JP3683422B2 - マイクロストリップアンテナおよびマイクロストリップアンテナ基板 - Google Patents
マイクロストリップアンテナおよびマイクロストリップアンテナ基板 Download PDFInfo
- Publication number
- JP3683422B2 JP3683422B2 JP31133698A JP31133698A JP3683422B2 JP 3683422 B2 JP3683422 B2 JP 3683422B2 JP 31133698 A JP31133698 A JP 31133698A JP 31133698 A JP31133698 A JP 31133698A JP 3683422 B2 JP3683422 B2 JP 3683422B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- microstrip antenna
- dielectric plate
- ground conductor
- parasitic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Waveguide Aerials (AREA)
Description
【発明の属する技術分野】
この発明は電波を送受信するマイクロストリップアンテナおよびマイクロストリップアンテナ基板に係り、特に、無給電導体を有し、高角度における軸比、広帯域、低損失を高度にバランスさせ、衛星などにおいて円偏波の電波を走査する場合に好適なマイクロストリップアンテナおよびマイクロストリップアンテナ基板に関するものである。
【0002】
【従来の技術】
図12は「広帯域同一面給電円偏波マイクロストリップアレーアンテナ」(堀、中嶋,電子情報通信学会論文誌(B)Vol.J68−B No.4,515−522ページ,1985年4月発行)に開示された従来のマイクロストリップアンテナ基板を示す断面図である。図において、1は誘電性材料からなる第一誘電板、2は第一誘電板1の裏面に形成された地導体、3は第一誘電板1の表面に形成され、地導体2との間に所定の電圧が印加される略円板形状の給電導体、4は第一誘電板1の表面に形成され、給電導体3に接続された給電用配線、40は第一誘電板1の表面に形成された発泡スチロール、発泡ウレタンなどからなる発泡部材、6は発泡部材40の表面に形成され、誘電性材料からなる第二誘電板、7は第二誘電板6の表面であって給電導体3と対応する位置に形成され、給電導体3よりも若干小さい半径を有する略円板形状の無給電導体である。また、8はそれぞれ給電導体3の給電用配線接続位置から90度ずつ離間した位置に形成された給電導体切欠部である。
【0003】
次に動作について説明する。
給電用配線4から給電導体3と地導体2との間に所定の電圧を印加すると、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。
【0004】
そして、この従来のマイクロストリップアンテナ基板は、無給電導体7を利用し、それが主たる放射導体となるので、無給電導体7を利用しないものに比べて広帯域特性を得ることができ、しかも、簡易な給電方法にて円偏波を励振することができる。また、円偏波を励振することができるアンテナとしては他にもヘリカルアンテナ、スパイラルアンテナ、クロスダイポールなどがあるが、マイクロストリップアンテナはこれらに比べて容易に製作することができ、しかも、信頼性が高い。
【0005】
【発明が解決しようとする課題】
従来のマイクロストリップアンテナ基板は以上のように構成されているので、Qの高さを低くして広帯域特性を得ようとした場合には、空気を含んだ発泡部材40の厚さをアンテナで送受信する電波の1/20波長程度以上の厚さに設定する必要があり、そのために主たる放射導体である無給電導体7と地導体2との間の等価誘電率が小さくなり過ぎ、E面の放射指向性がH面の放射指向性よりもシャープになりすぎてしまい、「広角で軸比のよい円偏波マイクロストリップアンテナ」(後藤尚久,電子情報通信学会技術報告A.P81−39,81年発行)に示されているような広角度における良好な軸比が得られる等価誘電率(約1.7〜1.3)を得ることができないなどの課題があった。
【0006】
また、広帯域特性を得つつ、広角度における軸比を改善するために、空気を含んだ発泡部材40の厚さに対応させて第一誘電板1や第二誘電板6の厚さを厚くしたり、これらに誘電率が高い誘電性材料を使用した場合には、今度は、地導体2と無給電導体7との間の各層1,40,6内を伝播する表面波成分が増大してしまい、その結果アンテナにおけるエネルギーロスが増大してしまうという別の問題が発生してしまう。
【0007】
この発明は上記のような課題を解決するためになされたもので、高角度における軸比、広帯域、低損失を高度にバランスさせることができるマイクロストリップアンテナおよびマイクロストリップアンテナ基板を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係るマイクロストリップアンテナは、地導体と、当該地導体と離間して配設された無給電導体と、上記地導体と上記無給電導体との間に配設され、上記地導体との間に所定の電圧が印加される給電導体と、上記無給電導体の周縁と上記給電導体の周縁とを結んで仕切られる導体間空間部の周囲に配設され、送受信波の波長の1/20以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材とを備えたものである。
【0010】
この発明に係るマイクロストリップアンテナは、給電導体および無給電導体が円板形状に形成され、壁状部材には、導体間空間部よりも大きい断面略楕円形状の開口部が開設されているものである。
【0011】
この発明に係るマイクロストリップアンテナは、壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向に沿って導電性シールドが複数延在し、その導電性シールドは、送受信波の波長よりも狭い間隔毎に配列されているものである。
【0012】
この発明に係るマイクロストリップアンテナは、壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向の長さが異なる複数種類の導電性シールドが延在しているものである。
【0013】
この発明に係るマイクロストリップアンテナは、地導体の周縁部には送受信波の波長の1/4の長さの多数のチョークが配列され、且つ、この複数のチョークの先端部が互いにショートされているものである。
【0014】
この発明に係るマイクロストリップアンテナ基板は、誘電性材料からなる第一誘電板と、当該第一誘電板の裏面に形成された地導体と、上記第一誘電板の表面に形成され、上記地導体板との間に所定の電圧が印加される給電導体と、上記第一誘電板の表面であって上記給電導体の周囲である位置に形成され、誘電性材料からなる壁状部材と、当該壁状部材の表面に形成され、誘電性材料からなる第二誘電板と、当該第二誘電板の表面あるいは裏面であって上記給電導体と対応する位置に形成された無給電導体とを備えたものである。
【0018】
この発明に係るマイクロストリップアンテナ基板は、第一誘電板上あるいは地導体の裏側に形成した第三誘電板の裏側に、給電導体と電気的に接続される給電用配線を形成したものである。
【0019】
この発明に係るマイクロストリップアンテナ基板は、誘電性材料からなる壁状部材には送受信波の波長よりも狭い間隔毎にスルーホールおよび/またはビアホールを複数個開設し、上記スルーホールあるいはビアホール内にはそれぞれ導電性シールドが形成されているものである。
【0020】
この発明に係るマイクロストリップアンテナ基板は、第二誘電板は第一誘電板とは異なる誘電率を有する誘電性材料にて形成されているものである。
【0021】
この発明に係るマイクロストリップアンテナ基板は、第一誘電板の給電導体と反対側に形成された第一誘電板を含む多層基板の側面の長さを送受信波の波長の1/4の長さとし、少なくともその多層基板の側面、表面周縁部および裏面周縁部を導電性材料からなる被覆膜にて被覆し、更に、地導体の周縁部と上記表面周縁部および裏面周縁部の被覆膜とを複数のスルーホールあるいはビアホールを用いて電気的に接続するものである。
【0022】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、1は誘電性材料からなる第一誘電板、2は第一誘電板1の裏面に形成された地導体、3は第一誘電板1の表面に形成され、地導体2との間に所定の電圧が印加される略円板形状の給電導体、4は第一誘電板1の表面に形成され、給電導体3に接続された給電用配線、5は第一誘電板1の表面であって給電導体3の周囲である位置に形成され、給電導体3の外形よりも大きい内径を有し、送受信波の1/20波長以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材、6は壁状部材5の表面に形成され、誘電性材料からなる第二誘電板、7は第二誘電板6の表面にあって給電導体3と対応する位置に形成され、給電導体3よりも若干小さい半径を有する略円板形状の無給電導体である。
【0023】
また、8はそれぞれ給電導体3の給電用配線接続位置から90度ずつ離間した位置に形成された給電導体切欠部であり、9はそれぞれ各給電導体切欠部8と対応する位置に形成された無給電導体切欠部である。これらの切欠部8,9により直交したモードの縮退を解くことができ、一点給電であるにもかかわらず給電導体3から円偏波の電磁波が発生し、且つ、無給電導体7からも同様に円偏波の電磁波が発生する。
【0024】
図2はこの発明の実施の形態1によるマイクロストリップアンテナにおいて、円形マイクロストリップアンテナの基本モードの場合に、軸比が「1」となる角度(放射方向)と地導体2と無給電導体7との間の誘電率との関係を示す特性図である。図において、横軸はマイクロストリップアンテナの法線方向を基準とする所定の放射方向の角度であり、縦軸は誘電率である。同図から、例えば、θdとして30°を確保したい場合には比誘電率を1.61とし、θdとして60°を確保したい場合には比誘電率を1.38とする必要があることがわかる。
【0025】
なお、円形マイクロストリップアンテナの基本モードの場合における軸比(AR)は下記式1で計算できる。ここで、aは円形マイクロストリップアンテナ(無給電導体7)の半径,εr は基板の比誘電率,J0 、J2 は0次と2次のベッセル関数であり、同式は周波数を特定の周波数に限定した場合に得られる式である。なお、軸比をよくするためにはE面とH面の指向性を一致させればよく、ここではH面の指向性はほぼ決定されているからE面の指向性を制御することになる。下記式1からわかるように指向性は基板の誘電率εr により変化するため、基板の誘電率εr を適当に選んでやれば軸比を改善できることがわかる。
【0026】
【数1】
【0027】
図3はこの発明の実施の形態1によるマイクロストリップアンテナの地導体2と無給電導体7との間の等価回路を示す説明図である。図において、10は空気層である。そして、この場合の等価誘電率は静電近似を用いれば下記式2で概算できる。ここでは、それぞれの基板定数をεr1,t1 ,εr2,t2 ,εr3,t3 ,としている。
【0028】
【数2】
【0029】
そして、この実施の形態1では、現存する誘電体材料の中に1.61や1.38程度の誘電率を有する材料はないので、上記第一誘電板1と第二誘電板6とに異なる誘電率を有する誘電性材料を用いている。ちなみに、発泡材やハニカム等は誘電率が1.1程度であり、テフロン系の基板では誘電率が2程度であり、これらを組み合わせている。更に具体的には、この基板材料としてシアネート系レジンやBTレジン(ビスマレイミドートリアジン樹脂)、低温焼結セラミックスなどを組み合わせて使用している。なお、壁状部材5としては、例えばフッ素樹脂、PPO(ポリフェニレンオキサイド)、セラミック等を使用しており、この壁状部材5の誘電体定数、厚さ、形状、体積などは所定の方向において良好な軸比が選られるように最適な寸法に決定されている。
【0030】
なお、BTレジンは耐熱性、耐放射線性、機械的特性に優れ、宇宙空間のように温度変化が大きく環境条件の厳しい場所においての使用が可能になる。他方、低温焼成セラミックは比較的高誘電率であり、寸法精度が優れており、高周波数帯において所望の寸法精度を得るためには低誘電率基板では難しいような場合、、特にミリ波帯のように寸法精度が要求される場合には有効である。また、低温焼成セラミックは焼成温度を約900℃に下げることができ,低抵抗の銅,銀を用いることができるため特に高周波数帯においても低損失化を図ることができ、基板厚の精度が確保できるため、バラツキが小さい。
【0031】
次に動作について説明する。
給電用配線4から給電導体3と地導体2との間に所定の電圧を印加すると、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。この場合、給電導体3からの電波よりも無給電導体7からの電波の方が強い。また、この電波の放射特性は、無給電導体7と給電導体3との間には導体間空間部とともに誘電性材料からなる壁状部材5を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体7を用いているので広帯域特性である。
【0032】
図4はこの発明の実施の形態1による空気層10の厚さt2と軸比や帯域幅との関係の一例を示す特性図である((a)は壁状部材5付きの場合、(b)は壁状部材5無しの場合)。図において、λ0は自由空間の波長であり、また、これらの図は誘電体基板としてガラスセラミックを用いてビーム走査角が60度となる方向における特性図である。これらの図を比較すれば明らかなように、壁状部材5を使用しない場合(同図(b)の場合)には軸比を最小にするためには空気層5の厚さt2を0.02波長程度に設定しなければならないが、壁状部材5を使用する場合(同図(a)の場合)には軸比を最小にするためには空気層5の厚さt2を0.04波長程度以上に設定することができる。しかも、このような軸比においては壁状部材5を使用しない場合よりも良好な帯域幅を同時に確保することができ、壁状部材5を使用することにより従来では得ることができなかった軸比と帯域幅との良好なバランスを得ることができることが解る。
なお、同図はアンテナに対する整合が取れた状態での空気層10の厚さに対する軸比や帯域幅について示しているが、実際には同図(b)において空気層5の厚さt2を0.02波長程度に設定してしまうとアンテナの入力インピーダンスが小さくなるため、整合を得ることが難しい。
【0033】
また、導体間空間部の周囲に形成されるフリンジング部(無給電導体7と地導体2との間の電界が形成される部位)に誘電性材料からなる壁状部材5を設けているので、この壁状部材5を含めてアンテナの送受信波を共振させることができ、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。なお、フリンジング部は無給電導体7の周囲から送受信波の1/4波長の距離以内に形成されるものであり、この範囲内のいずれかの位置に壁状部材5を設ければ上記効果を得ることができる。また、壁状部材5の厚さを送受信波の1/2波長よりも薄く形成しても十分に効果が得られる。更に、導体間空間部内は空気層10であるので、これによっても広帯域特性が改善されている。
【0034】
以上のように、この実施の形態1によれば、地導体2と、当該地導体2と離間して配設された無給電導体7と、上記地導体2と上記無給電導体7との間に配設され、上記地導体2との間に所定の電圧が印加される給電導体3と、上記無給電導体7の周縁と上記給電導体3の周縁とを結んで仕切られる導体間空間部の周囲に配設され、誘電性材料からなる壁状部材5とを備えたので、無給電導体7と給電導体3との間には導体間空間部とともに誘電性材料からなる壁状部材5が配設されることになり、空気層10を厚くした場合の等価誘電率の低下を抑制することができる。特に、この実施の形態では、導体間空間部の周囲に形成されるフリンジング部に誘電性材料からなる壁状部材5を設けているので、この壁状部材5を含めてアンテナの送受信波を共振させることができるので、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。
【0035】
従って、導体間空間部の厚さをアンテナで送受信する電波の1/20波長程度以上の厚さに設定して広帯域特性を得つつも、それによる等価誘電率の低下を抑制することができ、しかも、その分、第一誘電板1や第二誘電板6の厚さを厚くしたりする必要がなくなるので、これらを厚くした場合に発生する表面波伝播による損失の増大を抑制することができる。つまり、高角度における軸比、広帯域、低損失を、従来では得ることができなかった高度なレベルにてバランスさせることができる効果がある。
【0036】
この実施の形態1によれば、壁状部材5により第一誘電板1と第二誘電板6とを一体化させることができるので、給電導体3と無給電導体7とを精度良く配設することができ、高角度における軸比、広帯域特性、低損失のバランスを設計どおりに実現することができる効果がある。
【0037】
この実施の形態1によれば、第二誘電板6は第一誘電板1とは異なる誘電率を有する誘電性材料にて形成されているので、高角度における軸比が選られるような等価誘電率に設定することができ、広帯域を図る効果がある。
【0038】
そして、近年、衛星搭載用アンテナにおいては、電子的にビームを走査するフェーズドアレー技術や、マルチビーム技術が多く用いられるようになってきて、広角度における軸比が良いものが要求されるようになってきているが、この実施の形態1に係るマイクロストリップアンテナ基板を用いることにより、従来用いられていた鏡面アンテナでは得られなかった高角度軸比および広帯域特性を得ることができるので、機械的走査をすることなく複数の送受信波を同時に、異なる角度に対して円偏波信号を送受信することが可能となる。なお、この実施の形態1によるマイクロストリップアンテナ基板を複数個配列したフェーズドアレーの特性は、素子間結合が生じるためマイクロストリップアンテナ基板単体の特性とは異なるが同様の傾向の特性を示す。
【0039】
なお、ここでは給電導体3や無給電導体7として円形のものを使用したが、方形、三角形、楕円などの形状であってもこの発明は有効である。
【0040】
また、給電方式としてマイクロストリップ線路で給電する方式を示したが,給電ピンで背面から給電する方式、トリプレート線路による給電、あるいは地導体にスロットを設け、スロットを介して電磁的に給電する電磁結合方式、あるいはマイクロストリップ線路と放射導体(3)とを近接させて給電する近接給電方式など他の給電方法でもこの発明は有効である。
【0041】
次に、円偏波励振のための切欠部8,9の形状も限定されるものでなく、また、無給電導体7のみに設けてもよい.
【0042】
更に、壁状部材5として円形リング状のものを例示したが、正方形,長方形,台形,菱形リングなどの他の形状であっても同様の効果を奏する。また、リング状以外のものとしても格子状あるいは棒状などのものでもよく、無給電導体7の周囲全体ではなく、特定の方向にのみ障壁を設けてもよい。
【0043】
実施の形態2.
図5はこの発明の実施の形態2によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、11は地導体2の裏面に形成された第三誘電板、12は第三誘電板11裏面に形成された給電用配線、13は給電用配線12裏面に形成された第四誘電板、14は第四誘電板13裏面に形成された第二地導体、15は第二地導体14裏面に形成された第五誘電板である。そして、これらは地導体2とともにトリプレート線路を構成している。
【0044】
また、16は一端が給電用配線12に接続され、他端が2つに分岐されたマッチング回路、17はそれぞれ当該各他端を給電導体3に接続する給電プローブである。そして、このマッチング回路16は給電電圧に基づいて互いに位相が90°ずれた2つの励振電圧に分岐し、各給電プローブ17,17は各励振電圧を給電導体3の90°ずれた位置に供給する。これにより、給電導体3および無給電導体7から円偏波の電波が放出される。なお、マッチング回路16としては例えばブランチライン型ハイブリッド回路、ウィルキンソン型分配回路、T分岐回路、ラットレース回路などがある。
【0045】
更に、18は第一誘電板1の表面であって給電導体3の周囲である位置に形成され、給電導体3の外形よりも大きい内径を有し、送受信波の1/20波長以上の厚さを有する略円筒形状の導電性材料からなる壁状部材である。これ以外の構成は実施の形態1と同様であり同一の符号を付して説明を省略する。
【0046】
次に動作について説明する。
給電用配線12から給電導体3と地導体2との間に所定の電圧を印加すると、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。この場合、給電導体3からの電波よりも無給電導体7からの電波の方が強い。また、この電波の放射特性は、第一誘電板1や第二誘電板6の誘電率や厚さを調整することにより等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体7を用いているので広帯域特性である。
【0047】
また、導体間空間部の周囲に導電性材料からなる壁状部材18を設けているので、この壁状部材18により空気層における表面波の伝播を阻止することができ、複数の基板を配列した場合に発生するアンテナ素子間の結合を防止して、その伝播に起因するエネルギーロスを抑制することができる。なお、この効果は壁状部材18の厚さを0.1mm程度に薄くしても得られるものである。
【0048】
次に、この実施の形態2のように2点給電方式にてマイクロストリップアンテナを円偏波励振した場合には、1点給電方式で励振した場合に比べて、比較的軸比の周波数特性が比較的広帯域となる。他方、1点給電方式は放射導体(給電導体3,無給電導体7)に切欠部8,9等の変形を設け直交したモードの縮退を解くため,構造が簡単であるというメリットがある。
【0049】
更に、給電用配線12を多層基板としてアンテナと一体に形成しているので、数百から数千のアンテナを配列する場合であったとしても、これら給電用配線12とアンテナとを後から積層した場合における層間接続のずれ、はがれなどの問題を生ずることなく、電気的特性の劣化も生ずることがない。
【0050】
以上のように、この実施の形態2によれば、地導体2と、上記地導体2と離間して配設された無給電導体7と、上記地導体2と上記無給電導体7との間に配設され、上記地導体2との間に所定の電圧が印加される給電導体3と、上記無給電導体7の周縁と上記給電導体3の周縁とを結んで仕切られる導体間空間部の周囲に配設され、導電性材料からなる壁状部材18とを備えたので、無給電導体7と給電導体3との間の導体間空間部の周囲には導電性材料からなる壁状部材18が配設されることになる。従って、第一誘電板1や第二誘電板6の厚さを厚くしたりしたとしても、空気層における表面波の伝播を阻止することができ、表面波伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。つまり、高角度における軸比、広帯域、低損失を、従来では得ることができなかった高度なレベルにてバランスさせることができる効果がある。また、誘電性材料にて壁状部材5を形成する場合に比べて、薄い壁厚にて上記従来に無い効果を得ることができる効果がある。
【0051】
実施の形態3.
図6はこの発明の実施の形態3によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、19は第一誘電板1の表面にあって給電導体3の周囲である位置に形成され、給電導体3の外形よりも大きい断面略楕円形状の内径を有し、送受信波の1/20波長以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材である。これ以外の構成は実施の形態1と同様であり同一の符号を付して説明を省略する。
【0052】
次に動作について説明する。
給電用配線4から給電導体3と地導体2との間に所定の電圧を印加すると、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。この場合、給電導体3からの電波よりも無給電導体7からの電波の方が強い。また、この電波の放射特性は、第一誘電板1や第二誘電板6の誘電率や厚さを調整することにより等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体7を用いているので広帯域特性である。
【0053】
また、導体間空間部の周囲に断面略楕円形状の壁状部材19を設けているので、楕円の長軸と短軸とで異なる共振状態とすることができるので、単に表面波の発生自体を抑制して、その伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができるだけでなく、高角度における軸比を矯正して、更に高角度まで好適な軸比を得ることができる。
【0054】
以上のように、この実施の形態3によれば、給電導体3および無給電導体7は円板形状に形成され、導体間空間部の周囲全体に渡って設けられる壁状部材19には、当該導体間空間部よりも大きい断面略楕円形状の開口部が開設されているので、この開口部の軸方向を調整することにより送受信波の高角度における軸比を改善することができる効果がある。
【0055】
なお、この実施の形態3では誘電性材料からなる壁状部材19を前提として断面略楕円形状の場合の例を説明したが、導電性材料からなる壁状部材において断面略楕円形状としても同様の効果を得ることができる。
【0056】
実施の形態4.
図7はこの発明の実施の形態4によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、20はそれぞれ地導体2に電気的に接続されたスルーホール(導電性シールド)、21はそれぞれ地導体2に電気的に接続され、当該スルーホール20とは異なる高さのビアホール(導電性シールド)であり、これらは給電導体3と同心円上において、アンテナの送受信波の波長よりも狭い間隔毎に配列されている。
【0057】
また、22は地導体2の裏面に形成された第三誘電板、23は第三誘電板11裏面に、給電導体3と電気的に接続される給電用配線、24は給電導体3の中心に対応する位置において、給電用配線23と直行する向きに延在させて地導体2に開設された略長方体形状のスロットである。これ以外の構成は実施の形態1と同様であり同一の符号を付して説明を省略する。
【0058】
次に動作について説明する。
給電用配線23から給電導体3と地導体2との間に所定の電圧を印加すると、電磁界的にスロット24を介して給電導体3に交番電圧が励振され、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。この場合、給電導体3からの電波よりも無給電導体7からの電波の方が強い。また、この電波の放射特性は、無給電導体7と給電導体3との間には導体間空間部とともに誘電性材料からなる壁状部材5を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体7を用いているので広帯域特性である。
【0059】
また、導体間空間部の周囲に形成されるフリンジング部に誘電性材料からなる壁状部材5を設けているので、この壁状部材5を含めてアンテナの送受信波を共振させることができるので、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。
【0060】
更に、壁状部材5の内部に、アンテナの送受信波の波長よりも狭い間隔毎にスルーホール20およびビアホール21を配列しているので、導体間空間部の周囲に導電性材料からなる壁状部材を設けた場合と同様に空気層における表面波の伝播を阻止することができ、複数の基板を隣接して配置してもその伝播に起因するエネルギーロスを抑制することができる。
【0061】
最後に、導体間空間部の周囲に高さの異なる2種類のスルーホール20およびビアホール21を設けているので、一方向とそれと90度の方向とで異なる共振状態とすることができ、単に表面波の発生自体を抑制して、その伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができるだけでなく、高角度における軸比を矯正して更に高角度まで好適な軸比を得ることができる。
【0062】
以上のように、この実施の形態4によれば、誘電性材料からなる壁状部材5の内部に、給電導体3から無給電導体7へ向かう方向に沿って延在する複数個のスルーホール20およびビアホール21が、アンテナの送受信波の波長よりも狭い間隔毎に配列されているので、誘電性材料による壁状部材5による効果とともに導電性材料による壁状部材の効果を併せ持つことができる。従って、誘電性材料のみで壁状部材5を形成する場合よりも薄い壁厚にしてもそれと同等のバランスを得ることができる効果がある。
【0063】
この実施の形態4によれば、スルーホール20とともにビアホール21を用いているので、この長さの配列を調整することにより送受信波の高角度における軸比を改善することができる効果がある。
【0064】
実施の形態5.
図8はこの発明の実施の形態5によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、25はそれぞれ第一誘電板1の表面に形成され、地導体2との間に所定の電圧が印加される略直方板形状の給電導体、26はそれぞれ給電導体25の配列方向において給電導体25の配設間隔と同じ配設間隔に配列され、送受信波の1/20波長以上の厚さを有する略長方体形状の誘電性材料からなる壁状部材であり、27は第二誘電板6の表面であって給電導体25と対応する位置に形成され、給電導体25よりも小さい略直方板形状の無給電導体である。
【0065】
また、28はそれぞれ、地導体2の周縁部に接続され、その下端28aから先端までの長さLがアンテナの送受信波の波長の1/4の長さに形成されるとともに、その先端部が互いにショートされているチョークである。これ以外は図2と同様であり同一の符号を付して説明を省略する。
【0066】
次に動作について説明する。
図示外の給電用配線から給電導体25と地導体2との間に90°位相がずれた2つの電圧を印加すると、給電導体25に交番電圧が励振され、これに応じて給電導体25と地導体2との間および無給電導体27と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体25および無給電導体27から円偏波の電波が放出される。この場合、給電導体25からの電波よりも無給電導体27からの電波の方が強い。また、この電波の放射特性は、無給電導体27と給電導体25との間には導体間空間部とともに誘電性材料からなる壁状部材26を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体27を用いているので広帯域特性である。
【0067】
以上のように、この実施の形態5によれば、地導体2の周縁部にはアンテナの送受信波の波長の1/4の長さの多数のチョーク28が配列され、且つ、この複数のチョーク28の先端部が互いにショートされているので、地導体2の大きさを小さくしても、地導体2裏面への放射を抑制することができる。特に、地導体2の大きさを小さくした場合、広角度においてはこの地導体2裏面への放射が顕著に発生し、その裏面の構造体の影響を受けて放射特性が変化し、その結果、軸比の変動、利得低下、裏側に配接された送受信機への電波漏れ込みによるアイソレーション劣化などの問題が発生してしまうが、本発明のように、地導体2の周囲に終端が互いにショートされたチョーク28を設けることにより、地導体2端部の電界成分を「0」とすることができるので、これらの問題点を防止することができる効果がある。
【0068】
実施の形態6.
図9はこの発明の実施の形態6によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、29は格子形状に形成された誘電性材料からなるスペーサであり、このスペーサ29には各導体間空間部よりも大きい断面略四角形状の複数の開口部が開設されている。これ以外の構成は図5および図8と同様の構成なので同一の符号を付して説明を省略する。
【0069】
次に動作について説明する。
給電用配線12から給電導体25と地導体2との間に90°位相がずれた2つの電圧を印加すると、給電導体25に交番電圧が励振され、これに応じて給電導体25と地導体2との間および無給電導体27と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体25および無給電導体27から円偏波の電波が放出される。この場合、給電導体25からの電波よりも無給電導体27からの電波の方が強い。また、この電波の放射特性は、無給電導体27と給電導体25との間には導体間空間部とともに誘電性材料からなる壁状部材29を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体27を用いているので広帯域特性である。
【0070】
なお、ここでは4つのアンテナを四角配列としたが、三角配列であってもよく、また、2個、16個などのようにアンテナの素子数に制限はない。また、軸比の改善を図るために基板内でシーケンシャルアレーとしてもよい。次に、ここでは円偏波励振用給電回路とアンテナとを一体化する構成を示したが、送受信機をも含めて一体化してもよい。そして、このように多層基板を用いてアレーアンテナ及びサブアレーを構成することで製作が容易になり、量産性が優れる効果がある。
【0071】
以上のように、この実施の形態6によれば、誘電性材料からなる第一誘電板1と、当該第一誘電板1の裏面に形成された地導体2と、上記第一誘電板1の表面に形成され、上記地導体板2との間に所定の電圧が印加される複数個の給電導体25と、上記第一誘電板1の表面に形成され、上記複数個の給電導体25と同様の相互配設間隔にて複数個の開口部が開設された誘電性材料からなるスペーサ29と、当該スペーサ29の表面に形成され、誘電性材料からなる第二誘電板6と、当該第二誘電板6の表面あるいは裏面であって上記各給電導体25と対応する位置に形成された複数個の無給電導体27とを備えたので、無給電導体27と給電導体25との間には導体間空間部とともに誘電性材料からなるスペーサ29が配設されることになり、空気層を厚くした場合の等価誘電率の低下を抑制することができる。特に、この実施の形態6では、導体間空間部の周囲に形成されるフリンジング部に誘電性材料からなるスペーサ29を設けているので、このスペーサ29を含めてアンテナの送受信波を共振させることができ、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。
【0072】
従って、導体間空間部の厚さをアンテナで送受信する電波の1/20波長程度以上の厚さに設定して広帯域特性を得つつも、それによる等価誘電率の低下を抑制することができ、しかも、その分第一誘電板1や第二誘電板6の厚さを厚くしたりする必要がなくなるので、表面波伝播による損失の増大を抑制することができる。つまり、高角度における軸比、広帯域、低損失を従来では得ることができなかった高度なレベルにてバランスさせることができる効果がある。
【0073】
また、スペーサ29により第一誘電板1と第二誘電板6とを一体化させることができるので、給電導体25と無給電導体27とを精度良く配設することができ、各アンテナの特性を高角度における軸比、広帯域特性、低損失のバランスを設計どおりに、且つ、同等の特性に実現することができる効果がある。
【0074】
この実施の形態6によれば、スペーサ29はその各開口部が、各無給電導体27の周縁と各給電導体25の周縁とを結んで仕切られる各導体間空間部に対応する位置となるように配設されているので、最も広帯域な特性を得ることができる効果がある。
【0075】
この実施の形態6によれば、第三誘電板11上に給電導体25と電気的に接続される給電用配線12を形成したので、給電回路自体も一体化させ、それを含めて高角度における軸比、広帯域、低損失を従来では得ることができなかった高度なレベルにてバランスさせることができるので、給電方法に起因するこれらの特性劣化を防止することができる効果がある。
【0076】
実施の形態7.
図10はこの発明の実施の形態7によるマイクロストリップアンテナ基板の1つのアンテナの構造を示す部分分解斜視図および断面図である。図において、30は格子形状に形成され、各交叉位置が給電導体3と無給電導体7の中心部と重なるように配設された誘電性材料からなるスペーサであり、31はこのスペーサ30の各交叉位置に開設された中空のスルーホール、32はこのスルーホール31を介して地導体2と無給電導体7の中心部とを接続する接地導体である。
【0077】
なお、円偏波を得るためには直交したモードの縮退を解く必要があるので、2つの誘電体棒30a(各格子を構成する誘電体のこと)を給電位置に対して斜め45°方向にそれぞれ挿入し,両者の幅をそれぞれ適当に変えている。これにより直交したモードの共振周波数が変化し円偏波を励振することができる。また、2本の誘電体棒30aを給電位置から斜め45°方向から各々ずらしてその角度を変えることでも直交したモードの縮退を解くことができる。
【0078】
次に動作について説明する。
給電用配線4から給電導体3と地導体2との間に所定の電圧を印加すると、これに応じて給電導体3と地導体2との間および無給電導体7と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体3および無給電導体7から円偏波の電波が放出される。この場合、給電導体3からの電波よりも無給電導体7からの電波の方が強い。また、この電波の放射特性は、無給電導体7と給電導体3との間には導体間空間部とともに誘電性材料からなるスペーサ30を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体7を用いているので広帯域特性である。
【0079】
また、導体間空間部をスペーサ30で微小区間毎に区切っているので、このスペーサ30により空気層における表面波の伝播を阻止することができ、その伝播に起因するエネルギーロスを抑制することができる。
【0080】
更に、無給電導体7をその電界成分が0である中心部において地導体2に接地しているので、無給電導体7の放射特性を損なうことなく、この無給電導体7が帯電してしまうことを防止することができる。
【0081】
以上のように、この実施の形態7によれば、スペーサ30は各無給電導体7の中心部には各開口部が対応しないように配設されるとともに当該中心部に対応する位置にスルーホール31が形成され、当該スルーホール31を介して各無給電導体7が地導体2と電気的に接続されているので、無給電導体7からの放射特性に悪影響を及ぼすことなくこの無給電導体7の帯電を防止することができ、放電や落雷などによって無給電導体7に高電圧が印加されてしまうことを防止することができる効果がある。
【0082】
実施の形態8.
図11はこの発明の実施の形態8による複数のマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。図において、33は第五誘電板15裏面に形成された第二の給電用配線、34はこの第二の給電用配線33裏側に配設された第六誘電板であり、35は多層基板であり、第一誘電板1からこの第六誘電板34までの厚さLがアンテナの送受信波の1/4波長と等しくなるようにこの多層基板35は形成されている。
【0083】
また、36は多層基板35側面全面に蒸着された側面メタライズ部(被覆膜)、37は第一誘電板1表面周縁部全体に蒸着された上面メタライズ部(被覆膜)、38は第六誘電板34裏面全体に渡って蒸着された下面メタライズ部(被覆膜)であり、39はそれぞれこれらメタライズ部36,37,38を上記上面の第一誘電板1および下面の第六誘電板34において地導体2に電気的に接続するスルーホールである。これ以外の構成は図5および図9と同様なので同一の符号を付して説明を省略する。
【0084】
次に動作について説明する。
給電用配線12や第二の給電用配線33から給電導体25と地導体2との間に90°位相がずれた2つの電圧を印加すると、給電導体25に交番電圧が励振され、これに応じて給電導体25と地導体2との間および無給電導体27と地導体2との間において交番電界が生成され、この電界の変化に応じて給電導体25および無給電導体27から円偏波の電波が放出される。この場合、給電導体25からの電波よりも無給電導体27からの電波の方が強い。また、この電波の放射特性は、無給電導体27と給電導体25との間には導体間空間部とともに誘電性材料からなる壁状部材を配設することで等価誘電率を所望のものに調整しているので、円偏波のE面放射特性とH面放射特性とを概略一致させて高角度において好適な軸比となっており、しかも、無給電導体27を用いているので広帯域特性である。
【0085】
また、多層基板35の側面に1/4波長の長さの側面メタライズ部36を設けるとともに、その両端部に連続して上面メタライズ部37および下面メタライズ部38を設けた構造となっているので、複数の多層基板35を近接して配置することにより、送受信波の周波数においては側面メタライズ部36の両端部をオープン状態とすることができ、これら複数の多層基板35,35の間から当該送受信波が裏側に回り込みにくくすることができる。
【0086】
また、このように複数の多層基板35,35を近接して配置して基板間の隙間にてチョークを構成しているので、実施の形態5に比べて簡易に、且つ、多層基板35と一体化させてチョークを構成することができ、しかも、複数の多層基板35,35を高密度に配列することができる。
【0087】
以上のように、この実施の形態8によれば、側面の長さがアンテナの送受信波の波長の1/4の長さとなるように多層基板35を形成するとともに、少なくともその多層基板35の側面、表面1周縁部および裏面34周縁部を導電性材料からなる被覆膜であるメタライズ部36,37,38にて被覆し、更に、地導体2の周縁部と上記表面周縁部の上面メタライズ部37および裏面周縁部の下面メタライズ部38の被覆膜とを複数のスルーホール39を用いて電気的に接続するので、複数の多層基板35,35を高密度に隣接して配置することで当該被覆膜である側面メタライズ部36の上面側端縁や下面側端縁において上記アンテナの送受信波に関してはオープン状態とすることができるので、これら多層基板35,35の間から裏面に上記アンテナの送受信波が回り込むことを防止することができ、軸比の変動、利得低下、裏側に配接された送受信機への電波漏れ込みによるアイソレーション劣化などの問題を防止することができる効果がある。
【0088】
【発明の効果】
この発明によれば、地導体と、当該地導体と離間して配設された無給電導体と、上記地導体と上記無給電導体との間に配設され、上記地導体との間に所定の電圧が印加される給電導体と、上記無給電導体の周縁と上記給電導体の周縁とを結んで仕切られる導体間空間部の周囲に配設され、送受信波の波長の1/20以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材とを備えるように構成したので、無給電導体と給電導体との間の導体間空間部の厚さをアンテナで送受信する電波の1/20波長以上の厚さに設定することができて広帯域特性を得ることができると共に、上述のような略円筒形状の壁状部材を含めてアンテナの送受信波を共振させることができることにより、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。
【0089】
従って、導体間空間部の厚さをアンテナで送受信する電波の1/20波長程度以上の厚さに設定して広帯域特性を得つつも、それによる等価誘電率の低下を抑制することができ、しかも、その分第一誘電板や第二誘電板の厚さを厚くしたりする必要がなくなるので、表面波伝播による損失の増大を抑制することができる。つまり、高角度における軸比、広帯域、低損失を従来では得ることができなかった高度なレベルにてバランスさせることができる効果がある。
【0091】
この発明によれば、給電導体および無給電導体が円板形状に形成され、壁状部材には、導体間空間部よりも大きい断面略楕円形状の開口部が開設されているので、この開口部の軸方向を調整することにより送受信波の高角度における軸比を改善することができる効果がある。
【0092】
この発明によれば、壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向に沿って導電性シールドが複数延在し、その導電性シールドは、送受信波の波長よりも狭い間隔毎に配列されているので、誘電性材料による壁状部材による効果とともに導電性材料による壁状部材による効果を得ることができる。従って、誘電性材料のみで壁状部材を形成する場合よりも薄い壁厚にしてもそれと同等のバランスが得られる効果がある。
【0093】
この発明によれば、壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向の長さが異なる複数種類の導電性シールドが延在しているので、この長さの配列を調整することにより送受信波の高角度における軸比を改善することができる効果がある。
【0094】
この発明によれば、地導体の周縁部には送受信波の波長の1/4の長さの多数のチョークが配列され、且つ、この複数のチョークの先端部が互いにショートされているので、地導体の大きさを小さくしても、地導体裏面への放射を抑制することができる。特に、地導体の大きさを小さくした場合、広角度においてはこの地導体裏面への放射が顕著に発生し、その裏面の構造体の影響を受けて放射特性が変化し、その結果、軸比の変動、利得低下、裏側に配接された送受信機への電波漏れ込みによるアイソレーション劣化などの問題が発生してしまうが、本発明のように、地導体の周囲に終端が互いにショートされたチョークを設けることにより、地導体端部の電界成分を「0」とすることができるので、これらの問題点を防止することができる。
【0095】
この発明によれば、誘電性材料からなる第一誘電板と、当該第一誘電板の裏面に形成された地導体と、上記第一誘電板の表面に形成され、上記地導体板との間に所定の電圧が印加される給電導体と、上記第一誘電板の表面であって上記給電導体の周囲である位置に形成され、誘電性材料からなる壁状部材と、当該壁状部材の表面に形成され、誘電性材料からなる第二誘電板と、当該第二誘電板の表面あるいは裏面であって上記給電導体と対応する位置に形成された無給電導体とを備えたので、無給電導体と給電導体との間には導体間空間部とともに誘電性材料からなる壁状部材が配設されることになり、空気層を厚くした場合の等価誘電率の低下を抑制することができる。特に、この発明では、導体間空間部の周囲に形成されるフリンジング部に誘電性材料からなる壁状部材を設けているので、この壁状部材を含めてアンテナの送受信波を共振させることができ、表面波の発生自体を抑制してその伝播に起因するエネルギーロスを抑制しつつ、等価誘電率の低下を効果的に抑制することができる。
【0096】
従って、導体間空間部の厚さをアンテナで送受信する電波の1/20波長程度以上の厚さに設定して広帯域特性を得つつも、それによる等価誘電率の低下を抑制することができ、しかも、その分第一誘電板や第二誘電板の厚さを厚くしたりする必要がなくなるので、表面波伝播による損失の増大を抑制することができる。つまり、高角度における軸比、広帯域、低損失を従来では得ることができなかった高度なレベルにてバランスさせることができる効果がある。
【0097】
また、壁状部材により第一誘電板と第二誘電板とを一体化させることができるので、給電導体と無給電導体とを精度良く配設することができ、高角度における軸比、広帯域特性、低損失のバランスを設計どおりに実現することができる効果がある。
【0103】
この発明によれば、第一誘電板上あるいは地導体の裏側に形成した第三誘電板の裏側に、給電導体と電気的に接続される給電用配線を形成したので、給電回路自体も一体化させ、それを含めて高角度における軸比、広帯域、低損失を従来では得ることができなかった高度なレベルにてバランスさせることができるので、給電方法に起因するこれらの特性劣化を防止することができる効果がある。
【0104】
この発明によれば、誘電性材料からなる壁状部材には送受信波の波長よりも狭い間隔毎にスルーホールおよび/またはビアホールを複数個開設し、上記スルーホールあるいはビアホール内にはそれぞれ導電性シールドが形成されているので、誘電性材料による壁状部材による効果とともに導電性材料による壁状部材による効果を得ることができる。従って、誘電性材料のみで壁状部材を形成する場合よりも薄い壁厚にしてもそれと同等のバランスが得られる効果がある。
【0105】
この発明によれば、第二誘電板は第一誘電板とは異なる誘電率を有する誘電性材料にて形成されているので、高角度における軸比が選られるような等価誘電率に設定することができる効果がある。
【0106】
この発明によれば、第一誘電板の給電導体と反対側に形成された第一誘電板を含む多層基板の側面の長さを送受信波の波長の1/4の長さとし、少なくともその多層基板の側面、表面周縁部および裏面周縁部を導電性材料からなる被覆膜にて被覆し、更に、地導体の周縁部と上記表面周縁部および裏面周縁部の被覆膜とを複数のスルーホールあるいはビアホールを用いて電気的に接続するので、多数の基板を高密度に隣接して配置することで当該被覆膜の上面側端縁や下面側端縁において、上記アンテナの送受信波に関してはオープン状態とすることができるので、これら基板の間から裏面に上記アンテナの送受信波が回り込むことを防止することができ、軸比の変動、利得低下、裏側に配接された送受信機への電波漏れ込みによるアイソレーション劣化などの問題を防止することができる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図2】 この発明の実施の形態1によるマイクロストリップアンテナにおいて、円形マイクロストリップアンテナの基本モードの場合に、軸比が「1」となる角度(放射方向)と地導体2と無給電導体7との間の誘電率との関係を示す特性図である。
【図3】 この発明の実施の形態1によるマイクロストリップアンテナの地導体2と無給電導体7との間の等価回路を示す説明図である。
【図4】 この発明の実施の形態1による空気層10の厚さt2と軸比や帯域幅との関係の一例を示す特性図である((a)は壁状部材5付きの場合、(b)は壁状部材5無しの場合)。
【図5】 この発明の実施の形態2によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図6】 この発明の実施の形態3によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図7】 この発明の実施の形態4によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図8】 この発明の実施の形態5によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図9】 この発明の実施の形態6によるマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図10】 この発明の実施の形態7によるマイクロストリップアンテナ基板の1つのアンテナの構造を示す部分分解斜視図および断面図である。
【図11】 この発明の実施の形態8による複数のマイクロストリップアンテナ基板の構造を示す部分分解斜視図および断面図である。
【図12】 従来のマイクロストリップアンテナ基板を示す断面図である。
【符号の説明】
1 第一誘電板、2 地導体、3,25 給電導体、4,12,23,33 給電用配線、5,18,19,26 壁状部材、6 第二誘電板、7,27 無給電導体、20 スルーホール(導電性シールド)、21 ビアホール(導電性シールド)、28 チョーク、29,30 スペーサ、31 スルーホール、36 側面メタライズ部(被覆膜)、37 上面メタライズ部(被覆膜)、38 下面メタライズ部(被覆膜)、39 スルーホール。
Claims (10)
- 地導体と、当該地導体と離間して配設された無給電導体と、上記地導体と上記無給電導体との間に配設され、上記地導体との間に所定の電圧が印加される給電導体と、上記無給電導体の周縁と上記給電導体の周縁とを結んで仕切られる導体間空間部の周囲に配設され、送受信波の波長の1/20以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材とを備えたマイクロストリップアンテナ。
- 地導体と、当該地導体と離間して配設された無給電導体と、上記地導体と上記無給電導体との間に配設され、上記地導体との間に所定の電圧が印加される給電導体と、上記無給電導体の周縁と上記給電導体の周縁とを結んで仕切られる導体間空間部の周囲に配設され、送受信波の波長の1/20以上の厚さを有する誘電性材料からなる壁状部材とを備えたマイクロストリップアンテナにおいて、上記給電導体および無給電導体が円板形状に形成され、上記壁状部材には、上記導体間空間部よりも大きい断面略楕円形状の開口部が開設されていることを特徴とするマイクロストリップアンテナ。
- 壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向に沿って導電性シールドが複数延在し、その導電性シールドは、送受信波の波長よりも狭い間隔毎に配列されていることを特徴とする請求項1または請求項2記載のマイクロストリップアンテナ。
- 壁状部材の内部あるいは表面には、給電導体から無給電導体へ向かう方向の長さが異なる複数種類の導電性シールドが延在していることを特徴とする請求項3記載のマイクロストリップアンテナ。
- 地導体の周縁部には送受信波の波長の1/4の長さの複数のチョークが配列され、且つ、この複数のチョークの先端部が互いにショートされていることを特徴とする請求項1から請求項4のうちのいずれか1項記載のマイクロストリップアンテナ。
- 誘電性材料からなる第一誘電板と、当該第一誘電板の裏面に形成された地導体と、上記第一誘電板の表面に形成され、上記地導体との間に所定の電圧が印加される給電導体と、上記第一誘電板の表面であって上記給電導体の周囲である位置に形成され、送受信波の波長の1/20以上の厚さを有する略円筒形状の誘電性材料からなる壁状部材と、当該壁状部材の表面に形成され、誘電性材料からなる第二誘電板と、当該第二誘電板の表面あるいは裏面であって上記給電導体と対応する位置に形成された無給電導体とを備えたマイクロストリップアンテナ基板。
- 第一誘電板上あるいは地導体の裏側に形成した第三誘電板の裏側に、給電導体と電気的に接続される給電用配線を形成したことを特徴とする請求項6記載のマイクロストリップアンテナ基板。
- 誘電性材料からなる壁状部材には送受信波の波長よりも狭い間隔毎にスルーホールおよび/またはビアホールを複数個配設し、上記スルーホールあるいはビアホール内にはそれぞれ導電性シールドが形成されていることを特徴とする請求項6記載のマイクロストリップアンテナ基板。
- 第二誘電板は第一誘電板とは異なる誘電率を有する誘電性材料にて形成されていることを特徴とする請求項6記載のマイクロストリップアンテナ基板。
- 第一誘電板の給電導体と反対側に形成された第一誘電板を含む多層基板の側面の長さを送受信波の波長の1/4の長さとし、少なくともその多層基板の側面、表面周縁部および裏面周縁部を導電性材料からなる被覆膜にて被覆し、更に、地導体の周縁部と上記表面周縁部および裏面周縁部の被覆膜とを複数のスルーホールあるいはビアホールを用いて電気的に接続することを特徴とする請求項6記載のマイクロストリップアンテナ基板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31133698A JP3683422B2 (ja) | 1998-10-30 | 1998-10-30 | マイクロストリップアンテナおよびマイクロストリップアンテナ基板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31133698A JP3683422B2 (ja) | 1998-10-30 | 1998-10-30 | マイクロストリップアンテナおよびマイクロストリップアンテナ基板 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000138525A JP2000138525A (ja) | 2000-05-16 |
JP3683422B2 true JP3683422B2 (ja) | 2005-08-17 |
Family
ID=18015928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31133698A Expired - Lifetime JP3683422B2 (ja) | 1998-10-30 | 1998-10-30 | マイクロストリップアンテナおよびマイクロストリップアンテナ基板 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3683422B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105811112A (zh) * | 2016-04-28 | 2016-07-27 | 无锡南理工科技发展有限公司 | 贴片天线 |
CN109196718A (zh) * | 2016-10-21 | 2019-01-11 | 株式会社电装 | 天线装置 |
CN110024219A (zh) * | 2016-11-23 | 2019-07-16 | 三星电子株式会社 | 天线装置以及包括该天线装置的电子装置 |
CN110062982A (zh) * | 2016-12-22 | 2019-07-26 | 京瓷株式会社 | 天线基板及其制造方法 |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3572517B2 (ja) * | 2001-03-29 | 2004-10-06 | 川崎重工業株式会社 | 飛行体用レドーム |
US6624787B2 (en) * | 2001-10-01 | 2003-09-23 | Raytheon Company | Slot coupled, polarized, egg-crate radiator |
JP2003283239A (ja) * | 2002-03-20 | 2003-10-03 | Mitsubishi Electric Corp | アンテナ装置 |
JP2004056204A (ja) * | 2002-07-16 | 2004-02-19 | Alps Electric Co Ltd | パッチアンテナ |
JP2004088508A (ja) * | 2002-08-27 | 2004-03-18 | Tdk Corp | アンテナ付高周波モジュール |
JP3878141B2 (ja) * | 2003-02-27 | 2007-02-07 | 株式会社エヌ・ティ・ティ・ドコモ | パッチアレーアンテナおよびその励振方法 |
JP4219788B2 (ja) * | 2003-10-22 | 2009-02-04 | 古河電気工業株式会社 | 平面アンテナ及びアンテナユニット |
WO2006051947A1 (ja) | 2004-11-15 | 2006-05-18 | Anritsu Corporation | 円偏波アンテナ及びそれを用いるレーダ装置 |
JP4217205B2 (ja) * | 2004-11-26 | 2009-01-28 | 京セラ株式会社 | アンテナ装置ならびに無線通信装置 |
JP4358195B2 (ja) * | 2005-03-22 | 2009-11-04 | 株式会社東芝 | アンテナデバイスおよびアンテナデバイスの製造方法 |
JP4548287B2 (ja) * | 2005-09-22 | 2010-09-22 | 三菱電機株式会社 | アンテナ装置 |
TWI261386B (en) * | 2005-10-25 | 2006-09-01 | Tatung Co | Partial reflective surface antenna |
JP4733554B2 (ja) * | 2006-04-10 | 2011-07-27 | 株式会社東海理化電機製作所 | マイクロストリップアンテナ |
US7671696B1 (en) | 2006-09-21 | 2010-03-02 | Raytheon Company | Radio frequency interconnect circuits and techniques |
US9172145B2 (en) | 2006-09-21 | 2015-10-27 | Raytheon Company | Transmit/receive daughter card with integral circulator |
US9019166B2 (en) | 2009-06-15 | 2015-04-28 | Raytheon Company | Active electronically scanned array (AESA) card |
US8279131B2 (en) | 2006-09-21 | 2012-10-02 | Raytheon Company | Panel array |
JP2010114645A (ja) * | 2008-11-06 | 2010-05-20 | Japan Radio Co Ltd | アンテナ装置及びそれを備えたアレーアンテナ装置 |
US7859835B2 (en) | 2009-03-24 | 2010-12-28 | Allegro Microsystems, Inc. | Method and apparatus for thermal management of a radio frequency system |
US8537552B2 (en) | 2009-09-25 | 2013-09-17 | Raytheon Company | Heat sink interface having three-dimensional tolerance compensation |
US8508943B2 (en) | 2009-10-16 | 2013-08-13 | Raytheon Company | Cooling active circuits |
US8427371B2 (en) | 2010-04-09 | 2013-04-23 | Raytheon Company | RF feed network for modular active aperture electronically steered arrays |
GB201012923D0 (en) * | 2010-07-30 | 2010-09-15 | Sarantel Ltd | An antenna |
US8363413B2 (en) | 2010-09-13 | 2013-01-29 | Raytheon Company | Assembly to provide thermal cooling |
US8810448B1 (en) | 2010-11-18 | 2014-08-19 | Raytheon Company | Modular architecture for scalable phased array radars |
US8355255B2 (en) | 2010-12-22 | 2013-01-15 | Raytheon Company | Cooling of coplanar active circuits |
JP2012235351A (ja) * | 2011-05-02 | 2012-11-29 | Denso Corp | アンテナ装置 |
US9124361B2 (en) | 2011-10-06 | 2015-09-01 | Raytheon Company | Scalable, analog monopulse network |
CN104078768B (zh) * | 2014-05-30 | 2016-08-17 | 中国电子科技集团公司第十研究所 | 宽带宽角圆极化堆叠微带天线 |
JP6397275B2 (ja) * | 2014-09-02 | 2018-09-26 | 日本ピラー工業株式会社 | アンテナユニット |
JP6447119B2 (ja) * | 2014-12-26 | 2019-01-09 | 株式会社Soken | アンテナ装置 |
JP6591909B2 (ja) * | 2015-07-27 | 2019-10-16 | 京セラ株式会社 | アンテナモジュール |
WO2018116781A1 (ja) * | 2016-12-20 | 2018-06-28 | 京セラ株式会社 | アンテナモジュール |
TWI653785B (zh) * | 2016-12-22 | 2019-03-11 | 日商京瓷股份有限公司 | 天線基板 |
WO2018126386A1 (zh) * | 2017-01-05 | 2018-07-12 | 周丹 | 井下探测器 |
WO2018126371A1 (zh) * | 2017-01-05 | 2018-07-12 | 周丹 | 一种井下探测器 |
KR102020676B1 (ko) | 2017-05-02 | 2019-09-11 | 주식회사 아모텍 | 안테나 모듈 |
JP7114690B2 (ja) * | 2018-03-20 | 2022-08-08 | 京セラ株式会社 | 配線基板 |
CN112771725B (zh) | 2018-09-27 | 2023-06-20 | 株式会社村田制作所 | 天线模块、通信装置以及阵列天线 |
JP7060110B2 (ja) | 2018-10-29 | 2022-04-26 | 株式会社村田製作所 | アンテナ装置、アンテナモジュール、通信装置およびレーダ装置 |
EP3989361A4 (en) | 2019-06-24 | 2022-07-13 | Mitsubishi Electric Corporation | ANTENNA MANUFACTURING METHOD AND ANTENNA DEVICE |
CN115280598A (zh) * | 2020-03-09 | 2022-11-01 | 株式会社村田制作所 | 天线模块和搭载天线模块的通信装置 |
CN219436154U (zh) * | 2020-08-21 | 2023-07-28 | 株式会社村田制作所 | 多层基板、天线模块、滤波器、通信装置以及传输线路 |
WO2022264902A1 (ja) * | 2021-06-15 | 2022-12-22 | 株式会社村田製作所 | アンテナモジュールおよびそれを搭載した通信装置 |
JP1713284S (ja) | 2021-07-26 | 2022-04-21 | アンテナ | |
JP7433555B2 (ja) | 2022-02-17 | 2024-02-19 | 三菱電機株式会社 | アンテナ装置及びアンテナ装置の製造方法 |
WO2024143317A1 (ja) * | 2022-12-28 | 2024-07-04 | 京セラ株式会社 | 印刷配線板及び印刷配線板の製造方法 |
-
1998
- 1998-10-30 JP JP31133698A patent/JP3683422B2/ja not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105811112A (zh) * | 2016-04-28 | 2016-07-27 | 无锡南理工科技发展有限公司 | 贴片天线 |
CN109196718A (zh) * | 2016-10-21 | 2019-01-11 | 株式会社电装 | 天线装置 |
CN109196718B (zh) * | 2016-10-21 | 2020-09-01 | 株式会社电装 | 天线装置 |
CN110024219A (zh) * | 2016-11-23 | 2019-07-16 | 三星电子株式会社 | 天线装置以及包括该天线装置的电子装置 |
US11108148B2 (en) | 2016-11-23 | 2021-08-31 | Samsung Electronics Co., Ltd. | Antenna device and electronic device including same |
CN110062982A (zh) * | 2016-12-22 | 2019-07-26 | 京瓷株式会社 | 天线基板及其制造方法 |
CN110062982B (zh) * | 2016-12-22 | 2020-12-11 | 京瓷株式会社 | 天线基板及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2000138525A (ja) | 2000-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3683422B2 (ja) | マイクロストリップアンテナおよびマイクロストリップアンテナ基板 | |
US3906509A (en) | Circularly polarized helix and spiral antennas | |
JP4440266B2 (ja) | 広帯域フェーズドアレイ放射器 | |
US6414647B1 (en) | Slender omni-directional, broad-band, high efficiency, dual-polarized slot/dipole antenna element | |
CA2023544C (en) | Planar slotted antenna with radial line | |
US6211824B1 (en) | Microstrip patch antenna | |
US6239764B1 (en) | Wideband microstrip dipole antenna array and method for forming such array | |
EP2201646B1 (en) | Dual polarized low profile antenna | |
US4243993A (en) | Broadband center-fed spiral antenna | |
US11081800B2 (en) | Dual-polarized antenna | |
JP4428864B2 (ja) | 同軸キャビティアンテナ | |
US20030151551A1 (en) | Phased array antennas incorporating voltage-tunable phase shifters | |
EP0456034B1 (en) | Bicone antenna with hemispherical beam | |
Tekkouk et al. | Multibeam pillbox antenna with low sidelobe level and high-beam crossover in SIW technology using the split aperture decoupling method | |
US7598918B2 (en) | Tubular endfire slot-mode antenna array with inter-element coupling and associated methods | |
JP2016501460A (ja) | 集積型バランを伴う二重偏波電流ループ放射器 | |
JP2000261235A (ja) | トリプレート線路給電型マイクロストリップアンテナ | |
US20060038732A1 (en) | Broadband dual polarized slotline feed circuit | |
US11437736B2 (en) | Broadband antenna having polarization dependent output | |
US6621463B1 (en) | Integrated feed broadband dual polarized antenna | |
JP3804878B2 (ja) | 偏波共用アンテナ | |
WO2012081958A1 (en) | Wideband dielectric resonator antenna for ku-band applications | |
JP5317842B2 (ja) | アンテナ装置及びアレーアンテナ装置 | |
US11817625B2 (en) | Electromagnetic wave radiator | |
JP3165851B2 (ja) | 平面アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |