between the terminal 9 and the electrode 7b are also omitted in FIG.
[0033]
The semiconductor chip mounting structure 3 is formed by adhering a liquid crystal driving IC 11 as a semiconductor chip to a predetermined position on a wiring board 13 by an ACF (Anisotropic Conductive Film) 12 as a conductive adhesive. The A plurality of bumps 14 as semiconductor-side terminals are formed on the bonding surface, that is, the active surface of the liquid crystal driving IC 11.
[0034]
As is well known, the ACF 12 is a conductive polymer film that is used to electrically connect a pair of terminals together. For example, as shown in FIG. 2, a thermoplastic or thermosetting resin film is used. 18 is formed by dispersing a large number of conductive particles 19 in 18 and can be connected with conductivity in a single direction by thermocompression bonding.
[0035]
The wiring board 13 is configured as an FPC (Flexible Printed Circuit), and more specifically, by forming a wiring pattern 16 on a flexible film 15 such as polyimide by using Cu or the like. Produced. As shown in FIG. 1, the wiring pattern 16 includes an output terminal 16 a formed on one side portion of the outer periphery of the wiring substrate 13 and an input terminal 16 b formed on a side portion opposite thereto. Further, the portion of the wiring pattern 16 that faces the region for mounting the liquid crystal driving IC 11 constitutes a substrate side terminal 17.
[0036]
As shown in FIG. 2, the liquid crystal driving IC 11 is bonded to the wiring substrate 13 by the resin portion in the ACF 12, and the bumps 14 of the liquid crystal driving IC 11 are connected to the substrate side terminals 17 of the wiring pattern 16 by the conductive particles 19 in the ACF 12. Conductive connection is made. In FIG. 2, reference numeral 24 denotes an insulating film.
[0037]
The semiconductor chip mounting structure 3 configured as described above is bonded to the protruding portion of the substrate 6a of the liquid crystal panel 2 by the ACF 21 in FIG. More specifically, as shown in FIG. 2, the semiconductor chip mounting structure 3 and the substrate 6a are bonded by the resin portion of the ACF 21, and the output terminals of the semiconductor chip mounting structure 3 by the conductive particles in the ACF 21. 16a and the terminal 9 on the substrate 6a side are conductively connected.
[0038]
Since the liquid crystal device of the present embodiment is configured as described above, the liquid crystal driving IC 11 operates when the necessary signal and necessary power are supplied to the input terminal 16b of the semiconductor chip mounting structure 3 in FIG. Then, a desired number of the plurality of electrodes 7a and 7b in the liquid crystal panel 2 are selected and a predetermined voltage is applied to them, thereby controlling the orientation of the liquid crystal in the corresponding portion, and as a result, the liquid crystal Images such as letters, numbers, and patterns are displayed in the display area of the panel 2.
[0039]
In the semiconductor chip mounting structure 3 shown in FIG. 1, when the portion indicated by the symbol A in the wiring substrate 13, that is, the portion corresponding to the corner of the liquid crystal driving IC 11 is viewed over the wiring substrate 13 as indicated by the arrow B, FIG. As shown in FIG. FIG. 3 shows a state where the flexible film 15 is removed for convenience of explanation.
[0040]
As shown in FIG. 3, the liquid crystal driving IC 11 is adhered to the flexible resin film 15 by the resin portion 18 of the ACF 12 shown by oblique lines, and the bumps 14 of the liquid crystal driving IC 11 and the board side terminals 17 on the wiring board 13 side. Are electrically connected by the conductive particles 19 in the ACF 12. In FIG. 3, the bumps 14 and the conductive particles 19 are drawn in a size that is easy to understand and are not necessarily the same as the actual dimensional ratio.
[0041]
In order to ensure a stable conductive connection state between the bump 14 and the substrate-side terminal 17, the state of the ACF 12 between the bump 14 and the substrate-side terminal 17 must be appropriate. For example, there should be no bubbles or other abnormalities in the resin portion 18 of the ACF 12. Further, a predetermined number, for example, about 10 conductive particles need to be interposed between the bumps 14 and the substrate-side terminals 17.
[0042]
If the flexible film 15 is formed of polyimide and the wiring pattern 16, that is, the substrate-side terminal 17 is formed of Cu as in the present embodiment, both are not transparent at all. When the connection portion with the board-side terminal 17 is viewed, it is very difficult to clearly confirm the state of the ACF 12 between them visually.
[0043]
Therefore, in the present embodiment, dummy bumps 22 as semiconductor-side dummy terminals having the same shape as the bumps 14 are formed at the corners of the active surface of the liquid crystal driving IC 11, and further on the flexible film 15 on the wiring substrate 13 side. A substrate-side dummy terminal 23A is formed at a predetermined position corresponding to the dummy bump 22 in FIG.
[0044]
In the present embodiment, the height of the board-side dummy terminal 23A (that is, the dimension in the direction perpendicular to the plane of FIG. 3) is set to be the same as that of the board-side terminal 17 that is applied to the conductive connection. The substrate-side dummy terminal 23 </ b> A is formed in a linear pattern having a narrower width than the substrate-side terminal 17. That is, the substrate-side dummy terminal 23 </ b> A is set to an area smaller than both the dummy bump 22 and the substrate-side terminal 17.
[0045]
Since the dummy bumps 22 and the substrate-side dummy terminals 23A are formed as described above, when the observer looks at the back side of the wiring board 13 from the direction of arrow B in FIG. 1, the dummy bumps 22 and the substrate-side dummy terminals 23A are detached from the substrate-side dummy terminals 23A as shown in FIG. The portion of the dummy bump 22 in the area can be clearly confirmed visually.
[0046]
As a result, it is possible to accurately inspect the state of the ACF 12 positioned below the dummy bumps 22, for example, whether there are bubbles or whether there are a predetermined number of conductive particles 19. By this inspection, it is possible to accurately grasp the state of the ACF 12 between the bump 14 and the substrate side terminal 17 that are applied to the conductive connection. Moreover, this inspection can be performed non-destructively.
[0047]
If the substrate-side dummy terminal 23A is not provided at a position facing the dummy bump 22, a recess is generated in that portion of the flexible film 15, and as a result, conduction between the bump 14 and the substrate-side terminal 17 occurs. The connection may become unstable. On the other hand, if the substrate-side dummy terminals 23A are always provided corresponding to the dummy bumps 22 as in this embodiment, the occurrence of such depressions in the flexible film 15 can be reliably prevented, and thus stable. Secure connection stability.
[0048]
(Second embodiment)
FIG. 4 shows another embodiment of a semiconductor chip mounting structure according to the present invention. The difference between this embodiment and the embodiment shown in FIG. 3 is that the shape of the substrate-side dummy terminal is modified, and there is no change with respect to the other points. Therefore, in FIG. 4, the same members as those in FIG.
[0049]
In the embodiment shown in FIG. 4, the board-side dummy terminals 23 </ b> B provided at positions corresponding to the dummy bumps 22 on the flexible film 15 on the wiring board 13 side are replaced with a linear pattern as shown in FIG. It is formed in a narrow annular pattern.
[0050]
Even with this configuration, it is possible to visually confirm the dummy bumps 22 in a region outside the substrate-side dummy terminal 23B. Therefore, by confirming the state of the ACF 12 in that portion, the connection state of the conductive connection portion can be accurately and nondestructively performed. Can grasp.
[0051]
(Third embodiment)
FIG. 5 shows still another embodiment of a semiconductor chip mounting structure according to the present invention. The difference between this embodiment and the embodiment shown in FIG. 3 is that the shape of the substrate-side dummy terminal is modified, and there is no change with respect to the other points. Therefore, in FIG. 5, the same members as those in FIG.
[0052]
In the embodiment shown in FIG. 5, the substrate-side dummy terminals 23C provided at positions corresponding to the dummy bumps 22 on the flexible film 15 on the wiring substrate 13 side are replaced with a linear pattern as shown in FIG. It is formed in a narrow cross-shaped pattern.
[0053]
Even with this configuration, it is possible to visually confirm the dummy bumps 22 in a region outside the substrate-side dummy terminal 23C. Therefore, by confirming the state of the ACF 12 in that portion, the connection state of the conductive connection portion can be accurately determined in a non-destructive manner. Can grasp.
[0054]
(Fourth embodiment)
FIG. 6 shows still another embodiment of a semiconductor chip mounting structure according to the present invention. This embodiment is a modification of the embodiment shown in FIG. 4, and specifically, an annular pattern in which the substrate side dummy terminal 23D is partially opened, that is, a U-shaped pattern or a U-shaped pattern. Is formed.
[0055]
(Fifth embodiment)
FIG. 7 shows still another embodiment of a semiconductor chip mounting structure according to the present invention. This embodiment is a modification of the embodiment shown in FIG. 5. Specifically, the substrate-side dummy terminal 23E rotates the cross-shaped pattern dummy terminal 23C shown in FIG. 5 by an angle of approximately 45 °. It is formed in a pattern shape.
[0056]
(Sixth embodiment)
FIG. 8 shows a mobile phone which is an embodiment of an electronic apparatus according to the present invention. The cellular phone 30 shown here is configured by storing various components such as an antenna 31, a speaker 32, a liquid crystal device 1, a key switch 33, a microphone 34, and the like in an exterior case 36 as a casing. In addition, a control circuit board 37 on which a control circuit for controlling the operation of each component described above is provided inside the exterior case 36. The liquid crystal device 1 is constituted by the liquid crystal device 1 shown in FIG.
[0057]
In the cellular phone 30, a signal input through the key switch 33 and the microphone 34, reception data received by the antenna 31, and the like are input to the control circuit on the control circuit board 37. Then, the control circuit displays an image such as a number, a character, a picture, etc. on the display surface of the liquid crystal device 1 based on various input data, and further transmits transmission data from the antenna 31.
[0058]
In the liquid crystal device 1 used for the cellular phone 30, dummy bumps 22 having the same shape as the bumps 14 are formed at the corners of the active surface of the liquid crystal driving IC 11 as shown in FIG. A side dummy terminal 23A was formed. In that case, the height of the board-side dummy terminal 23A is set to be the same as that of the board-side terminal 17 applied to the conductive connection, but the area of the board-side dummy terminal 23A is smaller than both the dummy bump 22 and the board-side terminal 17. Formed in area.
[0059]
As a result of the above, by visually checking the dummy bumps 22 in the region that is out of the substrate-side dummy terminals 23A, the state of the ACF 12 positioned below the dummy bumps 22, for example, whether there are bubbles or the conductive particles 19 are predetermined. It is now possible to accurately inspect whether there are numbers. As a result of this inspection, the state of the ACF 12 between the bump 14 and the substrate-side terminal 17 that is applied to the conductive connection can be accurately grasped in a non-destructive state.
[0060]
(Other embodiments)
The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the embodiments, and various modifications can be made within the scope of the invention described in the claims.
[0061]
For example, FIG. 1 shows the case where the semiconductor chip mounting structure according to the present invention is used as a component of a liquid crystal device. However, the semiconductor chip mounting structure according to the present invention is used as a component of any device other than a liquid crystal device. Can be used.
[0062]
In the embodiment shown in FIG. 1, a liquid crystal device having a structure in which a mounting structure of one semiconductor chip is connected to the liquid crystal panel is illustrated. However, a liquid crystal having a structure in which a mounting structure of a plurality of semiconductor chips is connected to the liquid crystal panel. Of course, the present invention can also be applied to a liquid crystal display device having a structure in which an electronic component other than a semiconductor chip is mounted on a device or a mounting substrate.
[0063]
In the embodiment of FIG. 8, the case where the liquid crystal device of the present invention is used in a mobile phone as an electronic device is illustrated. However, the liquid crystal device of the present invention can be used for other electronic devices such as portable information terminals, electronic notebooks, It can also be applied to a camera finder or the like.
[0064]
【The invention's effect】
According to the semiconductor chip mounting structure of the present invention, (1) a semiconductor-side dummy terminal is provided on the bonding surface of the semiconductor chip, that is, an active surface, (2) a substrate-side dummy terminal is provided on the bonding surface of the substrate, and 3) The portion of the substrate side dummy terminal that overlaps the semiconductor side dummy terminal is formed to have a smaller area than both the semiconductor side dummy terminal and the original substrate side terminal for signal transmission.
[0065]
As a result, even if the substrate or the substrate-side terminal is formed of a material with low transparency, the semiconductor chip-side dummy terminal existing in a region protruding from the substrate-side dummy terminal formed with a small area is visually observed through the wiring substrate. Therefore, it is possible to confirm the state of connection between terminals accurately through the board.
[0066]
In addition, since this visual confirmation can be performed without disassembling the semiconductor chip mounting structure, the connection state between the terminals can be accurately confirmed, and the mounting structure is not destroyed unnecessarily.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of a semiconductor chip mounting structure and a liquid crystal device according to the present invention.
2 is a side cross-sectional view showing a main part of the liquid crystal device of FIG.
FIG. 3 is a plan sectional view showing one embodiment of a semiconductor chip mounting structure according to the present invention.
FIG. 4 is a plan sectional view showing another embodiment of a semiconductor chip mounting structure according to the present invention.
FIG. 5 is a plan sectional view showing still another embodiment of a semiconductor chip mounting structure according to the present invention.
FIG. 6 is a plan sectional view showing still another embodiment of a semiconductor chip mounting structure according to the present invention.
FIG. 7 is a plan sectional view showing still another embodiment of a semiconductor chip mounting structure according to the present invention.
FIG. 8 is a perspective view showing an embodiment of an electronic apparatus according to the invention.
[Explanation of symbols]
1 Liquid crystal device
2 LCD panel
3 Semiconductor chip mounting structure
6a, 6b substrate
7a, 7b electrode
11 Liquid crystal drive IC (semiconductor chip)
12 ACF (conductive adhesive)
13 Wiring board
14 Bump (Semiconductor side terminal)
15 Flexible film
16 Wiring pattern
16a, 16b terminal
17 Board side terminal
22 Dummy bump (Dummy terminal on the semiconductor side)
23A, 23B, 23C, 23D, 23E Board side dummy terminals

Claims (5)

半導体チップの実装構造であって、
接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、
前記基板側端子は銅によって、前記配線基板はポリイミドによって形成され、
前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらに
その基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記基板側端子よりも幅の狭い直線パターンに形成される
ことを特徴とする半導体チップの実装構造。
A semiconductor chip mounting structure,
Conductive bonding of a semiconductor chip having a plurality of semiconductor-side terminals on the bonding surface and a wiring board having a plurality of substrate-side terminals on the bonding surface so that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. Formed by gluing with an agent,
The board side terminal is made of copper, the wiring board is made of polyimide,
A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip; and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and further overlaps the semiconductor-side dummy terminal among the substrate-side dummy terminals. The semiconductor chip mounting structure, wherein the portion is formed in a linear pattern having a smaller area than the semiconductor-side dummy terminal and the substrate-side terminal and having a width narrower than that of the substrate-side terminal.
半導体チップの実装構造であって、
接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、
前記基板側端子は銅によって、前記配線基板はポリイミドによって形成され、
前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらに
その基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記基板側端子よりも幅の狭い幅の狭い十字形状パターンに形成される
ことを特徴とする半導体チップの実装構造。
A semiconductor chip mounting structure,
Conductive bonding of a semiconductor chip having a plurality of semiconductor-side terminals on the bonding surface and a wiring board having a plurality of substrate-side terminals on the bonding surface so that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. Formed by gluing with an agent,
The board side terminal is made of copper, the wiring board is made of polyimide,
A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip; and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and further overlaps the semiconductor-side dummy terminal among the substrate-side dummy terminals. The semiconductor chip mounting structure is characterized in that the portion has an area smaller than that of the semiconductor-side dummy terminal and the substrate-side terminal, and is formed in a narrow cross-shaped pattern that is narrower than the substrate-side terminal.
半導体チップの実装構造であって、
接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、
前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらに
その基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記基板側端子よりも幅の狭い直線パターンに形成される
ことを特徴とする半導体チップの実装構造。
A semiconductor chip mounting structure,
Conductive bonding of a semiconductor chip having a plurality of semiconductor-side terminals on the bonding surface and a wiring board having a plurality of substrate-side terminals on the bonding surface so that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. Formed by gluing with an agent,
A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip; and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and further overlaps the semiconductor-side dummy terminal among the substrate-side dummy terminals. The portion has a smaller area than that of the semiconductor-side dummy terminal and the substrate-side terminal, and the substrate-side terminal so that the connection state of the substrate-side dummy terminal and the semiconductor-side dummy terminal can be confirmed through the wiring board. A semiconductor chip mounting structure, characterized in that the semiconductor chip is formed in a narrower linear pattern.
液晶を挟む一対の基板と、それらの基板の少なくともいずれか1つに接続される半導体チップの実装構造とを有する液晶装置において、
前記半導体チップの実装構造は、
接合面に複数の半導体側端子を備えた半導体チップと、接合面に複数の基板側端子を備えた配線基板とを、それらの半導体側端子と基板側端子とが互いに導通するように、導電接着剤を用いて接着することによって形成され、
前記半導体チップの接合面に形成された半導体側ダミー端子と、前記配線基板の接合面に形成された基板側ダミー端子とを有し、さらに
その基板側ダミー端子のうち前記半導体側ダミー端子と重なる部分は、その半導体側ダミー端子及び前記基板側端子よりも小さい面積であり、前記配線基板を通して前記基板側ダミー端子と前記半導体側ダミー端子の接続状態を確認することができるように前記基板側端子よりも幅の狭い直線パターンに形成される
ことを特徴とする液晶装置。
In a liquid crystal device having a pair of substrates sandwiching a liquid crystal and a semiconductor chip mounting structure connected to at least one of those substrates,
The mounting structure of the semiconductor chip is as follows:
Conductive bonding of a semiconductor chip having a plurality of semiconductor-side terminals on the bonding surface and a wiring board having a plurality of substrate-side terminals on the bonding surface so that the semiconductor-side terminals and the substrate-side terminals are electrically connected to each other. Formed by gluing with an agent,
A semiconductor-side dummy terminal formed on the bonding surface of the semiconductor chip; and a substrate-side dummy terminal formed on the bonding surface of the wiring board, and further overlaps the semiconductor-side dummy terminal among the substrate-side dummy terminals. The portion has a smaller area than that of the semiconductor-side dummy terminal and the substrate-side terminal, and the substrate-side terminal so that the connection state of the substrate-side dummy terminal and the semiconductor-side dummy terminal can be confirmed through the wiring board. A liquid crystal device, wherein the liquid crystal device is formed in a linear pattern having a narrower width.
液晶装置と、その液晶装置を収容する筐体とを有する電子機器において、請求項4に記載の液晶装置を備えることを特徴とする電子機器。  An electronic apparatus having a liquid crystal device and a housing for housing the liquid crystal device, comprising the liquid crystal device according to claim 4.
JP35907098A 1998-12-17 1998-12-17 Semiconductor chip mounting structure, liquid crystal device and electronic device Expired - Fee Related JP3684886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35907098A JP3684886B2 (en) 1998-12-17 1998-12-17 Semiconductor chip mounting structure, liquid crystal device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35907098A JP3684886B2 (en) 1998-12-17 1998-12-17 Semiconductor chip mounting structure, liquid crystal device and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005113270A Division JP4055786B2 (en) 2005-04-11 2005-04-11 Liquid crystal device, semiconductor chip mounting structure, and electronic device

Publications (2)

Publication Number Publication Date
JP2000183112A JP2000183112A (en) 2000-06-30
JP3684886B2 true JP3684886B2 (en) 2005-08-17

Family

ID=18462589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35907098A Expired - Fee Related JP3684886B2 (en) 1998-12-17 1998-12-17 Semiconductor chip mounting structure, liquid crystal device and electronic device

Country Status (1)

Country Link
JP (1) JP3684886B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139060B2 (en) 2004-01-27 2006-11-21 Au Optronics Corporation Method for mounting a driver IC chip and a FPC board/TCP/COF device using a single anisotropic conductive film
KR100889636B1 (en) 2007-06-20 2009-03-20 건국대학교 산학협력단 Bonding state inspection method of RF chip using dummy bump and dummy pattern
JP4992774B2 (en) * 2008-03-14 2012-08-08 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
WO2013089199A1 (en) * 2011-12-16 2013-06-20 旭化成イーマテリアルズ株式会社 Semiconductor chip with attached anisotropic electroconductive film, semiconductor wafer with attached anisotropic electroconductive film, and semiconductor device

Also Published As

Publication number Publication date
JP2000183112A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
KR100548683B1 (en) Method for manufacturing circuit structure unit and liquid crystal device
TW444300B (en) Semiconductor device, structure for mounting the semiconductor device, liquid crystal device, and electronic equipment
US6870590B2 (en) Electrooptical unit with a flexible board and electronic apparatus
JP3933094B2 (en) Electronic component mounting method
JP3721999B2 (en) Liquid crystal device and electronic device
CN1171117C (en) Electro-optical device, manufacturing method of electro-optical device, and electronic device
JP3482826B2 (en) IC mounting method, liquid crystal display device, electronic equipment, and liquid crystal display device manufacturing apparatus
JP2000250031A (en) Electro-optical device
US20030227593A1 (en) Liquid crystal display device and manufacturing method of liquid crystal display device
US6775149B1 (en) Multichip mounted structure, electro-optical apparatus, and electronic apparatus
JP3684886B2 (en) Semiconductor chip mounting structure, liquid crystal device and electronic device
TW486589B (en) Pressure-bonded substrate, liquid crystal device, and electronic device
JP3606013B2 (en) Liquid crystal display device, electronic apparatus, and method of manufacturing liquid crystal display device
JP2002063958A (en) Electro-optical devices and electronic equipment
JP2004111810A (en) Method for manufacturing composite substrate, structure of composite substrate, electro-optical device, and electronic apparatus
JP2004087940A (en) Electronic component mounting board, electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP3695265B2 (en) Display device and electronic device
JP2008224934A (en) Electrooptical device, and method for inspecting electric bonding state by anisotropic conductive layer
JP4055786B2 (en) Liquid crystal device, semiconductor chip mounting structure, and electronic device
US7515238B2 (en) Electronic bonding structure with separately distributed anisotropic conductive film units and liquid crystal panel having same
JP2004087938A (en) Electronic component mounting board, electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP2000124575A (en) Wiring board, liquid crystal device and electronic equipment
JP3675185B2 (en) Wiring board, liquid crystal device and electronic device
JP3640740B2 (en) Liquid crystal device and electronic apparatus using the liquid crystal device
JP2002344097A (en) Mounting substrate and display device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees