[go: up one dir, main page]

JP3681534B2 - Polymerization curable composition for optical lens - Google Patents

Polymerization curable composition for optical lens Download PDF

Info

Publication number
JP3681534B2
JP3681534B2 JP06301898A JP6301898A JP3681534B2 JP 3681534 B2 JP3681534 B2 JP 3681534B2 JP 06301898 A JP06301898 A JP 06301898A JP 6301898 A JP6301898 A JP 6301898A JP 3681534 B2 JP3681534 B2 JP 3681534B2
Authority
JP
Japan
Prior art keywords
polymerization
weight
parts
monomer
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06301898A
Other languages
Japanese (ja)
Other versions
JPH11258552A (en
Inventor
敏博 西竹
智史 伊村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP06301898A priority Critical patent/JP3681534B2/en
Publication of JPH11258552A publication Critical patent/JPH11258552A/en
Application granted granted Critical
Publication of JP3681534B2 publication Critical patent/JP3681534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、眼鏡用プラスチックレンズ等の光学レンズの製造原料に適した重合硬化性組成物に関する。更に詳しくは短時間で硬化し、高屈折率で、光学歪が小さく、透明性、面精度、耐衝撃性、染色性に優れた硬化物を与える光学レンズ用重合硬化性組成物に関する。
【0002】
【従来の技術】
近年、眼鏡用レンズは、軽量性、耐衝撃性及び染色性の観点からその材料としてガラスからプラスチックと移行してきた。
【0003】
一般にプラスチックレンズを成型する場合、2枚の曲率半径の異なるガラスモールドの間に重合性単量体を注入し、熱重合のみによる方法で成形されるのが普通である。しかしながら、この熱重合のみによる方法は、一般に重合時間が数時間に及び、成形体の生産の面で満足できるものではなかった。
【0004】
そこで、ラジカル重合性単量体に、活性エネルギー線を照射し、短時間でプラスチックレンズを成形する方法が、特開昭60−166305号公報に報告されている。
【0005】
しかし、活性エネルギー線を照射し短時間でプラスチックレンズを成形した場合には、重合収縮による内部応力が発生し、アニール後のレンズ中心部に変形が生じ、また使用したモールドの面が正確に転写されないという欠点があった。
【0006】
そこで、これらの問題点を改良するため、活性エネルギー線照射による重合を行った後、加熱重合を行って成形する方法が、特開平4−180911号公報及び特願平7−249938号公報に報告されている。
【0007】
ところで、上記の様な光重合による予備重合を行ってプラスチック眼鏡レンズを成形する場合、できたレンズには耐衝撃性が要求される。耐衝撃性の優れた硬化体を与える光重合性組成物として、特開平4−4209号公報に次のような組成物が報告されているが、該組成物を硬化させて得られる硬化体の比重はいずれも1.20以上であり、プラスチック眼鏡レンズの特長の一つである軽量化の点で満足のゆくものではなかった。なお、該公報には、下記一般式(4)
【0008】
【化4】

Figure 0003681534
【0009】
(式中、R5は水素原子またはメチル基であり、e及びfはそれぞれ独立に0〜4の整数であり、0≦e+f≦4である。)
で示されるジ(メタ)アクリレート化合物と、一般式(5)
【0010】
【化5】
Figure 0003681534
【0011】
(式中、R6は水素原子またはメチル基であり、g及びhはそれぞれ独立に0〜12の整数であり、7≦g+h≦12である。)
で示されるジ(メタ)アクリレート化合物の異なる単量体を併用することによって耐衝撃性が向上することが開示されている。
【0012】
また、本発明者らの知見によれば、上記特開平4−4209号公報で記載されているような架橋樹脂を使用した場合には、架橋点間分子量を大きくすれば熱変形温度は低くなり、耐衝撃性は向上する。しかし、耐衝撃性を向上させるために耐熱性を低くすると、得られた眼鏡レンズにハードコートや反射防止膜を付与するために行う、高温(一般的に100℃から130℃)処理工程を含む表面処理において、レンズが変形するなどの問題が生じてくる。
【0013】
【発明が解決しようとする課題】
このように、プラスチック眼鏡レンズ用の光重合による予備重合が可能な重合硬化性組成物として、耐衝撃性と耐熱性のバランスがとれ、高屈折率で低比重、且つ面精度に優れ、透明性、染色性等のレンズ物性に優れた硬化体を与える光学レンズ用重合硬化性組成物はこれまで知られていなかった。
【0014】
【課題を解決するための手段】
本発明者らは、上記のような優れた特徴を有する光学レンズ用重合硬化性組成物を開発すべく鋭意研究を重ねた結果、分子内に比較的短いエチレンオキサイド鎖又はプロピレンオキサイド鎖を有する2官能(メタ)アクリレート系重合性単量体、分子内に嵩高い脂環構造を有する単官能性(メタ)アクリレート化合物、及び(ポリ)プロピレンオキサイドのジ(メタ)アクリレート化合物の特定の割合で組み合わせるからなる重合性単量体を、光重合により予備重合した後、熱重合により硬化させることにより、上記の各物性に優れる硬化体が得られることを見いだし、本発明を完成するに至った。
【0015】
すなわち本発明は、下記一般式(1)
【0016】
【化6】
Figure 0003681534
【0017】
(式中、R1及びR2はそれぞれ独立に水素原子またはメチル基であり、a及びbはそれぞれ独立に1〜2の整数であり、a+bは2〜3である。)
で示される2官能(メタ)アクリレート系重合性単量体100重量部に対し、下記一般式(2)
【0018】
【化7】
Figure 0003681534
【0019】
(式中、R3は水素原子またはメチル基である。)
で示される単官能(メタ)アクリレート系重合性単量体を5〜70重量部、及び下記一般式(3)
【0020】
【化8】
Figure 0003681534
【0021】
(式中、R4は水素原子またはメチル基であり、c及びdはそれぞれ独立に1〜12の整数であり、c+dは3〜15である。)
で示されるプロピレングリコール系ジ(メタ)アクリレート重合性単量体10〜100重量部の割合で含んでなる重合性単量体100重量部、光重合開始剤0.005〜1重量部、並びに熱重合開始剤0.01〜5重量部を含んでなることを特徴とする光学レンズ用重合硬化性組成物である。
【0022】
また、他の発明は、上記光学レンズ用重合硬化性組成物に活性エネルギー線を照射して予備重合を行った後、次いで得られた予備重合体を加熱して重合硬化させることを特徴とする光学レンズ用重合硬化体の製造方法である。
【0023】
本発明の光学レンズ用重合硬化性組成物では、一般式(1)及び(3)で示される架橋点間分子量の異なる単量体を用いることにより、耐衝撃性の良いレンズを得ることができ、更に、前記一般式(2)で示される単量体を混合することによって、耐熱性、耐衝撃性を低下させることなく、比重の低い眼鏡用プラスチックレンズを得ることができるものと思われる。
【0024】
【発明の実施の形態】
本発明の光学レンズ用重合硬化性組成物は、重合性単量体として前記一般式(1)で示される2官能性(メタ)アクリレート系重合性単量体(以下、単にモノマーAともいう。)、前記一般式(2)で示される単官能性(メタ)アクリレート化合物(以下、単にモノマーBともいう。)及び前記一般式(3)で示されるプロピレングリコール系ジ(メタ)アクリレート重合性単量体(以下、単にモノマーCともいう。)を使用する。
【0025】
本発明で用いられるモノマーAは、前記一般式(1)で示される構造を有するものであるが、重合性の観点から式中のR1は水素原子又はメチル基であり、単量体の粘度及び重合して得られる硬化体の屈折率の観点から式中のR2は水素原子又はメチル基である。また、重合して得られる硬化体の耐熱性の観点から該式中のa及びbは1又は2で、a+bは2〜3である。モノマーAは、重合して得られる硬化体の屈折率を高くし、さらに耐熱性を上げる働きをするものと考えられる。尚、a及びbは各繰り返し単位の平均個数を示す。
【0026】
本発明で好適に使用できるモノマーAを具体的に示すと、2,2−ビス(4−メタクリロイルオキシエトキシフェニル)プロパン、2−(4−メタクリロイルオキシエトキシフェニル)−2−(4−メタクリロイルオキシフェニル)プロパン、2,2−ビス(4−アクリロイルオキシエトキシフェニル)プロパン等を挙げることができる。
【0027】
本発明で用いられるモノマーBは、前記一般式(2)で示される構造を有するものであるが、式中のR3は水素原子またはメチル基である。該モノマーBは、分子内に嵩高いイソボルニル基を有しているため、その硬化体のガラス転移温度は高く、また、脂環式構造を有するために低比重である。モノマーBは、重合して得られる硬化体の、耐熱性及び耐衝撃性を低下させずに、低比重化を付与する単量体として使用される。本発明で好適に用いられるモノマーBを具体的に例示するとイソボルニルメタアクリレート、イソボルニルアクリレート等を挙げることができる。
【0028】
本発明で用いられるモノマーCは、前記一般式(3)で示される構造を有するものであるが、重合性の観点から式中のR4は水素原子又はメチル基であり、単量体の粘度及び重合して得られる硬化体の屈折率の観点から式中のR4は水素原子又はメチル基である。また、重合して得られる硬化体の耐熱性の観点から該式中のc及びdは1〜12の整数でc+dは3〜15である。モノマーCは、重合して得られる硬化体に耐衝撃性を付与する単量体として使用される。尚、c及びdは各繰り返し単位の平均個数を示し、各繰り返し単位の結合順序は全く任意である(ブロック的に結合していても良いしランダムに結合していても良い。)。
【0029】
本発明で好適に使用できるモノマーCを具体的に示すと、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート、ヘプタプロピレングリコールジメタクリレート、デカプロピレングリコールジメタアクリレート、トリプロピレングリコールアクリレート、テトラプロピレングリコールアクリレート、ヘプタプロピレングリコールジメタアクリレート、デカプロピレングリコールアクリレート等を挙げることができる。
【0030】
また、上記モノマーCを使用した場合は、分岐のないアルキレングリコールジ(メタ)アクリレート{例えばポリエチレングリコールジ(メタ)アクリレートやポリブチレングリコールジ(メタ)アクリレート}を使用した場合に比べて(ほぼ同じ分子量のものを使用した場合の比較で)、重合時の収縮率が小さいために成形性に優れる。
【0031】
本発明の光学レンズ用重合硬化性組成物における、前記モノマーA、モノマーB及びモノマーCの配合割合は、モノマーA100重量部に対してモノマーBが5〜70重量部、好ましくは10〜40重量部の範囲、及びモノマーCが10〜100重量部、好ましくは20〜70重量部の範囲である。
【0032】
モノマーA100重量部に対するモノマーBの配合割合が5重量部を未満のときは硬化物の耐熱性が低くなるばかりでなく、組成物の粘度が高くなり操作性が悪くなる。該配合割合が70重量部を越える場合には、硬化体の耐衝撃性が劣る。また、モノマーA100重量部に対するモノマーCの配合割合が、10重量部未満のときは、光学レンズ用重合硬化性組成物の耐衝撃性、面精度が劣り、該配合割合が100重量部を越える場合には十分な屈折率の硬化体が得られない。
【0033】
また、本発明の光学レンズ用重合硬化性組成物で使用する重合性単量体としては、モノマーA〜Cを上記配合割合で含む混合物をそのまま使用しても良いが、最終的に得られる眼鏡レンズの物性を更に向上させるために、これらモノマーに共重合可能な他のエチレン性不飽和単量体(以下、モノマーDともいう)を更に配合しても良い。
【0034】
ここで使用されるモノマーDを例示すると、ジ(メタ)アクリレート化合物として、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ブタンジオールジメタクリレート、ヘキサメチレンジメタクリレート等が挙げられ、エポキシ基を有する(メタ)アクリレート化合物として、グリシジルアクリレート、グリシジルメタクリレート、β−メチルグリシジルアクリレート、β−メチルグリシジルメタクリレート等を挙げることがでる。これらモノマーDは一種または二種以上を混合してもよい。
【0035】
これらモノマーDを配合する場合の配合量は、最終的に得られる眼鏡レンズの物性を勘案して適宜決定すればよいが、一般的には、モノマーA、B、及びCの合計100重量部に対して、1〜30重量部、より好ましくは1〜20重量部である。
【0036】
本発明の光学レンズ用重合硬化性組成物は、重合触媒として光重合開始剤と熱重合開始剤の両方を含む。上記2種の重合触媒を含むことにより本発明の光学レンズ用重合硬化性組成物は、先ず光を照射することによって予備重合を行い、その後熱重合により重合硬化させるという2段階重合を行うことが出来る。この様な2段階重合を行うことにより、優れた面精度、内部均一性を有したレンズを容易に短時間で硬化させることができる。
【0037】
本発明では光重合開始剤としてブリーチング効果を有する光重合開始剤が好適に使用される。ここでブリーチング効果とは、光重合開始剤が活性エネルギー線により開裂し、その結果、開裂前の紫外或いは可視領域での長波長域の吸収が消失し、吸収が短波長化し、開裂前には開裂に必要な活性エネルギー線が表面に近い領域で吸収されていたものが、開裂により吸収されずに内部まで透過できることをいう。本発明で好適に使用できるこの様な光重合開始剤を例示すると、下記一般式(6)
【0038】
【化9】
Figure 0003681534
【0039】
(式中、R7は独立にメチル基、メトキシ基または塩素原子であり、iは2または3の整数であり、R8はフェニル基またはメトキシ基である。)
で示されるアシルフォスフィンオキサイド系光重合開始剤、及び下記一般式(7)
【0040】
【化10】
Figure 0003681534
【0041】
(式中、R9は独立にメチル基、メトキシ基または塩素原子であり、jは2または3の整数であり、R10はフェニル基または2,4,4−トリメチルペンチル基である。)
で示されるジアシルフォスフィンオキサイド系光重合開始剤が挙げられる。
【0042】
本発明で好適に使用できる前記一般式(6)で示されるアシルフォスフィンオキサイド及び前記一般式(7)で示されるジアシルフォスフィンオキサイドを具体的に例示すると、2,6−ジメチルベンゾイルジフェニルフォスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド、ビス(2,6−ジメチルベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド、ビス(2,4,6−トリメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド、ビス(2,6−ジクロルベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド等が挙げられる。これらの光重合開始剤は、2種以上を組み合わせて使用することができる。
【0043】
上記光重合開始剤の配合量は、全重合性単量体100重量部に対し、0.005〜1重量部、好ましくは0.01〜0.5重量部の範囲である。該配合量が1部を越える場合は、重合の進行が速くなりすぎ得られる重合体の内部均一性が高い硬化体が得られず、該配合量が0.005重量部未満の場合には十分な予備重合が進行しない。
【0044】
本発明で使用する熱重合開始剤は特に限定されず、公知のものが使用できるが、10時間半減期温度が70〜90℃のものが好適に使用できる。10時間半減期温度が70℃未満の場合の熱重合開始剤を使用した場合には、1段目の光重合による重合発熱により、熱重合開始剤が開裂して熱重合が進行し内部歪を生じることがある。また、10時間半減期が90℃を越える熱重合開始剤を使用する場合には、高温で熱重合させる必要があるため、レンズが着色してしまうことがある。本発明で好適に使用できるこのような熱重合開始剤を具体的に示すと、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等のジアシルパーオキサイド、t−ブチルパーオキシイソブチレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート等のパーオキシエステルなどが挙げられる。なお、これらの熱重合開始剤は、2種以上を組み合わせて使用することができる。
【0045】
本発明の光学レンズ用重合硬化性組成物における熱重合開始剤の配合量は、硬化の均一性及び硬化体の硬度の観点から、重合性単量体100重量部に対し0.01〜5重量部、好ましくは0.05〜3重量部の範囲である。
【0046】
また、本発明の光学レンズ用重合硬化性組成物には、本発明の効果を損なわない範囲で、離型剤、紫外線吸収剤、紫外線安定剤、酸化防止剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料等の各種安定剤、添加剤を添加することができる。
【0047】
前記したように、本発明の光学レンズ用重合硬化性組成物は、先ず活性エネルギー線を照射して予備重合を行った後、次いで得られた予備重合体を加熱して重合硬化させることにより、容易に短時間で、優れた面精度、内部均一性を有したレンズが得られる。
【0048】
上記重合方法において、予備重合で使用する活性エネルギー線とは、波長が200〜500nmの範囲にあるエネルギー線を意味し、光重合開始剤を開裂させることが可能なエネルギー線を表す。このような活性エネルギー線の光源としては、紫外線および可視光線を発するものが好ましく、例えばメタルハライドランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、殺菌ランプ、キセノンランプ等が好適に使用される。
【0049】
上記の予備重合およびその後引き続き行われる熱重合の方法は特に限定されず、公知の注型重合方法が好適に採用できる。例えば、エラストマーガスケットまたはスペーサーで保持されているガラスモールド間に、本発明の光学レンズ用重合硬化性組成物を注入し、活性エネルギー線を照射し予備重合した後、更に加熱することにより熱重合を行い硬化させることにより好適に行うことができる。なお、光重合を行う場合は、鋳型の少なくとも光照射する面は透明であることが必要であり、一般的にこの部分にはガラス等が使用される。特に石英ガラス等の紫外線を透過しやすい材質が好ましいが、透明であれば材質には限定されない。また、成形時に外部から圧力をかけながら重合してもなんら差し支えない。
【0050】
上記の重合方法においては、予備重合で重合を完全に終結させないことが面精度の観点から重要である。予備重合で重合を完全に終結した場合、面精度が著しく悪い。面精度、内部均一性に優れたレンズを得るために好適な予備重合における重合の程度は、使用する光源の波長、強度、モノマーの種類や組成、および型形状や材質によって異なるため一概に規定することはできないが、該予備重合によって得られる硬化体(予備重合体)の収縮率が、最終硬化体{ここで、最終硬化体とは、熱重合開始剤を用いて2段階で重合硬化させたときに、その硬化体を室温まで冷却したときの硬度(ロックウェルLスケール)の変化が1/時間以下となる硬化体をいう。}の収縮率の20〜70%、好ましくは30から50%になるように行うのが好ましい。予備重合体の収縮率が最終硬化体の収縮率の70%を越える場合は、最終硬化体の面精度が悪くなる傾向があり、収縮率が20%を下回る場合、熱重合中にモールドと剥がれたり、内部均一性の悪いものとなる傾向がある。
【0051】
なお、ここで収縮率とは、次式で表される値である。
【0052】
収縮率(%)={1−(単量体比重/硬化体比重)}×100
上記の予備重合の程度は、前記したように多くの因子の影響を受けるため、予備的な実験を行い、予め好適な予備重合体を与えるような予備重合条件を決定しておくのが好ましい。一般に、光開始剤の量が多く、光源の強度が大きく、重合体の形状が薄いほど短時間で予備重合を完了させることができる。なお、同一の組成の重合硬化性を用い、同一の型を用い、同一の光源を用いて重合を行う場合には、前記収縮率は照射する活性エネルギー線光の照射時間によって決定される。この様な場合には、重合系毎に照射時間と予備重合体の収縮率との関係を予め調べておけばよい。
【0053】
前記予備重合に引き続き行われる熱重合は、予備重合体を加熱することにより行われる。その時の加熱条件は、使用する熱重合開始剤の種類等により適宜決定すればよい。上記のような注型重合の場合には、予備重合後、型をそのまま空気オーブン又は温水浴を使用して、60℃〜140℃で10分〜120分間加熱することにより行うことができる。この時、多段階に昇温を行ってもよい。
【0054】
このようにして得られる眼鏡レンズは、その用途に応じて以下のような処理を施すこともできる。即ち、分散染料などを用いる染色、シランカップリング剤やケイ素、ジルコニウム、アンチモン、アルミニウム、スズ、タングステン等のゾル成分を主成分とするハードコート剤や、SiO2、TiO2、ZrO2等の金属酸化物の薄膜の蒸着や有機高分子の薄膜の塗布による反射防止処理、帯電防止処理等の加工および2次処理を施すことも可能である。
【0055】
【実施例】
以下、本発明を説明するために、実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
【0056】
使用した試薬の略号を以下に示す。
【0057】
〔モノマーA〕
BPE−2:2,2−ビス(4−メタクリロイルオキシエトキシフェニル)プロパンと2−(4−メタクリロイルオキシエトキシフェニル)―2−(4−メタクリロイルエトキシエトキシフェニル)プロパンの4:1(重量比)の混合物
〔モノマーB〕
IBM:イソボルニルメタアクリレート
IBA:イソボルニルアクリレート
〔モノマーC〕
3PM:トリプロピレングリコールジメタクリレート
7PM:前記一般式(3)において、R4がメチル基、c+dの合計が5〜9の混合物で、c+dの平均が7の混合物
11PA:前記一般式(3)において、R4が水素原子、c+dの合計が9〜13の混合物で、c+dの平均が11の混合物
〔モノマーD〕
BPE−10:2,2−ビス(4−メタクリロイルオキシポリ(エトキシ)フェニル)プロパンでエチレンオキサイド鎖の繰り返し単位平均が10の混合物
GMA:グリシジルメタアクリレート
HEMA:2−ヒドロキシエチルメタアクリレート
7G:ポリエチレングリコールジメタクリレートでエチレンオキサイド鎖の繰り返し単位平均が7の混合物
〔参照モノマー〕
CR−39:ジエチレングリコールビスアリルカーボネート
〔光重合開始剤〕
BAPO1:ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキシド
BAPO2:ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキシド
TPO:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド〔熱重合開始剤〕
TI1:t−ブチルパーオキシ−2−エチルヘキサネート{パーブチルIB(商品名:日本油脂製)}
TI2:1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート{パーオクタO(商品名:日本油脂製)}
TI3:t−ブチルパーオキシネオデカノエート{パーブチルND(商品名:
日本油脂製)}
TI4:ジイソプロピルパーオキシジカーボネート{パーロイルIPP(商品名:日本油脂製)}
実施例1
BPE−2(70重量部)、IBM(10重量部)、7PG(20重量部)に対し、光重合開始剤としてBAPO1(0.02重量部)、熱重合開始剤としてTI1(0.5重量部)添加し、十分混合した後、減圧下で脱気した。この液を、外径80mmの2枚のガラスモールドを、エチレン−酢ビ共重合体からなるガスケットを用い、中心厚が2.0mmの平板と、外径80mmの曲率半径が210mmと75mmのガラスモールドを、エチレン−酢ビ共重合体からなるガスケットを用い、中心厚が1.5mmの凹レンズを成形できるように組み合わせた鋳型の中に注入し、1.5kwメタルハライドランプ(熱線カットフィルター付き)を用い、25cmの距離から活性エネルギー線を両面から1分間照射し、光重合を行い予備重合を行った。この時、予備重合後の収縮率は、最終硬化体の収縮率の40%であった。また、モールド表面の紫外線強度は、波長365nmが15mW/cm2であった。、その後空気オーブン内で110℃で1時間加熱したところ、完全に硬化した。硬化したプラスチックレンズを離型後、110℃で2時間加熱してアニールを行い、屈折率、比重、光学歪、面精度、耐衝撃性、耐熱性、染色性の評価を行った。
【0058】
屈折率:アタゴ社製アッベ屈折率計により20℃で測定した。
【0059】
光学歪:2枚の偏光板の偏光面を直交させた直交ニコル法で観測し、重合歪の評価を行った。評価の基準は、以下のとおりである。
【0060】
(○)歪のないもの
(×)歪のあるもの
面精度:レンズの凹面を目視で観測し、面精度の評価を行った。評価の基準は、以下のとおりである。
【0061】
(○)湾曲していないもの
(△)わずかに湾曲しているもの
(×)湾曲しているもの
耐衝撃性:厚さ2mm、直径65mmの5〜10枚の試験板1枚づつに127cmの高さから16g、32g、48g、64g、80g、96g、112g、131g、151gの鋼球を自然落下させ、試験板が破損しない最も重い鋼球の重さの平均で評価した。
【0062】
耐熱性:120℃の空気オーブン内に3時間放置した後、レンズを取り出し室温まで放冷後、肉眼にて表面の歪を観察した。評価の基準は、以下のとおりである。
【0063】
(○)良好なもの
(△)わずかに歪んでいるもの
(×)歪んでいるもの
染色性:BPIブラックを水に分散させた液を用いて、90℃で3分間染色を行い、目視で評価した。評価の基準は、以下のとおりである。
【0064】
(◎)非常によく染まる
(○)よく染まる
(×)染まりにくい
これら評価結果を表1に示す。
【0065】
【表1】
Figure 0003681534
【0066】
実施例2
表1に示した重合硬化性組成物を用いて、実施例1と同様にして成形を行ったところ、いずれの場合も十分に硬化したプラスチックレンズが得られた。各プラスチックレンズを離型後、実施例1と同様にアニールを行い、評価を行った その結果を表1に示す。
【0067】
実施例3
表1に示した重合硬化性組成物を用いて、照射時間を3分に変更した以外実施例1と同様にして成形を行った。この時、予備重合後の収縮率は、最終硬化体の収縮率の80%であった。その後、各プラスチックレンズを離型後、実施例1と同様にアニールを行い、評価を行った。その結果を表1に示す。
【0068】
実施例4〜6
表1に示した重合硬化性組成物を用いて、実施例1と同様にして成形を行ったところ、いずれの場合も十分に硬化したプラスチックレンズが得られた。各プラスチックレンズを離型後、実施例1と同様にアニールを行い、評価を行った その結果を表1に示す。
【0069】
比較例1
ジエチレングリコールビスアリルカーボネート(CR−39)(100重量部)に、IPP(3重量部)を添加し、十分混合した後、減圧下で脱気した。この液を、外径80mmの2枚のガラスモールドを、エチレン−酢ビ共重合体からなるガスケットを用い、中心厚が2.0mmの平板と、外径80mmの曲率半径が210mmと75mmのガラスモールドを、エチレン−酢ビ共重合体からなるガスケットを用い、中心厚が1.5mmの凹レンズを成形できるように組み合わせた鋳型の中に注入した。その後、45℃で8時間、60℃で3時間、80℃で3時間、95℃で4時間熱重合を行った。離型後、実施例1と同様にアニールを行い、評価を行った。その結果を表2に示す。
【0070】
【表2】
Figure 0003681534
【0071】
比較例2〜9
表2に示した重合性組成物を用いて、実施例1と同様にして成形を行った。各プラスチックレンズを離型後、実施例1と同様にアニールを行い、評価を行った。その結果を表2に示す。
【0072】
以上の結果より、モノマーA、B、C、光重合開始剤及び熱重合開始剤からなる重合性組成物を、活性エネルギー線を照射して予備重合した後、熱重合することにより高屈折率、低比重で、耐衝撃性、面精度の良いレンズが、短時間で成形できることがわかる。また、比較例2〜4において、重合開始剤が請求項1の範囲外の場合、光学歪、面精度の劣るレンズしか得られなかった。また、比較例5〜8において、モノマーA,B,Cの添加量が請求項1の範囲外の場合、面精度、耐衝撃性、耐熱性、染色性の物性が、劣ることがわかる。更に、比較例9においは、ポリプロピレングリコールジメタクリレートの代わりに、同程度の繰り返し単位を有するポリエチレングリコールジメタクリレートを用いた場合、比重、耐熱性が劣ることがわかる。
【0073】
従って、本発明は光学レンズ用組成物及び製造方法として有効である.
【0074】
【発明の効果】
本発明の光学レンズ用重合硬化性組成物本発明を重合して得られる重合体は、高屈折率、低比重で、耐衝撃性、面精度、透明性、染色性に優れ、眼鏡レンズとして優れた物性を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymerization curable composition suitable as a raw material for producing optical lenses such as plastic lenses for spectacles. More specifically, the present invention relates to a polymerization curable composition for an optical lens that cures in a short time, has a high refractive index, a small optical distortion, and provides a cured product excellent in transparency, surface accuracy, impact resistance, and dyeability.
[0002]
[Prior art]
In recent years, spectacle lenses have shifted from glass to plastic as a material from the viewpoint of lightness, impact resistance, and dyeability.
[0003]
In general, when a plastic lens is molded, a polymerizable monomer is injected between two glass molds having different curvature radii, and the plastic lens is generally molded by a method using only thermal polymerization. However, this method based only on thermal polymerization generally has a polymerization time of several hours and is not satisfactory in terms of production of a molded product.
[0004]
Therefore, a method for forming a plastic lens in a short time by irradiating a radically polymerizable monomer with active energy rays has been reported in JP-A-60-166305.
[0005]
However, when plastic lenses are molded in a short time by irradiating with active energy rays, internal stress due to polymerization shrinkage occurs, deformation occurs at the center of the lens after annealing, and the used mold surface is accurately transferred. There was a drawback of not being.
[0006]
Therefore, in order to improve these problems, a method of forming by heating polymerization after performing polymerization by irradiation with active energy rays is reported in JP-A-4-180911 and Japanese Patent Application No. 7-249938. Has been.
[0007]
By the way, when a plastic spectacle lens is molded by performing pre-polymerization by photopolymerization as described above, the resulting lens is required to have impact resistance. JP-A-4-4209 discloses the following composition as a photopolymerizable composition that gives a cured product having excellent impact resistance. However, a cured product obtained by curing the composition is described below. The specific gravity was 1.20 or more, which was not satisfactory in terms of weight reduction, which is one of the features of the plastic spectacle lens. In this publication, the following general formula (4)
[0008]
[Formula 4]
Figure 0003681534
[0009]
(Wherein R Five Is a hydrogen atom or a methyl group, e and f are each independently an integer of 0 to 4, and 0 ≦ e + f ≦ 4. )
A di (meth) acrylate compound represented by the general formula (5)
[0010]
[Chemical formula 5]
Figure 0003681534
[0011]
(Wherein R 6 Is a hydrogen atom or a methyl group, g and h are each independently an integer of 0 to 12, and 7 ≦ g + h ≦ 12. )
It is disclosed that the impact resistance is improved by using together different monomers of the di (meth) acrylate compound represented by formula (1).
[0012]
Further, according to the knowledge of the present inventors, when a cross-linked resin as described in JP-A-4-4209 is used, the thermal deformation temperature is lowered by increasing the molecular weight between the cross-linking points. The impact resistance is improved. However, when heat resistance is lowered to improve impact resistance, a high temperature (generally 100 ° C. to 130 ° C.) processing step is performed to provide a hard coat or an antireflection film on the obtained spectacle lens. In the surface treatment, problems such as deformation of the lens arise.
[0013]
[Problems to be solved by the invention]
Thus, as a polymerization curable composition capable of prepolymerization by photopolymerization for plastic spectacle lenses, it has a balance between impact resistance and heat resistance, high refractive index, low specific gravity, excellent surface accuracy, and transparency. So far, a polymerization curable composition for optical lenses that gives a cured product excellent in lens physical properties such as dyeability has not been known.
[0014]
[Means for Solving the Problems]
As a result of intensive studies to develop a polymerization curable composition for optical lenses having the above-described excellent characteristics, the present inventors have a relatively short ethylene oxide chain or propylene oxide chain in the molecule. Combine at a specific ratio of functional (meth) acrylate polymerizable monomer, monofunctional (meth) acrylate compound with bulky alicyclic structure in the molecule, and (poly) propylene oxide di (meth) acrylate compound The present inventors have found that a cured product excellent in each of the above physical properties can be obtained by prepolymerizing a polymerizable monomer consisting of the above by photopolymerization and then curing it by thermal polymerization, thereby completing the present invention.
[0015]
That is, the present invention provides the following general formula (1)
[0016]
[Chemical 6]
Figure 0003681534
[0017]
(Wherein R 1 And R 2 Are each independently a hydrogen atom or a methyl group, a and b are each independently an integer of 1 to 2, and a + b is 2 to 3. )
The following general formula (2) with respect to 100 parts by weight of the bifunctional (meth) acrylate polymerizable monomer represented by
[0018]
[Chemical 7]
Figure 0003681534
[0019]
(Wherein R Three Is a hydrogen atom or a methyl group. )
5 to 70 parts by weight of a monofunctional (meth) acrylate-based polymerizable monomer represented by the following general formula (3)
[0020]
[Chemical 8]
Figure 0003681534
[0021]
(Wherein R Four Is a hydrogen atom or a methyl group, c and d are each independently an integer of 1 to 12, and c + d is 3 to 15. )
100 parts by weight of a polymerizable monomer comprising 10 to 100 parts by weight of a propylene glycol-based di (meth) acrylate polymerizable monomer represented by the formula, 0.005 to 1 part by weight of a photopolymerization initiator, and heat A polymerization curable composition for optical lenses, comprising 0.01 to 5 parts by weight of a polymerization initiator.
[0022]
Another invention is characterized in that after the prepolymerization is performed by irradiating the polymerization curable composition for optical lenses with active energy rays, the resulting prepolymer is then heated and polymerized and cured. It is a manufacturing method of the polymeric hardened | cured material for optical lenses.
[0023]
In the polymerization curable composition for an optical lens of the present invention, a lens having good impact resistance can be obtained by using monomers having different molecular weights between crosslinking points represented by the general formulas (1) and (3). Furthermore, it is considered that by mixing the monomer represented by the general formula (2), a plastic lens for spectacles having a low specific gravity can be obtained without reducing heat resistance and impact resistance.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The polymerization curable composition for an optical lens of the present invention is also referred to as a bifunctional (meth) acrylate polymerizable monomer represented by the general formula (1) (hereinafter also simply referred to as monomer A) as a polymerizable monomer. ), A monofunctional (meth) acrylate compound represented by the general formula (2) (hereinafter also simply referred to as a monomer B) and a propylene glycol-based di (meth) acrylate polymerizable monomer represented by the general formula (3). A monomer (hereinafter also simply referred to as monomer C) is used.
[0025]
The monomer A used in the present invention has a structure represented by the general formula (1), but R in the formula is from the viewpoint of polymerizability. 1 Is a hydrogen atom or a methyl group, and R in the formula is from the viewpoint of the viscosity of the monomer and the refractive index of the cured product obtained by polymerization. 2 Is a hydrogen atom or a methyl group. Moreover, from a heat resistant viewpoint of the hardening body obtained by superposition | polymerization, a and b in this formula are 1 or 2, and a + b is 2-3. Monomer A is considered to function to increase the refractive index of the cured product obtained by polymerization and to further increase the heat resistance. In addition, a and b show the average number of each repeating unit.
[0026]
Specific examples of the monomer A that can be suitably used in the present invention include 2,2-bis (4-methacryloyloxyethoxyphenyl) propane, 2- (4-methacryloyloxyethoxyphenyl) -2- (4-methacryloyloxyphenyl). ) Propane, 2,2-bis (4-acryloyloxyethoxyphenyl) propane and the like.
[0027]
The monomer B used in the present invention has a structure represented by the general formula (2), but R in the formula Three Is a hydrogen atom or a methyl group. Since the monomer B has a bulky isobornyl group in the molecule, the cured product has a high glass transition temperature, and has an alicyclic structure, and thus has a low specific gravity. Monomer B is used as a monomer that imparts a low specific gravity without lowering the heat resistance and impact resistance of the cured product obtained by polymerization. Specific examples of the monomer B suitably used in the present invention include isobornyl methacrylate and isobornyl acrylate.
[0028]
The monomer C used in the present invention has a structure represented by the general formula (3), but R in the formula is from the viewpoint of polymerizability. Four Is a hydrogen atom or a methyl group, R in the formula from the viewpoint of the viscosity of the monomer and the refractive index of the cured product obtained by polymerization Four Is a hydrogen atom or a methyl group. Moreover, from a heat resistant viewpoint of the hardening body obtained by superposition | polymerization, c and d in this formula are the integers of 1-12, and c + d is 3-15. Monomer C is used as a monomer that imparts impact resistance to a cured product obtained by polymerization. In addition, c and d show the average number of each repeating unit, and the connecting order of each repeating unit is completely arbitrary (it may combine in a block or may combine randomly.).
[0029]
Specific examples of the monomer C that can be suitably used in the present invention include tripropylene glycol dimethacrylate, tetrapropylene glycol dimethacrylate, heptapropylene glycol dimethacrylate, decapropylene glycol dimethacrylate, tripropylene glycol acrylate, and tetrapropylene glycol acrylate. , Heptapropylene glycol dimethacrylate, decapropylene glycol acrylate, and the like.
[0030]
In addition, when the above monomer C is used, compared with the case where an alkylene glycol di (meth) acrylate having no branch {for example, polyethylene glycol di (meth) acrylate or polybutylene glycol di (meth) acrylate} is used (substantially the same). In comparison with the case of using a molecular weight, the moldability is excellent due to the small shrinkage during polymerization.
[0031]
In the polymerization curable composition for an optical lens of the present invention, the blending ratio of the monomer A, the monomer B and the monomer C is 5 to 70 parts by weight, preferably 10 to 40 parts by weight of the monomer B with respect to 100 parts by weight of the monomer A. And the monomer C is in the range of 10 to 100 parts by weight, preferably 20 to 70 parts by weight.
[0032]
When the blending ratio of monomer B with respect to 100 parts by weight of monomer A is less than 5 parts by weight, not only the heat resistance of the cured product is lowered, but also the viscosity of the composition is increased and the operability is deteriorated. When the blending ratio exceeds 70 parts by weight, the impact resistance of the cured product is inferior. Further, when the blending ratio of the monomer C with respect to 100 parts by weight of the monomer A is less than 10 parts by weight, the impact resistance and surface accuracy of the polymerization curable composition for optical lenses is inferior, and the blending ratio exceeds 100 parts by weight. Therefore, a cured product having a sufficient refractive index cannot be obtained.
[0033]
In addition, as the polymerizable monomer used in the polymerization curable composition for optical lenses of the present invention, a mixture containing the monomers A to C in the above blending ratio may be used as it is, but the glasses obtained finally. In order to further improve the physical properties of the lens, another ethylenically unsaturated monomer copolymerizable with these monomers (hereinafter also referred to as monomer D) may be further blended.
[0034]
Examples of the monomer D used herein include diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, butanediol dimethacrylate, hexamethylene dimethacrylate, and the like as the di (meth) acrylate compound, and epoxy Examples of the (meth) acrylate compound having a group include glycidyl acrylate, glycidyl methacrylate, β-methyl glycidyl acrylate, β-methyl glycidyl methacrylate and the like. These monomers D may be used alone or in combination.
[0035]
The blending amount in the case of blending these monomers D may be appropriately determined in consideration of the physical properties of the finally obtained spectacle lens, but in general, the total amount of monomers A, B, and C is 100 parts by weight. On the other hand, it is 1 to 30 parts by weight, more preferably 1 to 20 parts by weight.
[0036]
The polymerization curable composition for an optical lens of the present invention contains both a photopolymerization initiator and a thermal polymerization initiator as a polymerization catalyst. By including the two kinds of polymerization catalysts, the polymerization curable composition for an optical lens of the present invention can be subjected to two-stage polymerization in which preliminary polymerization is performed by first irradiating light and then polymerization curing is performed by thermal polymerization. I can do it. By performing such two-stage polymerization, a lens having excellent surface accuracy and internal uniformity can be easily cured in a short time.
[0037]
In the present invention, a photopolymerization initiator having a bleaching effect is preferably used as the photopolymerization initiator. Here, the bleaching effect means that the photopolymerization initiator is cleaved by the active energy ray, and as a result, the absorption in the long wavelength region in the ultraviolet or visible region before the cleavage disappears, the absorption becomes shorter, and before the cleavage. Means that the active energy rays necessary for the cleavage are absorbed in a region close to the surface, but can be transmitted to the inside without being absorbed by the cleavage. Examples of such a photopolymerization initiator that can be suitably used in the present invention include the following general formula (6).
[0038]
[Chemical 9]
Figure 0003681534
[0039]
(Wherein R 7 Is independently a methyl group, a methoxy group or a chlorine atom, i is an integer of 2 or 3, and R 8 Is a phenyl group or a methoxy group. )
An acylphosphine oxide photopolymerization initiator represented by the following general formula (7):
[0040]
[Chemical Formula 10]
Figure 0003681534
[0041]
(Wherein R 9 Is independently a methyl group, a methoxy group or a chlorine atom, j is an integer of 2 or 3, and R Ten Is a phenyl group or a 2,4,4-trimethylpentyl group. )
And diacylphosphine oxide photopolymerization initiators.
[0042]
Specific examples of the acylphosphine oxide represented by the general formula (6) and the diacylphosphine oxide represented by the general formula (7) that can be suitably used in the present invention include 2,6-dimethylbenzoyldiphenylphosphine. Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl Phosphine oxide, bis (2,6-dimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide Bis (2,6-dichlorobenzoyl) -2 4,4-trimethyl pentyl phosphine oxide and the like. These photopolymerization initiators can be used in combination of two or more.
[0043]
The blending amount of the photopolymerization initiator is in the range of 0.005 to 1 part by weight, preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the total polymerizable monomer. When the blending amount exceeds 1 part, a cured product having a high internal uniformity of the resulting polymer cannot be obtained, and the polymerization amount is less than 0.005 parts by weight. Prepolymerization does not proceed.
[0044]
The thermal polymerization initiator used in the present invention is not particularly limited, and known ones can be used, but those having a 10-hour half-life temperature of 70 to 90 ° C. can be suitably used. When a thermal polymerization initiator having a 10-hour half-life temperature of less than 70 ° C. is used, the thermal polymerization initiator is cleaved due to polymerization heat generated by the first-stage photopolymerization, and the thermal polymerization proceeds to cause internal distortion. May occur. Further, when a thermal polymerization initiator having a 10-hour half-life exceeding 90 ° C. is used, the lens may be colored because it is necessary to perform thermal polymerization at a high temperature. Specific examples of such thermal polymerization initiators that can be suitably used in the present invention include diacyl peroxides such as benzoyl peroxide and lauroyl peroxide, t-butyl peroxyisobutyrate, 1,1,3,3 -Peroxyesters such as tetramethylbutylperoxy-2-ethylhexanoate. These thermal polymerization initiators can be used in combination of two or more.
[0045]
The blending amount of the thermal polymerization initiator in the polymerization curable composition for an optical lens of the present invention is 0.01 to 5 weights with respect to 100 parts by weight of the polymerizable monomer from the viewpoint of uniformity of curing and hardness of the cured body. Parts, preferably 0.05 to 3 parts by weight.
[0046]
In addition, the polymerization curable composition for optical lenses of the present invention includes a mold release agent, an ultraviolet absorber, an ultraviolet stabilizer, an antioxidant, an anti-coloring agent, an antistatic agent, and the like within a range not impairing the effects of the present invention. Various stabilizers and additives such as fluorescent dyes, dyes, pigments, and fragrances can be added.
[0047]
As described above, the polymerization curable composition for an optical lens of the present invention is preliminarily polymerized by first irradiating active energy rays, and then the obtained prepolymer is polymerized and cured by heating. A lens having excellent surface accuracy and internal uniformity can be easily obtained in a short time.
[0048]
In the said polymerization method, the active energy ray used by prepolymerization means the energy ray which has a wavelength in the range of 200-500 nm, and represents the energy ray which can cleave a photoinitiator. As a light source for such an active energy ray, those that emit ultraviolet rays and visible rays are preferable. For example, metal halide lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, sterilizing lamps, xenon lamps, and the like are preferably used. .
[0049]
The prepolymerization and the subsequent thermal polymerization method are not particularly limited, and a known cast polymerization method can be suitably employed. For example, the polymerization curable composition for an optical lens of the present invention is injected between glass molds held by an elastomer gasket or a spacer, irradiated with active energy rays, preliminarily polymerized, and then heated for further heat polymerization. It can be suitably performed by performing and curing. In the case of performing photopolymerization, it is necessary that at least the light-irradiated surface of the template is transparent, and glass or the like is generally used for this portion. In particular, a material that easily transmits ultraviolet rays, such as quartz glass, is preferable, but the material is not limited as long as it is transparent. In addition, polymerization may be performed while applying pressure from the outside during molding.
[0050]
In the above polymerization method, it is important from the viewpoint of surface accuracy that the polymerization is not completely terminated by prepolymerization. When the prepolymerization is completely terminated, the surface accuracy is extremely poor. The degree of polymerization in pre-polymerization suitable for obtaining a lens with excellent surface accuracy and internal uniformity varies depending on the wavelength, intensity, type and composition of the monomer, and the shape and material of the light source. However, the shrinkage rate of the cured product (preliminary polymer) obtained by the preliminary polymerization is the final cured product (here, the final cured product is polymerized and cured in two stages using a thermal polymerization initiator). Sometimes, it refers to a cured product in which the change in hardness (Rockwell L scale) is 1 / hour or less when the cured product is cooled to room temperature. } Is preferably 20 to 70%, preferably 30 to 50% of the shrinkage ratio. When the shrinkage ratio of the prepolymer exceeds 70% of the shrinkage ratio of the final cured body, the surface accuracy of the final cured body tends to deteriorate. When the shrinkage ratio is less than 20%, the mold peels off during thermal polymerization. Or the internal uniformity tends to be poor.
[0051]
Here, the shrinkage rate is a value represented by the following equation.
[0052]
Shrinkage rate (%) = {1− (monomer specific gravity / cured material specific gravity)} × 100
As described above, the degree of the prepolymerization is influenced by many factors as described above. Therefore, it is preferable to conduct preliminary experiments and determine prepolymerization conditions that give a suitable prepolymer in advance. In general, prepolymerization can be completed in a shorter time as the amount of the photoinitiator is larger, the intensity of the light source is larger, and the shape of the polymer is thinner. In addition, when superposition | polymerization is performed using superposition | polymerization sclerosis | hardenability of the same composition, the same type | mold, and the same light source, the said shrinkage | contraction rate is determined by the irradiation time of the active energy ray light to irradiate. In such a case, the relationship between the irradiation time and the shrinkage ratio of the prepolymer may be examined in advance for each polymerization system.
[0053]
The thermal polymerization performed subsequent to the prepolymerization is performed by heating the prepolymer. What is necessary is just to determine the heating conditions at that time suitably according to the kind etc. of thermal polymerization initiator to be used. In the case of cast polymerization as described above, after preliminary polymerization, the mold can be heated as it is at 60 ° C. to 140 ° C. for 10 minutes to 120 minutes using an air oven or a hot water bath. At this time, the temperature may be increased in multiple stages.
[0054]
The spectacle lens thus obtained can be subjected to the following processing according to its application. That is, dyeing using disperse dyes, silane coupling agents, hard coating agents mainly composed of sol components such as silicon, zirconium, antimony, aluminum, tin, tungsten, and SiO 2 TiO 2 , ZrO 2 It is also possible to perform processing and secondary treatment such as antireflection treatment and antistatic treatment by vapor deposition of a thin film of metal oxide or the like and application of a thin film of organic polymer.
[0055]
【Example】
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
[0056]
Abbreviations of reagents used are shown below.
[0057]
[Monomer A]
BPE-2: 2,2-bis (4-methacryloyloxyethoxyphenyl) propane and 2- (4-methacryloyloxyethoxyphenyl) -2- (4-methacryloylethoxyethoxyphenyl) propane 4: 1 (weight ratio) mixture
[Monomer B]
IBM: Isobornyl methacrylate
IBA: Isobornyl acrylate
[Monomer C]
3PM: Tripropylene glycol dimethacrylate
7PM: In the general formula (3), R Four Is a mixture in which the total of c + d is 5-9, and the average of c + d is 7
11PA: In the general formula (3), R Four Is a mixture of hydrogen atoms, the sum of c + d being 9 to 13, and the average of c + d being 11
[Monomer D]
BPE-10: a mixture of 2,2-bis (4-methacryloyloxypoly (ethoxy) phenyl) propane with an ethylene oxide chain repeating unit average of 10
GMA: Glycidyl methacrylate
HEMA: 2-hydroxyethyl methacrylate
7G: a mixture of polyethylene glycol dimethacrylate having an ethylene oxide chain repeating unit average of 7
[Reference monomer]
CR-39: Diethylene glycol bisallyl carbonate
(Photopolymerization initiator)
BAPO1: bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide
BAPO2: Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
TPO: 2,4,6-trimethylbenzoyldiphenylphosphine oxide [thermal polymerization initiator]
TI1: t-butyl peroxy-2-ethyl hexanate {Perbutyl IB (trade name: manufactured by NOF Corporation)}
TI2: 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanate {Perocta O (trade name: manufactured by NOF Corporation)}
TI3: t-butyl peroxyneodecanoate {perbutyl ND (trade name:
Made in Japan)
TI4: Diisopropyl peroxydicarbonate {Paroyl IPP (trade name: manufactured by NOF Corporation)}
Example 1
BPO-2 (70 parts by weight), IBM (10 parts by weight), 7PG (20 parts by weight), BAPO1 (0.02 parts by weight) as a photopolymerization initiator, and TI1 (0.5 parts by weight) as a thermal polymerization initiator Part) was added and mixed well, and then degassed under reduced pressure. Using this liquid, two glass molds with an outer diameter of 80 mm, a gasket made of an ethylene-vinyl acetate copolymer, a flat plate with a center thickness of 2.0 mm, and glasses with an outer diameter of 80 mm and curvature radii of 210 mm and 75 mm The mold is poured into a mold that is combined so that a concave lens with a center thickness of 1.5 mm can be molded using a gasket made of an ethylene-vinyl acetate copolymer, and a 1.5 kW metal halide lamp (with a heat ray cut filter) is used. The active energy ray was irradiated from both sides for 1 minute from a distance of 25 cm, photopolymerization was performed, and preliminary polymerization was performed. At this time, the shrinkage after the prepolymerization was 40% of the shrinkage of the final cured product. Further, the ultraviolet intensity of the mold surface is 15 mW / cm at a wavelength of 365 nm. 2 Met. Then, when it was heated in an air oven at 110 ° C. for 1 hour, it was completely cured. After releasing the cured plastic lens, it was annealed at 110 ° C. for 2 hours, and evaluated for refractive index, specific gravity, optical distortion, surface accuracy, impact resistance, heat resistance, and dyeability.
[0058]
Refractive index: Measured at 20 ° C. using an Abbe refractometer manufactured by Atago Co., Ltd.
[0059]
Optical strain: Observation was performed by an orthogonal Nicol method in which the polarization planes of two polarizing plates were orthogonal to each other, and polymerization strain was evaluated. The criteria for evaluation are as follows.
[0060]
(○) No distortion
(×) Distorted
Surface accuracy: The concave surface of the lens was visually observed to evaluate the surface accuracy. The criteria for evaluation are as follows.
[0061]
(○) Not curved
(△) Slightly curved
(×) Curved
Impact resistance: Steel balls of 16g, 32g, 48g, 64g, 80g, 96g, 112g, 131g, 151g from a height of 127cm naturally fall on each of 5-10 test plates of 2mm thickness and 65mm diameter. The average weight of the heaviest steel balls that did not break the test plate was evaluated.
[0062]
Heat resistance: After leaving in an air oven at 120 ° C. for 3 hours, the lens was taken out and allowed to cool to room temperature, and then surface distortion was observed with the naked eye. The criteria for evaluation are as follows.
[0063]
(○) Good
(△) Slightly distorted
(×) Distorted
Dyeing property: Using a liquid in which BPI black was dispersed in water, the dyeing was performed at 90 ° C. for 3 minutes and visually evaluated. The criteria for evaluation are as follows.
[0064]
(◎) It dyes very well
(○) Dyed well
(×) Hard to dye
These evaluation results are shown in Table 1.
[0065]
[Table 1]
Figure 0003681534
[0066]
Example 2
Using the polymerization curable composition shown in Table 1, molding was performed in the same manner as in Example 1. In each case, a sufficiently cured plastic lens was obtained. Each plastic lens was released from the mold, annealed in the same manner as in Example 1, and evaluated. Table 1 shows the results.
[0067]
Example 3
Using the polymerization curable composition shown in Table 1, molding was carried out in the same manner as in Example 1 except that the irradiation time was changed to 3 minutes. At this time, the shrinkage after the prepolymerization was 80% of the shrinkage of the final cured product. Then, after releasing each plastic lens, it annealed similarly to Example 1 and evaluated. The results are shown in Table 1.
[0068]
Examples 4-6
Using the polymerization curable composition shown in Table 1, molding was performed in the same manner as in Example 1. In each case, a sufficiently cured plastic lens was obtained. After releasing each plastic lens, it was annealed in the same manner as in Example 1 and evaluated. Table 1 shows the results.
[0069]
Comparative Example 1
IPP (3 parts by weight) was added to diethylene glycol bisallyl carbonate (CR-39) (100 parts by weight), mixed well, and then degassed under reduced pressure. Using this liquid, two glass molds with an outer diameter of 80 mm, a gasket made of an ethylene-vinyl acetate copolymer, a flat plate with a center thickness of 2.0 mm, and glass with radius of curvature of 210 mm and 75 mm with an outer diameter of 80 mm. The mold was poured into a mold that was combined so that a concave lens having a center thickness of 1.5 mm could be molded using a gasket made of an ethylene-vinyl acetate copolymer. Thereafter, thermal polymerization was performed at 45 ° C. for 8 hours, 60 ° C. for 3 hours, 80 ° C. for 3 hours, and 95 ° C. for 4 hours. After mold release, annealing was performed in the same manner as in Example 1 for evaluation. The results are shown in Table 2.
[0070]
[Table 2]
Figure 0003681534
[0071]
Comparative Examples 2-9
Using the polymerizable composition shown in Table 2, molding was performed in the same manner as in Example 1. After releasing each plastic lens, it was annealed in the same manner as in Example 1 for evaluation. The results are shown in Table 2.
[0072]
From the above results, a polymerizable composition comprising monomers A, B, C, a photopolymerization initiator and a thermal polymerization initiator is prepolymerized by irradiating active energy rays, and then subjected to thermal polymerization, thereby having a high refractive index. It can be seen that a lens having a low specific gravity and good impact resistance and surface accuracy can be molded in a short time. Further, in Comparative Examples 2 to 4, when the polymerization initiator was outside the range of claim 1, only lenses having poor optical distortion and surface accuracy were obtained. Moreover, in Comparative Examples 5-8, when the addition amount of monomer A, B, C is outside the range of Claim 1, it turns out that surface accuracy, impact resistance, heat resistance, and dyeing | staining property are inferior. Furthermore, in Comparative Example 9, it is understood that specific gravity and heat resistance are inferior when polyethylene glycol dimethacrylate having the same degree of repeating units is used instead of polypropylene glycol dimethacrylate.
[0073]
Therefore, the present invention is effective as a composition for optical lenses and a production method.
[0074]
【The invention's effect】
Polymeric curable composition for optical lens of the present invention A polymer obtained by polymerizing the present invention has a high refractive index, a low specific gravity, excellent impact resistance, surface accuracy, transparency and dyeability, and is excellent as a spectacle lens. Has physical properties.

Claims (3)

下記一般式(1)
Figure 0003681534
(式中、R1及びR2はそれぞれ独立に水素原子またはメチル基であり、a及びbはそれぞれ独立に1〜2の整数であり、a+bは2〜3である。)
で示される2官能(メタ)アクリレート系重合性単量体100重量部に対し、下記一般式(2)
Figure 0003681534
(式中、R3は水素原子またはメチル基である。)
で示される単官能(メタ)アクリレート系重合性単量体を5〜70重量部、及び下記一般式(3)
Figure 0003681534
(式中、R4は水素原子またはメチル基であり、c及びdはそれぞれ独立に1〜12の整数であり、c+dは3〜15である。)
で示されるプロピレングリコール系ジ(メタ)アクリレート重合性単量体10〜100重量部の割合で含んでなる重合性単量体100重量部、光重合開始剤0.005〜1重量部、並びに熱重合開始剤0.01〜5重量部を含んでなることを特徴とする光学レンズ用重合硬化性組成物。
The following general formula (1)
Figure 0003681534
(In the formula, R 1 and R 2 are each independently a hydrogen atom or a methyl group, a and b are each independently an integer of 1 to 2, and a + b is 2 to 3).
The following general formula (2) with respect to 100 parts by weight of the bifunctional (meth) acrylate polymerizable monomer represented by
Figure 0003681534
(In the formula, R 3 is a hydrogen atom or a methyl group.)
5 to 70 parts by weight of a monofunctional (meth) acrylate-based polymerizable monomer represented by the following general formula (3)
Figure 0003681534
(In the formula, R 4 is a hydrogen atom or a methyl group, c and d are each independently an integer of 1 to 12, and c + d is 3 to 15.)
100 parts by weight of a polymerizable monomer comprising 10 to 100 parts by weight of a propylene glycol-based di (meth) acrylate polymerizable monomer represented by the formula, 0.005 to 1 part by weight of a photopolymerization initiator, and heat A polymerization curable composition for optical lenses, comprising 0.01 to 5 parts by weight of a polymerization initiator.
光重合開始剤がアシルフォスフィンオキシド系又はジアシルフォスフィンオキシド系の光重合開始剤であり、熱重合開始剤がその分解温度が70〜90℃である熱重合開始剤である請求項1記載の光学レンズ用重合硬化性組成物。The photopolymerization initiator is an acylphosphine oxide-based or diacylphosphine oxide-based photopolymerization initiator, and the thermal polymerization initiator is a thermal polymerization initiator having a decomposition temperature of 70 to 90 ° C. Polymerization curable composition for optical lenses. 請求項1又は請求項2の光学レンズ用重合硬化性組成物に活性エネルギー線を照射して予備重合を行った後、次いで得られた予備重合体を加熱して重合硬化させることを特徴とする光学レンズ用重合硬化体の製造方法。The prepolymerization is performed by irradiating the active curable composition for an optical lens according to claim 1 or 2 with active energy rays, and then the prepolymer obtained is heated and polymerized and cured. A method for producing a polymerized cured product for an optical lens.
JP06301898A 1998-03-13 1998-03-13 Polymerization curable composition for optical lens Expired - Fee Related JP3681534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06301898A JP3681534B2 (en) 1998-03-13 1998-03-13 Polymerization curable composition for optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06301898A JP3681534B2 (en) 1998-03-13 1998-03-13 Polymerization curable composition for optical lens

Publications (2)

Publication Number Publication Date
JPH11258552A JPH11258552A (en) 1999-09-24
JP3681534B2 true JP3681534B2 (en) 2005-08-10

Family

ID=13217176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06301898A Expired - Fee Related JP3681534B2 (en) 1998-03-13 1998-03-13 Polymerization curable composition for optical lens

Country Status (1)

Country Link
JP (1) JP3681534B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200032B2 (en) * 2003-03-20 2008-12-24 株式会社トクヤマ Polymerization curable composition
JP2009019157A (en) * 2007-07-13 2009-01-29 Tokuyama Corp Photochromic curable composition
JP5100545B2 (en) * 2008-07-14 2012-12-19 株式会社トクヤマ Polymerization curable composition
KR101545377B1 (en) * 2012-07-30 2015-08-18 (주)엘지하우시스 Curable resin composition, curing method for the same, and cured sheet

Also Published As

Publication number Publication date
JPH11258552A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
EP1567567B1 (en) Low polydispersity poly-hema compositions
JPH0820615A (en) Polymerizable composition
US20070149672A1 (en) Polymerizable materials
JP3517242B2 (en) Materials used in the production of polymer articles
US20040248038A1 (en) Curable composition excellent in optical characteristics
JP3681534B2 (en) Polymerization curable composition for optical lens
JP3547307B2 (en) Polymerizable curable composition for optical lens
US6794474B2 (en) Polymerisable compositions for making transparent polymer substrates, resulting transparent polymer substrates and uses thereof in optics
JP3762462B2 (en) Method for producing transparent cured body
JP3529222B2 (en) Soft ophthalmic lens and manufacturing method thereof
JP2001124903A (en) Photo-curable plastic lens
US20050070661A1 (en) Methods of preparing ophthalmic devices
JPH08258171A (en) Manufacture of plastic lens
US7049381B2 (en) Polymerizable compositions for making transparent polymer substrates, resulting polymer substrates, and uses thereof in optics
JP2760624B2 (en) Composition for plastic lens
JPH08258172A (en) Manufacture of plastic lens
JPH01209401A (en) Plastic lens
JPH05134101A (en) Composition for plastic lens and method for producing plastic lens
JP3739676B2 (en) Synthetic resin lens
JPH01190711A (en) Composition for plastic lens
JPH01309001A (en) Plastic lens material
JP2001124904A (en) Photo-curing plastic lens
JPH07109318A (en) Polymerizable composition
JPS63199210A (en) Production of plastic lens material
JPH01103616A (en) Plastic lens material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees