[go: up one dir, main page]

JP3680952B2 - Cast-in-place concrete pile - Google Patents

Cast-in-place concrete pile Download PDF

Info

Publication number
JP3680952B2
JP3680952B2 JP08333895A JP8333895A JP3680952B2 JP 3680952 B2 JP3680952 B2 JP 3680952B2 JP 08333895 A JP08333895 A JP 08333895A JP 8333895 A JP8333895 A JP 8333895A JP 3680952 B2 JP3680952 B2 JP 3680952B2
Authority
JP
Japan
Prior art keywords
tip
pile
cast
place concrete
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08333895A
Other languages
Japanese (ja)
Other versions
JPH08253929A (en
Inventor
弘明 長岡
雅弘 山崎
仁志 小椋
隆 岡本
雅敬 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
JFE Steel Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Nippon Steel Corp filed Critical JFE Steel Corp
Priority to JP08333895A priority Critical patent/JP3680952B2/en
Publication of JPH08253929A publication Critical patent/JPH08253929A/en
Application granted granted Critical
Publication of JP3680952B2 publication Critical patent/JP3680952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Description

【0001】
【産業上の利用分野】
この発明は場所打ちコンクリート杭に関する。さらに詳細には、先端形状を改善することにより高い鉛直支持力を得ることができる場所打ちコンクリート杭に関する。
【0002】
【従来の技術】
建築構造物の基礎杭として、施工時に騒音、振動が少ない場所打ちコンクリート杭が知られている。特に大型建築構造物に用いられる基礎杭としては、拡底場所打ちコンクリート杭が多用されている。杭先端の拡底はリバースサーキュレーション工法、又はアースドリル工法により行われる。
【0003】
拡底杭を含む場所打ちコンクリート杭は、従来、先端形状が平坦面として施工されている。あるいは、掘削機の掘削翼の形態から、先端形状が120度を越える円錐形(円錐面)に施工されることもある。
【0004】
ところで、拡底場所打ちコンクリート杭の場合、その先端部杭体の破壊機構に関して、建築基礎構造設計基準(日本建築学会)では、図8に示すように破線の鉛直円筒面を杭底部内に想定し、AB及びCD部に作用する地盤反力に対し、せん断耐力が十分であることの検討を必要としている。他には、拡底部の破壊機構に言及した研究等は見当たらない。
【0005】
この発明の発明者らは、有限要素モデルを用いた数値実験により、従来形状の拡底場所打ちコンクリート杭の先端部杭体の破壊機構の解明を試みた。その結果、杭先端部が円周方向及び半径方向の引張り応力により破壊し、しかも破壊は杭体に作用する鉛直荷重が地盤の極限荷重に達する前に発生することを見出した。これは、従来考慮されていなかった破壊機構である。
【0006】
杭先端の引張り応力による破壊に対する防止策として、引張り鉄筋を配置することが考えられる。しかし、地下深部であること、拡底先端部補強用の鉄筋籠を杭軸部を通して先端に配置するのは困難なこと等施工上問題がある。
【0007】
そこで、この発明の発明者らは、有限要素法による解析をさらに鋭意進めたところ、杭先端形状を所定の形状にすることにより、その破壊を阻止できることを見出した。
【0008】
【発明が解決しようとする課題】
この発明は上記のような知見に基づいてなされたものであって、次の目的を達成するものである。
【0009】
この発明の目的は、鉛直支持力の増大を図り、先端部杭体の破壊を防止した場所打ちコンクリート杭を提供することにある。
【0010】
【課題を解決するための手段】
この発明は上記課題を達成するために、次のような手段を採る。
【0011】
すなわちこの発明は、先端形状が円錐形であって、その頂角90度以上120度以下であることを特徴とする場所打ちコンクリート杭にある。
【0012】
【0013】
【0014】
さらに、この発明は先端部が拡底されていることを特徴とする前記形状の場所打ちコンクリート杭にある。
【0015】
【作用】
有限要素解析結果によれば、前記のような先端形状を持つ場所打ちコンクリート杭は、杭先端部に破壊域の発生が見られなかった。これは杭先端部に圧縮応力として作用する地盤反力の直成分が杭先端部内を圧縮応力状態に保ち、引張り応力が発生しないためと認められる。したがって、従来の場所打ちコンクリート杭で起こり得る、杭先端部の引張り応力による破壊現象を防止することが可能となる。
【0016】
【実施例】
この発明の実施例を図面を参照しながら以下に説明する。
【0017】
図1はこの発明の実施例を示す断面図である。この実施例及び以下の参考例は拡底場所打ちコンクリート杭1を示し、軸部2の先端に拡底部3が形成されている。
【0018】
実施例において、拡底部3の先端部4の形状は円錐形となっている。そして、先端部4はその頂角θが120度以下(この実施例では90度)になるように形成されている。頂角θがこの範囲にあることが望ましいことは後述する数値実験で確認されている。
【0019】
図2は参考例を示す断面図である。この参考例は先端部4の形状を円錐台形としたものである。この参考例も頂角θを120度以下にするのが望ましい。
【0020】
図3は別の参考例を示す断面図である。この参考例は先端部4の形状を略半球状としたものである。
【0021】
<数値解析結果>
上記各形状の拡底場所打ちコンクリート杭の変形挙動を有限要素モデルを用いて解析した結果を図4、図5及び図6に示す。図4は拡底部の先端形状を円錐形としたものであり、(a)、(b)の頂角θはそれぞれ90度及び120度である。図5、図6は拡底部の先端形状をそれぞれ円錐台形及び半球状としたものである。解析では杭径1500mm、拡底部径2700mm、コンクリートの設計基準強度320kg/cm2 としている。
【0022】
図4に示す凡例において、αc はコンクリートの耐力比であり、杭体内部の八面体せん断応力に対する破壊基準の比として定義され、αc =1が破壊の状態である。なお、この凡例は図5、図6及び図7に関しても適用される。荷重はいずれも4500tonの場合である。
【0023】
図4、図5及び図6に示すいずれの場合も、軸部周囲においてαc =1の破壊域が見られるが、拡底部においては破壊域は見られず、耐力比は小さい値となっている。
【0024】
<比較例>
図7は従来の拡底場所打ちコンクリート杭について、この発明のものと同一条件で数値解析を行った結果を示している。(a)は拡底部の先端形状を平坦面(θ=180度)としたもの、(b)は拡底部の先端形状を円錐形とし、その頂角θを160度としたものである。
【0025】
拡底部の先端形状を平坦面とした場合、杭体の軸部周囲のみならず、先端部にも破壊域が現れているのが認められる。また、(b)のように先端形状を円錐形とした場合であっても、その頂角が120度を越えると、先端部に耐力比の高い領域が現れるのが認められる。このように、杭先端部に破壊域ないし耐力比の大きい領域が発生するのは、この杭先端部に円周方向及び半径方向の引張り応力が生じているためであるということが、数値実験の結果分かった。
【0026】
これに対し、図1、図2及び図3に示した形状のものでは、杭先端部に引張り応力は生じない。これは圧縮反力として杭先端部に作用する地盤反力の直成分が、杭先端部内を圧縮応力状態に保つことにほかならない。このような形状にすることにより、地盤支持力に与える影響がほとんどないことも解析の結果、確認されている。
【0027】
なお、この発明による杭先端形状に対応した掘削孔は、従来のリバースサーキュレーション掘削機又はアースドリル掘削機等の掘削翼の形状を変えることにより、容易に成形することができる。
【0028】
[その他の実施例]
上記実施例ではこの発明を拡底場所打ちコンクリート杭に適用した場合について説明したが、この発明は拡底されない場所打ちコンクリート杭にも適用できることはいうまでもない。
【0029】
【発明の効果】
以上のようにこの発明によれば、従来の場所打ちコンクリート杭の先端部に発生し得る引張り応力による破壊を防止することが可能となる。これにより、地盤の破壊後も杭体が健全であるため、杭体の構造耐力が格段に向上し、従来よりも高い鉛直支持力を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施例を示す断面図である。
【図2】 参考例を示す断面図である。
【図3】 別の参考例を示す断面図である。
【図4】 この発明の実施例に対応する場所打ちコンクリート杭の変形挙動の数値解析結果を示す図である。
【図5】 図2に示した参考例に対応する場所打ちコンクリート杭の変形挙動の数値解析結果を示す図である。
【図6】 図3に示した参考例に対応する場所打ちコンクリート杭の変形挙動の数値解析結果を示す図である。
【図7】 従来の場所打ちコンクリート杭の変形挙動の数値解析結果を示す図である。
【図8】 従来要求されている構造基準を説明するための図である。
【符号の説明】
1…拡底場所打ちコンクリート杭
2…軸部
3…拡底部
4…先端部
[0001]
[Industrial application fields]
The present invention relates to a cast-in-place concrete pile. More specifically, the present invention relates to a cast-in-place concrete pile capable of obtaining a high vertical support force by improving the tip shape.
[0002]
[Prior art]
As a foundation pile of a building structure, a cast-in-place concrete pile with less noise and vibration during construction is known. In particular, as a foundation pile used for a large building structure, a bottom-span cast-in-place concrete pile is frequently used. The bottom of the pile tip is expanded by a reverse circulation method or an earth drill method.
[0003]
Conventionally, cast-in-place concrete piles including expanded piles have been constructed with a flat tip shape. Alternatively, the shape of the excavator excavator blade may be applied to a conical shape (conical surface) having a tip shape exceeding 120 degrees.
[0004]
By the way, in the case of bottom-span cast-in-place concrete piles, regarding the failure mechanism of the tip pile body, the building foundation structure design standard (Architectural Institute of Japan) assumes a broken vertical cylindrical surface in the pile bottom as shown in FIG. Therefore, it is necessary to consider that the shear strength is sufficient for the ground reaction force acting on the AB and CD portions. There are no other studies that mention the failure mechanism of the bottom expansion.
[0005]
The inventors of the present invention have attempted to elucidate the failure mechanism of the tip pile body of a conventional shape bottomed cast-in-place concrete pile by a numerical experiment using a finite element model. As a result, it was found that the tip of the pile was destroyed by tensile stress in the circumferential direction and the radial direction, and that the failure occurred before the vertical load acting on the pile body reached the ultimate load of the ground. This is a destruction mechanism that has not been considered in the past.
[0006]
As a preventive measure against the failure due to the tensile stress at the tip of the pile, it is conceivable to arrange a tensile rebar. However, there is a problem in construction such as being deep underground and it is difficult to arrange a reinforcing bar for reinforcing the bottom expanded tip at the tip through the pile shaft.
[0007]
Therefore, the inventors of the present invention have further intensively analyzed by the finite element method, and found that the breakage can be prevented by making the pile tip shape a predetermined shape.
[0008]
[Problems to be solved by the invention]
The present invention has been made on the basis of the knowledge as described above, and achieves the following object.
[0009]
An object of the present invention is to provide a cast-in-place concrete pile in which the vertical bearing force is increased and the tip pile body is prevented from being destroyed.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following means.
[0011]
That is, the present invention resides in a cast-in-place concrete pile characterized in that the tip shape is conical and the apex angle is not less than 90 degrees and not more than 120 degrees.
[0012]
[0013]
[0014]
Furthermore, the present invention resides in a cast-in-place concrete pile having the shape described above, wherein the tip portion is widened.
[0015]
[Action]
According to the finite element analysis results, in the cast-in-place concrete pile having the tip shape as described above, no fracture area was observed at the tip of the pile. This is because the direct component of the ground reaction force acting as a compressive stress on the pile tip keeps the inside of the pile tip in a compressive stress state and no tensile stress is generated. Therefore, it is possible to prevent a fracture phenomenon due to tensile stress at the tip of the pile, which can occur in a conventional cast-in-place concrete pile.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
FIG. 1 is a sectional view showing an embodiment of the present invention. This embodiment and the following reference example show a bottom-up cast-in-place concrete pile 1, and a bottom-up part 3 is formed at the tip of a shaft part 2.
[0018]
In the embodiment, the shape of the tip portion 4 of the widened portion 3 is a conical shape. The tip 4 is formed so that the apex angle θ is 120 degrees or less (90 degrees in this embodiment). It has been confirmed by numerical experiments described later that the apex angle θ is preferably in this range.
[0019]
FIG. 2 is a cross-sectional view showing a reference example. In this reference example, the shape of the tip 4 is a truncated cone. Also in this reference example, it is desirable that the apex angle θ is 120 degrees or less.
[0020]
FIG. 3 is a cross-sectional view showing another reference example. In this reference example, the shape of the tip 4 is substantially hemispherical.
[0021]
<Results of numerical analysis>
The results of analyzing the deformation behavior of the above-mentioned bottom-shaped cast-in-place concrete piles using a finite element model are shown in FIGS. FIG. 4 shows a conical shape at the tip of the widened portion, and the apex angles θ of (a) and (b) are 90 degrees and 120 degrees, respectively. 5 and 6 show the tip shape of the widened portion as a truncated cone and a hemisphere, respectively. In the analysis, the pile diameter is 1500 mm, the expanded bottom diameter is 2700 mm, and the concrete design standard strength is 320 kg / cm 2 .
[0022]
In the legend shown in FIG. 4, α c is the yield strength ratio of concrete, defined as the ratio of the fracture criterion to the octahedral shear stress inside the pile, and α c = 1 is the state of failure. This legend also applies to FIGS. 5, 6 and 7. All of the loads are for 4500 tons.
[0023]
In any of the cases shown in FIGS. 4, 5, and 6, a fracture zone of α c = 1 is seen around the shaft portion, but no fracture zone is seen in the widened portion, and the yield strength ratio is a small value. Yes.
[0024]
<Comparative example>
FIG. 7 shows the result of a numerical analysis performed on the conventional bottom-in-place cast-in-place concrete pile under the same conditions as those of the present invention. (A) is a shape in which the tip shape of the widened portion is a flat surface (θ = 180 degrees), and (b) is a shape in which the tip shape of the widened portion is a conical shape and the apex angle θ is 160 degrees.
[0025]
When the tip shape of the widened part is a flat surface, it is recognized that a fracture area appears not only around the shaft part of the pile body but also at the tip part. Even when the tip shape is conical as shown in (b), when the apex angle exceeds 120 degrees, it is recognized that a region having a high yield ratio appears at the tip portion. In this way, the reason why the fracture tip or the region with a high yield ratio occurs at the tip of the pile is that circumferential and radial tensile stress is generated at the tip of the pile. I understood the result.
[0026]
On the other hand, in the shape shown in FIG. 1, FIG. 2, and FIG. 3, no tensile stress is generated at the tip of the pile. This is nothing but the direct component of the ground reaction force acting on the pile tip as a compression reaction force to keep the inside of the pile tip in a compressive stress state. As a result of the analysis, it has been confirmed that there is almost no influence on the ground supporting force by adopting such a shape.
[0027]
The excavation hole corresponding to the tip shape of the pile according to the present invention can be easily formed by changing the shape of the excavation blade of a conventional reverse circulation excavator or earth drill excavator.
[0028]
[Other Examples]
In the above-described embodiment, the case where the present invention is applied to a cast-in-place concrete pile is explained. However, it is needless to say that the present invention can also be applied to a cast-in-place concrete pile that is not expanded.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent breakage due to tensile stress that may occur at the tip of a conventional cast-in-place concrete pile. Thereby, since the pile body is healthy even after the ground is destroyed, the structural strength of the pile body is remarkably improved, and a higher vertical support force than the conventional one can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a reference example .
FIG. 3 is a cross-sectional view showing another reference example .
FIG. 4 is a diagram showing a numerical analysis result of deformation behavior of a cast-in-place concrete pile corresponding to the embodiment of the present invention.
FIG. 5 is a diagram showing a numerical analysis result of deformation behavior of a cast-in-place concrete pile corresponding to the reference example shown in FIG . 2 ;
6 is a diagram showing a numerical analysis result of deformation behavior of a cast-in-place concrete pile corresponding to the reference example shown in FIG . 3 ;
FIG. 7 is a diagram showing a numerical analysis result of deformation behavior of a conventional cast-in-place concrete pile.
FIG. 8 is a diagram for explaining a structural standard that has been conventionally required.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bottom expansion cast-in-place concrete pile 2 ... Shaft part 3 ... Bottom expansion part 4 ... Tip part

Claims (2)

先端形状が円錐形であって、その頂角90度以上120度以下であることを特徴とする場所打ちコンクリート杭。A cast-in-place concrete pile characterized in that the tip shape is conical and the apex angle is not less than 90 degrees and not more than 120 degrees. 先端部が拡底されていることを特徴とする請求項1記載の場所打ちコンクリート杭。The cast-in-place concrete pile according to claim 1, wherein the tip portion is widened.
JP08333895A 1995-03-15 1995-03-15 Cast-in-place concrete pile Expired - Fee Related JP3680952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08333895A JP3680952B2 (en) 1995-03-15 1995-03-15 Cast-in-place concrete pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08333895A JP3680952B2 (en) 1995-03-15 1995-03-15 Cast-in-place concrete pile

Publications (2)

Publication Number Publication Date
JPH08253929A JPH08253929A (en) 1996-10-01
JP3680952B2 true JP3680952B2 (en) 2005-08-10

Family

ID=13799657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08333895A Expired - Fee Related JP3680952B2 (en) 1995-03-15 1995-03-15 Cast-in-place concrete pile

Country Status (1)

Country Link
JP (1) JP3680952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892816B2 (en) * 2017-12-06 2021-06-23 大成建設株式会社 Underground wall pile structure with expanded bottom

Also Published As

Publication number Publication date
JPH08253929A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
KR101625193B1 (en) Driven concrete pile with open lower part and construction method thereof
JP3680952B2 (en) Cast-in-place concrete pile
JP4389093B2 (en) Ready-made concrete piles with reinforcing bars at the lower end, reinforcing bar cages, foundation pile structures, construction methods for foundation piles
JP3867946B2 (en) Restrained cast-in-place concrete pile
KR101791211B1 (en) Helix steel pipe pile construction method for reinforcement of buckling
JP3389162B2 (en) Pile head structure of steel pipe pile
JP2000120079A (en) Base isolation structure of pile
JP2001348867A (en) Screwed type steel pipe and its work execution method
JP3680953B2 (en) Root structure of ready-made piles by embedded pile method
JP2011162964A (en) Structure and construction method for reinforcing ground
JP2631864B2 (en) Construction method of flat tunnel
JP2006257710A (en) Joint structure between cast-in-place concrete pile and foundation
JP4589849B2 (en) Liquefaction prevention method for existing building foundations
KR102503844B1 (en) Upper reinforcement support to increase horizontal force of foundation pile
JP2004162259A (en) Structural foundation support structure
JP2857803B2 (en) Piles and continuous underground walls with large tip bearing capacity
JP4129663B2 (en) Building using ground improvement body
KR200398429Y1 (en) Steel pipe pile
JP2002097650A (en) Joining structure of pile head, and aseismatic pile
KR100593182B1 (en) Reinforcement structure of foundation pile for building
KR20070101014A (en) Anchor of small nail structure
JPH1181341A (en) Earthquake resistant pile construction method
JP3918215B2 (en) Foundation pile using rubber chip concrete
JP5249005B2 (en) Seismic reinforcement anchor and seismic reinforcement structure using the same
JP3882133B2 (en) Construction method of soil cement column column with core material inserted

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees