[go: up one dir, main page]

JP3680628B2 - Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking - Google Patents

Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking Download PDF

Info

Publication number
JP3680628B2
JP3680628B2 JP12306799A JP12306799A JP3680628B2 JP 3680628 B2 JP3680628 B2 JP 3680628B2 JP 12306799 A JP12306799 A JP 12306799A JP 12306799 A JP12306799 A JP 12306799A JP 3680628 B2 JP3680628 B2 JP 3680628B2
Authority
JP
Japan
Prior art keywords
temperature
mpa
steel pipe
strength
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12306799A
Other languages
Japanese (ja)
Other versions
JP2000313919A (en
Inventor
俊治 坂本
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12306799A priority Critical patent/JP3680628B2/en
Publication of JP2000313919A publication Critical patent/JP2000313919A/en
Application granted granted Critical
Publication of JP3680628B2 publication Critical patent/JP3680628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油ガス井において使用されるケーシング、チュービングやドリルパイプといっ硫化物環境に曝されて使用される高強度油井用鋼管の製造方法に関する。特に硫化物割れ(Sulfide Stress Cracking,以後SSCと略す)に対する抵抗性に優れた758MPa以上の降伏強度YSを有する高強度油井用鋼管の製造方法に関する。
【0002】
【従来の技術】
硫化水素を含有する油ガス井において使用する鋼管にはSSC抵抗性が必要とされる。SSCの本質は水素脆化であり、鋼管の強度が高まるほど起き易くなる。これを防止しながら高強度化するには、合金元素バランスと金属組織を最適化することが不可欠であり、例えば特公平6−104849号公報に見られるような技術が開示され、降伏強度として827MPa程度までの高強度材が得られてきている。しかしながら、このような技術を実際に活用するに当たっては、熱間加工を施した後に、再加熱を行って焼入焼戻処理を施すことが必須であるが、かかる再加熱熱処理は熱効率が悪く、省工程・省エネルギー化の技術動向に反する。
【0003】
この観点から熱処理を簡略化する技術も研究されてきており、例えば特開平5−271772号公報では、鋼成分やプロセス条件を最適化した上で仕上げ圧延後、直接焼入を行う技術が開示されている。しかしながら、直接焼入法をとると、結晶粒が粗くなるため耐SSC性は低下するという問題がある。このため、降伏強度が758MPaを超えるような高強度鋼管を直接焼入法によって製造するのは困難であった。
【0004】
【発明が解決しようとする課題】
本発明はこのような事情から、降伏強度758MPa以上の高強度を有し、かつ十分な耐SSC性を発揮し得る鋼管をエネルギー効率に優れた直接焼入法を活用して製造するための最適方法を得ることを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、前記課題の解決に向けて研究を重ねた。その結果、本発明を構成する上で必要かつ十分な知見を得るに至った。その内容を以下に述べる。高強度鋼管のSSCは粒界から生じる。このような破壊を抑制するには、先ず金属組織として均一なものでなければならない。758MPa以上の高強度と高度な耐SSC性を得ようとすれば、金属組織としては焼戻マルテンサイトを活用する以外にないが、この組織は可及的に均一であることが必要である。もし、金属組織に異なる特性を有する異相が含まれれば、この境界或いは異相自体が破壊起点となり、十分な耐SSC性が得られなくなる。この組織の均一性は焼入の状態でほぼ決定される。すなわち、異相が出現するかどうかは、鋼管全体において十分かつ均一な焼入マルテンサイト組織が得られるかどうかに依存する。完全マルテンサイト組織が望ましいことは言うまでもないが、厚肉材の場合や、後述の焼入性に寄与できる元素の含有量制限などを考慮して、本発明が目的とする758MPa以上の高強度レベルにおいて必須となる条件を検討した結果を図1に示す。
【0006】
図1は、25mm肉厚の継目無鋼管を、熱間圧延終了後のオーステナイト域温度から管内外面全体を水冷する直接焼入処理を行い、鋼管の肉厚中心部の硬さ表面部の硬さを測定し、両測定結果の比を以って焼入性を評価すると共に、肉厚中心部から採取した試験片を用いて耐SSC性を評価したものである。図1より、肉厚中心部の硬さが表面直下部の硬さとの比で95%以上であれば、758MPaを超える高強度であっても十分な耐SSC性が得られるとの知見を得た。
【0007】
異相を含まない均一金属組織を前提として、SSC特性を支配する強度と合金元素含有量の関係を検討した結果、図2が得られた。すなわち、SSC特性に影響を与えるMn,Pの含有量を工業的に達成可能な低レベルに制御した上で、Moの含有量と焼戻後の鋼管の降伏強度YSを指標としてプロットすると、極めて良く整理できる。すなわち、直接焼入を施したYS≧758MPaの高強度鋼管において十分な耐SSC性を確保するには、Mo含有量は0.82%以上が必要であり、なおかつ、降伏強度YSとの関係において記述される、α=Mo(質量%)−0.0218YS(MPa)が−18.1以上とする必要があることを知見した。
【0008】
しかしながら、前述の均一組織を得た上、なおかつ前述の有効元素Moの恩恵を受けた上でも、目標を達成できない場合があった。その原因を解析した結果、図3に示すように、Cr含有量の多寡が、本発明の目的とする高強度材において大きな影響を与えることを知見した。すなわち、焼入時の組織を均一とし、P,MnといったSSC特性劣化元素を十分に低レベルかつ一定とし、なおかつ有益なMo含有量をも一定とした上で、YSとCr含有量の関係を調べると、図3に示すように、Cr含有量として0.8%程度を境として、耐SSC性が大きく変化することが分かった。
【0009】
従来、Crは焼入性確保のために必要な元素として積極利用されてきたが、直接焼入法をとる限り、粒度が粗い分だけ再加熱焼入法より焼入性が改善されるため、再加熱焼入法の場合のように焼入性の点から積極的に活用する必要性はない。むしろCrは、炭化物析出元素として粒界強度を弱める結果、SSCに対して有害に作用するものと解釈され、その含有量を制限すべきである。
【0010】
さらに、直接焼入法をとると、再加熱焼入法に比べてオーステナイト粒が粗くなり、焼入性は向上するもののSSC感受性は高まる。このため、この粗粒化現象を極力抑制する配慮が必要となる。このためには、Nb炭化物のピニング効果を活用するのが最も有効な手段であるが、NbはCrと同様、炭化物形成能の強い元素であり、過剰に含有させると粗大炭化物を形成して粒界強度を弱めてしまう有害性をも併せ持つことを知見した。したがって、粗粒化抑制効果を炭化物粗大化という有害性で相殺しない範囲の含有量に留めてNbを含有させ、この効果を極大化するために必要なプロセス条件を解明した。
【0011】
本発明は、以上の知見に基づいて構成したものであり、その要旨は以下の通りである。すなわち、次の(1)又は(2)である。
)質量%で、C:0.10〜0.25%、Si≦0.5%、Mn≦0.5%、P≦0.015%、S≦0.0050%、Mo:0.82〜2.5%、Al:0.005〜0.1%、Ti:0.005〜0.1%でNの3.4倍以上、Nb:0.01〜0.1%、N≦0.01%及びB:0.0005〜0.0050%を含有し、残部鉄及び不純物からなる鋼を素材とし、該素材を1150℃以上に加熱した後、熱間穿孔連続圧延を行って中空素管とし、再加熱工程直前の素管温度を900℃以下まで降下させた後、900〜1050℃に再加熱を施し、Ar3点+50℃以上の温度で仕上げ加工を完了した後、直ちにAr3点以上の温度から急冷する焼入処理を行い、続いて660〜720℃の温度で焼き戻すことを特徴とする、MPaで表される降伏強度YSとMo量の関係が下記(1)式を満足する耐硫化物割れ特性に優れた758MPa以上の降伏強度YSを有する高強度油井用鋼管の製造方法。
α=Mo−0.0218YS≧−18.1・・・・・(1)式
)質量%で、C:0.10〜0.25%、Si≦0.5%、Mn≦0.5%、P≦0.015%、S≦0.0050%、Mo:0.82〜2.5%、Al:0.005〜0.1%、Ti:0.005〜0.1%でNの3.4倍以上、Nb:0.01〜0.1%、N≦0.01%及びB:0.0005〜0.0050%を含有し、更に、Cr≦0.8%、W≦0.5%、V:0.01〜0.1%、Zr:0.001〜0.010%、Ca:0.001〜0.01%、Mg:0.001〜0.01%、REM:0.001〜0.01%のうちの1種または2種以上を含有し、残部鉄及び不純物からなる鋼を素材とし、該素材を1150℃以上に加熱した後、熱間穿孔連続圧延を行って中空素管とし、再加熱工程直前の素管温度を900℃以下まで降下させた後、900〜1050℃に再加熱を施し、Ar3点+50℃以上の温度で仕上げ加工を完了した後、直ちにAr3点以上の温度から急冷する焼入処理を行い、続いて660〜720℃の温度で焼き戻すことを特徴とする、MPaで表される降伏強度YSとMo量の関係が下記(1)式を満足する耐硫化物割れ特性に優れた758MPa以上の降伏強度YSを有する高強度油井用鋼管の製造方法。
α=Mo−0.0218YS≧−18.1・・・・・(1)式
【0012】
【発明の実施の形態】
以下に本発明を詳細に説明する。まず本発明の合金成分限定理由を述べる。成分の含有量は質量%である。C:Cは目的の高強度と耐硫化物割れ性を同時に確保するために必須の元素である。これら強度と耐硫化物割れ性は焼入性に依存しており、0.10%未満の含有量では不完全焼入となるため強度は低下し、仮に焼戻条件を調節して所要強度を得たとしても十分な耐硫化物割れ性が得られない。一方、0.25%を超えて含有させても耐硫化物割れ性は飽和すると共に焼き割れの問題が生じる。このため、適正範囲を0.10〜0.25%とした。
【0013】
Si:Siは製鋼工程における脱酸剤が残存したものであるが、0.5%を超えて含有されると鋼が脆化し耐硫化物割れ性も劣化するため上限を0.5%とした。
【0014】
Mn:Mnは耐硫化物割れ性に有害な元素であり添加すべきでないが、焼入性を向上させる作用も有しており、焼入性を向上させるCやMoの含有量が少なく焼入能が不十分な場合には、0.5%を上限として含有させても良い。しかしながら、0.5%を超えて含有させると、完全焼入されても満足すべき耐硫化物割れ性は得られないので、0.5%を上限とした。
【0015】
P:Pは粒界に偏析して耐硫化物割れ性を劣化させる不純物元素であり、可及的低レベルに抑制すべきである。コストも加味した現状精錬技術で安定的に工業生産可能な許容レベルとして、0.015%を上限とした。
【0016】
S:Sも粒界に偏析して耐硫化物割れ性を劣化させる不純物元素である。本発明では、Sを固定するMnを含有させないのが基本であるため可及的低レベルに抑制すべきであるが、0.0050%以下の範囲では著しい耐SSC性の劣化は見られないことから、0.0050%を含有量の上限とした。
【0017】
Mo:Moは本発明における必須元素の1つで、耐SSC性に有害なPの粒界偏析を抑制する元素であると共に、焼戻軟化抵抗を高めるので高強度を得るには格好の元素である。図2で示すように、直接焼入法を前提としてYS≧758MPaの高強度領域で十分な耐SSC性を確保するには0.82%以上の含有が必要となる。しかしながら、多量に含有させてもその効果は飽和すると共に、強度調整自由度が狭縮化するため、2.5%を上限とする。
【0018】
Al:Alは製鋼工程で鋼を十分に脱酸するために必要であり、0.005%以上を含有させる。しかし多量に含有させるとアルミナ系介在物量が増えて、SSC感受性が高まる危険性があるため0.1%を上限とした。
【0019】
Ti:Tiは、後述のBの焼入性を十分に奏効させるために含有させる。すなわち、BNの析出を防止するために、予めNをTiNとして固定する必要があり、このために0.005%以上かつN含有量の3.4倍以上を含有させる。しかしながら、多量の含有は粗大なTiNの析出を助長してSSC感受性を高めるので、0.1%を上限とした。
【0020】
Nb:Nbは、その細粒化効果を通してPの粒界偏析を軽減するため耐SSC性改善に有効な元素であり、0.01%以上を含有させる。しかし、多量に含有させても細粒化効果は飽和し、むしろ炭化物粗大化による粒界強度低下によって耐SSC性が低下するため、上限を0.1%とした。
【0021】
N:NはBの焼入性を阻害する不純物元素であり、可及的低レベルに抑制すべきである。コストも加味した現状精錬技術で安定的に工業生産可能な許容レベルとして0.01%を上限とした。
【0022】
B:Bは著しく焼入性を改善する元素であり、本発明における焼入性確保に必須の元素である。0.0005%未満の含有では、十分な焼入性が確保できないため、これを下限含有量とした。また、0.0050%を超えて含有させても焼入性改善効果は飽和しており、むしろ炭硼化物の析出が顕著になって耐SSC性が劣化するため、上限含有量を0.0050%とした。
【0023】
α=Mo−0.0218YS:図3に示すように、降伏強度YS(MPa)およびMo含有量(質量%)の関数として算出されるαの値が−18.1以上になると、優れた耐SSC性が得られ、−18.1を下回ると個々の成分が前記条件を満たしても、満足すべき耐SSC性が得られない。このことから、前記成分条件に加えてα≧−18.1を本発明の必須要件とした。
【0024】
本発明では、上記元素に加えて、必要に応じて以下のうち1種または2種以上を選択的に含有させる。
Cr:Crは焼入性を高める元素として有用であるが、Moなどの他の元素で十分な焼入性を確保できる場合には含有させる必要はない。直接焼入法で758MPa以上の降伏強度を得ようとする場合には、0.8%を超える含有は耐SSC性を劣化させるので、その上限を0.8%とした(図3参照)。
【0025】
W:Wも焼入性を高め、焼戻軟化抵抗を高める作用があるが、0.01%未満ではその効果は十分でなく、0.5%を超えても効果は飽和することから、0.01〜0.5%を適正含有量の範囲とした。
【0026】
V:Vは焼戻軟化抵抗を高める作用があり、0.01%以上の含有で高強度化に有利であるが、多量に含有させると耐SSC性が劣化するため、0.1%を上限とした。
【0027】
Zr:ZrはPの粒界偏析を抑制する作用を奏する。そのためには0.001%以上の含有が必要であるが、高価な元素であると共に多量に含有させると酸化物が増えて、SSC感受性が高まる危険性があるため、0.010%を上限とした。
【0028】
Ca,Mg,REM:これらは介在物の形状を球状化して応力集中を軽減すると共に、Sを固定してSの粒界偏析を軽減する作用を有する。いずれも、0.001%未満の含有では十分な効果が得られず、多すぎると酸化物が増えてSSC感受性が高める危険性があるため、0.010%を上限とした。
【0029】
次に、本発明における製造条件について説明する。本発明では、前記の合金組成を有する鋼を転炉、電気炉などで溶製して鋳造した鋳片、もしくは鋳片を必要に応じて分塊圧延した鋼片を素材として、該素材を加熱して通常の熱間穿孔連続圧延を施し、最終仕上げ加工の直後にオーステナイト温度域から直接焼入を施した後、焼戻処理を行って、所望の強度に調質する。
【0030】
ここで、継目無鋼管に成形す熱間加工方法としては、図4に例示するような熱間穿孔連続圧延方法を採るのが通例であるが、図4の例では、最終仕上げ圧延に先立ち再加熱工程が含まれており、この再加熱工程における素管温度と図4中「最下点温度」と称した再加熱炉挿入直前の素管温度を制御することが必要となる。これら再加熱温度および最下点温度は、Nb析出物のピニング機能を介して耐SSC性支配因子であるオーステナイト粒度に影響を与えると考えられ、耐SSC性の観点から、図5に示すように最下点温度は900℃以下、再加熱温度は1050℃以下に設定する必要がある。再加熱温度の下限は、その後の仕上げ圧延で十分な高温を確保して最終的にAr3点以上の焼入温度を確保するために900℃以上が必要である。
【0031】
焼入のための素材温度は、Ar3 点以上が必要である。これは、Ar3点を下回れば均一マルテンサイト組織を得ることができず、耐SSC性が低下するためである。この焼入温度を確保するために、熱間加工の最終仕上げ温度はAr3 +50℃以上とするなお、本発明における代表的Ar3 点は830℃程度である。
焼入のための素材温度をAr 3 点以上とすることによって、本発明の成分組成では、25mm程度の厚肉材においても所定の焼入性を確保でき、得られる鋼管は組織均一性を有し、肉厚中心部硬さは表面直下硬さの95%以上となり、耐SSC性も良好となる。
【0032】
素材の加熱温度としては、1150℃以上を確保する必要がある。これは、熱間加工に先立ちNbを完全に溶体化し、焼入直前のオーステナイト粒を極力細かくするために必要な処置である。加熱温度の上限は特に規定しないが、スケールロスや加熱時のオーステナイト粒成長を抑制するためには1260℃以下が望ましい。
【0033】
焼戻の温度条件としては660〜720℃を適正範囲とした。660℃未満の低温条件ではYSが高くなり過ぎて前記αが低くなってしまうため、満足すべき耐SSC性が得られない。一方、720℃を超えると、2相領域に突入して組織均一性が崩れることによりSSC感受性が高まる危険性がある。このため、適正な焼戻温度条件として660〜720℃を設定した。
【0034】
なお、前述の熱間穿孔連続圧延方法とは、プラグミル方式やマンドレルミル方式などの圧延機名称を問わず、複数圧延機を通して中実素材を穿孔・延伸していくマンネスマン方式に代表される継目無鋼管圧延方法全般を意味する。また、再加熱工程を含まない圧延方式においては、前述の最下点温度および再加熱温度に関する規定を考慮する必要がない分だけ製造が容易となるので、この場合も本発明に含むことができる。
【0035】
【実施例】
表1に示す化学組成の鋼を転炉溶製し、得られた鋼片を図4に示すパターンで処理する熱間穿孔連続圧延に供し、外径244.5mm、肉厚25mmの継目無鋼管に成形し、最終仕上げ圧延後に管内外面全体を直接水冷する焼入処理を行い、焼入ままで肉厚中心部と表面直下部の硬さを測定し、両者の比を求めて焼入性を評価すると共に、引き続いて630〜730℃の温度で焼戻処理を行い、この板材の肉厚中心部より、丸棒引張試験片を採取して引張試験を実施した。
【0036】
また、この焼戻し材の肉厚中心部よりNACE−TM0177−Aに規定される平行部長さ25mm、直径6.2mmの丸棒形状の硫化物割れ試験片を採取し、0.5%酢酸十5%NaClを含有しH2 Sを1気圧の分圧で飽和させた25℃の腐食溶液中において、降伏強度の80%の一定応力を付加したまま、720時間の試験を実施した。
【0037】
焼入性は、肉厚中心部硬さが表面直下硬さの95%以上であれば良好と評価した。耐SSC性は720時間の試験時間中、破断しなかったものを良好と評価した。
【0038】
試験結果を表2に示す。表2におけるNo.1〜12は本発明の範囲に含まれる試験結果であるが、YSで758MPaを超える高強度と優れた耐SSC性を同時に満足できる。一方、比較例No.17から25は成分が本発明の範囲を外れるため、良好な耐SSC性が得られていない。また、成分は本発明の範囲内であるにもかかわらず、比較例No.26,29はαが本発明の範囲を外れており、比較例27,28は焼戻し温度とαが本発明の範囲を外れており、比較例No.15,16では焼入温度が不適切であり、No.13,14はそれぞれ再加熱温度、最下点温度が本発明の範囲を外れているため、満足すべき耐SSC性が得られていない。
【0039】
【表1】

Figure 0003680628
【0040】
【表2】
Figure 0003680628
【0041】
【発明の効果】
本発明によれば、降伏強度758MPa以上の高強度と優れた耐SSC性を両立させた油井用鋼管をエネルギー効率に優れる直接焼入法によって得ることが可能となる。
【図面の簡単な説明】
【図1】焼入ままの状態における表層直下部硬さに対する肉厚中心部硬さの比と鋼管の降伏強度を指標として、耐SSC性を示したものである。
【図2】焼入性が良好な鋼を対象として、耐SSC性をMo含有量とYSの関係で示したものである。
【図3】焼入性が良好でMo含有量がほぼ一定の鋼を対象として、耐SSC性をYSとCr含有量の関係で示したものである。
【図4】熱間穿孔連続圧延の工程を温度と時間を軸として模式的に示したものである。
【図5】マンネスマン方式の熱間穿孔連続圧延方法によって継目無鋼管を得る場合の、最下点温度と再加熱温度による耐SSC性への影響を示したものである。[0001]
BACKGROUND OF THE INVENTION
The present invention, the casing used in oil and gas wells, a method for producing a high strength oil well steel pipe which is used when exposed to sulphide environment say tubing or drill pipe. In particular , the present invention relates to a method for producing a high-strength oil well steel pipe having a yield strength YS of 758 MPa or more, which is excellent in resistance to sulfide cracking (hereinafter abbreviated as SSC).
[0002]
[Prior art]
Steel pipes used in oil and gas wells containing hydrogen sulfide are required to have SSC resistance. The essence of SSC is hydrogen embrittlement, and it becomes easier to occur as the strength of the steel pipe increases. In order to increase the strength while preventing this, it is essential to optimize the alloy element balance and the metal structure. For example, a technique as disclosed in Japanese Patent Publication No. 6-104849 is disclosed, and the yield strength is 827 MPa. High strength materials to the extent have been obtained. However, in actually utilizing such technology, it is essential to perform reheating and quenching and tempering treatment after performing hot working, but such reheating heat treatment has poor thermal efficiency, Contrary to technological trends in process and energy saving.
[0003]
From this point of view, techniques for simplifying heat treatment have also been studied. For example, Japanese Patent Application Laid-Open No. 5-271773 discloses a technique for directly quenching after finish rolling after optimizing steel components and process conditions. ing. However, when the direct quenching method is used, there is a problem that the SSC resistance decreases because the crystal grains become coarse. For this reason, it was difficult to produce a high strength steel pipe having a yield strength exceeding 758 MPa by the direct quenching method.
[0004]
[Problems to be solved by the invention]
In view of such circumstances, the present invention is optimal for producing a steel pipe having a high yield strength of 758 MPa or more and capable of exhibiting sufficient SSC resistance by utilizing a direct quenching method excellent in energy efficiency. The purpose is to obtain a method.
[0005]
[Means for Solving the Problems]
The present inventor has made researches to solve the above problems. As a result, the inventors have obtained knowledge necessary and sufficient for configuring the present invention. The contents are described below. The SSC of high-strength steel pipe arises from the grain boundaries. In order to suppress such destruction, first, the metal structure must be uniform. In order to obtain high strength of 758 MPa or more and high SSC resistance, there is no use other than using tempered martensite as the metal structure, but this structure needs to be as uniform as possible. If the metal structure includes a different phase having different characteristics, this boundary or the different phase itself becomes a fracture starting point, and sufficient SSC resistance cannot be obtained. The uniformity of the structure is almost determined by the quenching state. In other words, whether or not the heterogeneous phase appears depends on whether or not a sufficiently hardened martensite structure can be obtained in the entire steel pipe . Needless to say, a perfect martensite structure is desirable, but considering the limitation of the content of elements that can contribute to hardenability, which will be described later, in the case of thick materials, the present invention aims at a high strength level of 758 MPa or more. FIG. 1 shows the result of studying the essential conditions.
[0006]
Figure 1 is a 25mm wall thickness of the seamless steel pipe, the entire pipe outer surface from the austenite region temperature after the end of hot rolling is performed directly quenching treatment for water cooling, the hardness of the hardness and the surface portion of the thick central portion of the steel pipe The hardness is measured, and the hardenability is evaluated by the ratio of both measurement results, and the SSC resistance is evaluated by using a test piece taken from the center of the thickness. From FIG. 1, the knowledge that sufficient SSC resistance can be obtained even at a high strength exceeding 758 MPa if the hardness of the thickness center portion is 95% or more with respect to the hardness of the portion immediately below the surface. It was.
[0007]
As a result of studying the relationship between the strength governing the SSC characteristics and the alloy element content on the premise of a uniform metal structure not containing a heterogeneous phase, FIG. 2 was obtained. That is, when the contents of Mn and P that affect the SSC characteristics are controlled to a low level that can be industrially achieved, the Mo content and the yield strength YS of the steel pipe after tempering are plotted as indices. Can be organized well. That is, in order to ensure sufficient SSC resistance in a high strength steel pipe of YS ≧ 758 MPa that has been directly quenched, the Mo content needs to be 0.82 % or more, and in relation to the yield strength YS. It was found that α = Mo ( mass% ) − 0.0218 YS ( MPa ), which is described, needs to be −18.1 or more.
[0008]
However, there were cases where the target could not be achieved even after obtaining the above-mentioned uniform structure and also benefiting from the above-mentioned effective element Mo. As a result of analyzing the cause, as shown in FIG. 3, it was found that the large amount of Cr content has a great influence on the high-strength material targeted by the present invention. That is, the structure at the time of quenching is made uniform, SSC characteristic deterioration elements such as P and Mn are made sufficiently low and constant, and the useful Mo content is also made constant, and the relationship between YS and Cr content is set. As a result, as shown in FIG. 3, it was found that the SSC resistance greatly changes with a Cr content of about 0.8% as a boundary.
[0009]
Conventionally, Cr has been actively used as an element necessary for ensuring hardenability, but as long as the direct quenching method is taken, because the hardenability is improved by reheat quenching only by the coarser grain size, There is no need to actively utilize from the viewpoint of hardenability as in the case of the reheating quenching method. Rather, Cr is interpreted as a harmful effect on SSC as a result of weakening the grain boundary strength as a carbide precipitation element, and its content should be limited.
[0010]
Furthermore, when the direct quenching method is adopted, the austenite grains become coarser than the reheat quenching method, and the hardenability is improved, but the SSC sensitivity is increased. For this reason, it is necessary to consider to suppress this coarsening phenomenon as much as possible. For this purpose, it is the most effective means to utilize the pinning effect of Nb carbide, but Nb is an element having a strong carbide forming ability like Cr. It has been found that it also has the harmful effect of weakening the field strength. Therefore, Nb was contained by keeping the coarsening suppression effect within a range that does not offset the harmful effect of carbide coarsening, and the process conditions necessary to maximize this effect were elucidated.
[0011]
The present invention is configured based on the above knowledge, and the gist thereof is as follows. That is, it is the following (1) or (2) .
( 1 ) By mass%, C: 0.10 to 0.25%, Si ≦ 0.5%, Mn ≦ 0.5%, P ≦ 0.015%, S ≦ 0.0050%, Mo: 0.00. 82 to 2.5%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, 3.4 times or more of N, Nb: 0.01 to 0.1%, N ≦ Steel containing 0.01% and B: 0.0005-0.0050%, and the balance iron and impurities are used as a raw material. After heating the raw material to 1150 ° C. or higher, hot piercing continuous rolling is performed to make it hollow After the raw tube temperature was lowered to 900 ° C. or lower immediately before the reheating step, reheating was performed at 900 to 1050 ° C., and finishing was completed at a temperature of Ar 3 point + 50 ° C. or higher, and then immediately Ar perform quenching treatment to rapidly cooled from three or more points of temperature, followed characterized by tempering at a temperature of six hundred and sixty to seven hundred and twenty ° C. and, MPa Method of producing a high strength oil well steel pipe having a yield strength YS and the Mo content relationship following (1) 758 MPa or more yield strength YS excellent in sulfide cracking characteristics satisfying the formula represented.
α = Mo−0.0218YS ≧ −18.1 (1) Formula ( 2 )% by mass, C: 0.10 to 0.25%, Si ≦ 0.5%, Mn ≦ 0. 5%, P ≦ 0.015%, S ≦ 0.0050%, Mo: 0.82-2.5%, Al: 0.005-0.1%, Ti: 0.005-0.1% 3.4 times or more of N, Nb: 0.01 to 0.1%, N ≦ 0.01% and B: 0.0005 to 0.0050%, further Cr ≦ 0.8%, W ≦ 0.5%, V: 0.01 to 0.1%, Zr: 0.001 to 0.010%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, REM: Containing one or more of 0.001 to 0.01%, steel made of the remaining iron and impurities, and heating the material to 1150 ° C or higher, followed by hot piercing continuous rolling Do Immediately after finishing the hollow tube, the temperature of the tube immediately before the reheating process is lowered to 900 ° C. or lower, then reheating to 900 to 1050 ° C., and finishing processing at a temperature of Ar 3 point + 50 ° C. or higher. The relationship between the yield strength YS expressed in MPa and the amount of Mo is characterized in that quenching is performed by rapidly cooling from a temperature of Ar 3 or higher, followed by tempering at a temperature of 660 to 720 ° C. (1) The manufacturing method of the steel pipe for high strength oil wells which has the yield strength YS of 758 Mpa or more excellent in the sulfide cracking-proof characteristic which satisfy | fills Formula.
α = Mo−0.0218YS ≧ −18.1 Equation (1)
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. First, the reasons for limiting the alloy components of the present invention will be described. The content of the component is mass%. C: C is an essential element for ensuring the desired high strength and resistance to sulfide cracking at the same time. These strengths and resistance to sulfide cracking depend on hardenability, and if the content is less than 0.10%, incomplete quenching results in lower strength. Temporarily adjusting the tempering conditions will reduce the required strength. Even if it is obtained, sufficient sulfide cracking resistance cannot be obtained. On the other hand, even if the content exceeds 0.25%, the resistance to sulfide cracking is saturated and the problem of burning cracks occurs. For this reason, the appropriate range was made 0.10 to 0.25%.
[0013]
Si: Si is a deoxidizer remaining in the steelmaking process, but if it exceeds 0.5%, the steel becomes brittle and sulfide cracking resistance deteriorates, so the upper limit was made 0.5%. .
[0014]
Mn: Mn is an element harmful to sulfide cracking resistance and should not be added, but it also has the effect of improving hardenability and quenching with low C and Mo contents to improve hardenability. If the performance is insufficient, 0.5% may be included as the upper limit. However, if the content exceeds 0.5%, satisfactory cracking resistance cannot be obtained even when completely quenched, so 0.5% was made the upper limit.
[0015]
P: P is an impurity element that segregates at the grain boundaries and degrades the resistance to sulfide cracking, and should be suppressed to the lowest possible level. The upper limit was set to 0.015% as an acceptable level that enables stable industrial production with the current refining technology taking cost into account.
[0016]
S: S is also an impurity element that segregates at grain boundaries and degrades the resistance to sulfide cracking. In the present invention, since it is fundamental not to contain Mn for fixing S, it should be suppressed to the lowest possible level, but in the range of 0.0050% or less, there is no significant deterioration in SSC resistance. Therefore, 0.0050% was made the upper limit of the content.
[0017]
Mo: Mo is one of the essential elements in the present invention, and is an element that suppresses grain boundary segregation of P, which is harmful to SSC resistance, and is a good element to obtain high strength because it increases the resistance to temper softening. is there. As shown in FIG. 2, it is necessary to contain 0.82 % or more in order to ensure sufficient SSC resistance in a high strength region of YS ≧ 758 MPa on the premise of the direct quenching method. However, even if it is contained in a large amount, the effect is saturated and the degree of freedom in adjusting the strength is narrowed, so 2.5% is made the upper limit.
[0018]
Al: Al is necessary for sufficiently deoxidizing steel in the steel making process, and contains 0.005% or more. However, if it is contained in a large amount, the amount of alumina inclusions increases and there is a risk that the SSC sensitivity will increase, so 0.1% was made the upper limit.
[0019]
Ti: Ti is contained in order to sufficiently achieve the hardenability of B described later. That is, in order to prevent precipitation of BN, it is necessary to fix N as TiN in advance. For this purpose, 0.005% or more and 3.4 times or more of the N content are included. However, a large amount promotes the precipitation of coarse TiN and increases the SSC sensitivity, so the upper limit was made 0.1%.
[0020]
Nb: Nb is an element effective in improving SSC resistance because it reduces the grain boundary segregation of P through its fine graining effect, and is contained in an amount of 0.01% or more. However, even if it is contained in a large amount, the effect of refining is saturated, and the SSC resistance is lowered due to a decrease in grain boundary strength due to coarsening of the carbide, so the upper limit was made 0.1%.
[0021]
N: N is an impurity element that impairs the hardenability of B, and should be suppressed to the lowest possible level. The upper limit is set at 0.01% as the allowable level that enables stable industrial production with the current refining technology taking cost into account.
[0022]
B: B is an element that remarkably improves hardenability, and is an essential element for ensuring hardenability in the present invention. If the content is less than 0.0005%, sufficient hardenability cannot be ensured, so this is set as the lower limit content. Further, even if the content exceeds 0.0050%, the effect of improving hardenability is saturated, and rather the precipitation of carbon boride becomes remarkable and the SSC resistance deteriorates. %.
[0023]
α = Mo− 0.0218 YS: As shown in FIG. 3, when the value of α calculated as a function of the yield strength YS ( MPa ) and the Mo content ( mass% ) is −18.1 or more, it is excellent. SSC resistance is obtained, and if it is less than −18.1, satisfactory SSC resistance cannot be obtained even if each component satisfies the above conditions. Therefore, in addition to the component conditions, α ≧ −18.1 is set as an essential requirement of the present invention.
[0024]
In this invention, in addition to the said element, 1 type (s) or 2 or more types are selectively contained among the following as needed.
Cr: Cr is useful as an element that enhances hardenability, but it is not necessary to contain Cr if other elements such as Mo can ensure sufficient hardenability. When trying to obtain a yield strength of 758 MPa or more by the direct quenching method, the content exceeding 0.8% deteriorates the SSC resistance, so the upper limit was made 0.8% (see FIG. 3).
[0025]
W: W also has the effect of increasing hardenability and increasing temper softening resistance. However, if less than 0.01%, the effect is not sufficient, and if it exceeds 0.5%, the effect is saturated. 0.01 to 0.5% was made the range of proper content.
[0026]
V: V has the effect of increasing temper softening resistance, and if contained in an amount of 0.01% or more, it is advantageous for increasing the strength. However, if contained in a large amount, the SSC resistance deteriorates, so 0.1% is the upper limit. It was.
[0027]
Zr: Zr has the effect of suppressing the grain boundary segregation of P. For that purpose, the content of 0.001% or more is necessary. However, since it is an expensive element and if it is contained in a large amount, there is a risk that the oxide increases and the SSC sensitivity increases, so 0.010% is made the upper limit. did.
[0028]
Ca, Mg, REM: These have the effect of reducing the stress concentration by spheroidizing the shape of inclusions, and reducing S grain boundary segregation by fixing S. In any case, if the content is less than 0.001%, a sufficient effect cannot be obtained, and if it is too much, there is a risk of increasing the oxide and increasing the SSC sensitivity, so 0.010% was made the upper limit.
[0029]
Next, manufacturing conditions in the present invention will be described. In the present invention, a slab obtained by melting and casting steel having the above alloy composition in a converter, an electric furnace, or the like, or a slab obtained by subjecting the slab to ingot rolling as necessary, is heated. Then, normal hot piercing continuous rolling is performed, and after quenching directly from the austenite temperature range immediately after the final finishing process, tempering is performed to adjust to a desired strength.
[0030]
Here, the hot working how to molded seamless steel pipe, although take the hot piercing continuous rolling method as illustrated in FIG. 4 is customary, in the example of FIG. 4, prior to the final finish rolling A reheating step is included, and it is necessary to control the tube temperature in the reheating step and the tube temperature immediately before the reheating furnace insertion, which is referred to as “the lowest point temperature” in FIG. 4. These reheating temperature and lowest point temperature are considered to affect the austenite grain size, which is the SSC resistance controlling factor, through the pinning function of the Nb precipitate. From the viewpoint of SSC resistance, as shown in FIG. It is necessary to set the lowest point temperature to 900 ° C. or lower and the reheating temperature to 1050 ° C. or lower. The lower limit of the reheating temperature needs to be 900 ° C. or higher in order to secure a sufficiently high temperature in the subsequent finish rolling and finally secure a quenching temperature of Ar 3 or higher.
[0031]
The material temperature for quenching requires Ar 3 points or more. This is because if it falls below the Ar 3 point, a uniform martensite structure cannot be obtained, and the SSC resistance decreases. In order to ensure this quenching temperature, the final finishing temperature of hot working is Ar 3 + 50 ° C. or higher . Incidentally, a typical Ar 3 point in the present invention is about 830 ° C..
By quenching material temperatures for the Ar 3 point or more, the component composition of the present invention, can also ensure a predetermined hardenability at 25mm about a thick material, the resulting steel pipes have a tissue uniformity The thickness center hardness is 95% or more of the hardness just below the surface, and the SSC resistance is also good.
[0032]
As the heating temperature of the material, it is necessary to ensure 1150 ° C. or higher. This is a necessary treatment for completely dissolving Nb prior to hot working and making the austenite grains immediately before quenching as fine as possible. The upper limit of the heating temperature is not particularly defined, but 1260 ° C. or lower is desirable in order to suppress scale loss and austenite grain growth during heating.
[0033]
As a temperature condition of tempering, 660-720 degreeC was made into the appropriate range. Under low temperature conditions of less than 660 ° C., YS becomes too high and α becomes low, so that satisfactory SSC resistance cannot be obtained. On the other hand, when it exceeds 720 ° C., there is a risk that the SSC sensitivity is increased by entering the two-phase region and breaking the tissue uniformity. For this reason, 660-720 degreeC was set as appropriate tempering temperature conditions.
[0034]
The above-mentioned hot piercing continuous rolling method is a seamless method represented by the Mannesmann method that pierces and stretches a solid material through a plurality of rolling mills regardless of the rolling mill name such as the plug mill method and the mandrel mill method. It means the whole steel pipe rolling method. Further, in the rolling method that does not include the reheating step, the manufacturing is facilitated by the amount that does not require consideration of the above-mentioned regulations regarding the lowest point temperature and the reheating temperature, and this case can also be included in the present invention. .
[0035]
【Example】
Steel having the chemical composition shown in Table 1 is melted in a converter, and the obtained steel slab is subjected to hot piercing continuous rolling in which the steel slab is processed in the pattern shown in FIG. After the final finish rolling, the entire inner and outer surface of the pipe is quenched with water, and the hardness at the center of the wall and the area directly below the surface is measured while quenching. In addition to the evaluation, a tempering treatment was subsequently performed at a temperature of 630 to 730 ° C., and a tensile test was carried out by collecting a round bar tensile test piece from the thickness center of the plate material.
[0036]
Further, a round bar-shaped sulfide crack test piece having a parallel part length of 25 mm and a diameter of 6.2 mm as defined in NACE-TM0177-A was collected from the thickness center of this tempered material, and 0.5% acetic acid was added. The test was carried out for 720 hours in a corrosive solution at 25 ° C. containing% NaCl and saturated with H 2 S at a partial pressure of 1 atm with a constant stress of 80% of the yield strength.
[0037]
The hardenability was evaluated as good if the thickness center hardness was 95% or more of the hardness just below the surface. The SSC resistance was evaluated as good if it did not break during the test time of 720 hours.
[0038]
The test results are shown in Table 2. No. in Table 2 Although 1-12 are the test results included in the scope of the present invention, YS can simultaneously satisfy high strength exceeding 758 MPa and excellent SSC resistance. On the other hand, Comparative Example No. Since components 17 to 25 are outside the scope of the present invention, good SSC resistance is not obtained. Further, although the components are within the scope of the present invention, Comparative Example No. Nos. 26 and 29 have α out of the range of the present invention, and Comparative Examples 27 and 28 have tempering temperatures and α out of the range of the present invention. In Nos. 15 and 16, the quenching temperature is inappropriate. Since the reheating temperature and the lowest point temperature of 13 and 14 are outside the range of the present invention, satisfactory SSC resistance is not obtained.
[0039]
[Table 1]
Figure 0003680628
[0040]
[Table 2]
Figure 0003680628
[0041]
【The invention's effect】
According to the present invention, it is possible to obtain an oil well steel pipe having both high strength of yield strength of 758 MPa or more and excellent SSC resistance by a direct quenching method with excellent energy efficiency.
[Brief description of the drawings]
FIG. 1 shows SSC resistance using as an index the ratio of the thickness center hardness to the hardness just below the surface layer in the as-quenched state and the yield strength of the steel pipe .
FIG. 2 shows SSC resistance as a relationship between Mo content and YS for steel with good hardenability.
FIG. 3 shows SSC resistance as a relationship between YS and Cr content for steel with good hardenability and approximately constant Mo content.
FIG. 4 schematically shows a hot piercing continuous rolling process with temperature and time as axes.
FIG. 5 shows the influence of the lowest point temperature and the reheating temperature on the SSC resistance when a seamless steel pipe is obtained by the Mannesmann hot piercing continuous rolling method.

Claims (2)

質量%で、C:0.10〜0.25%、Si≦0.5%、Mn≦0.5%、P≦0.015%、S≦0.0050%、Mo:0.82〜2.5%、Al:0.005〜0.1%、Ti:0.005〜0.1%でNの3.4倍以上、Nb:0.01〜0.1%、N≦0.01%及びB:0.0005〜0.0050%を含有し、残部鉄及び不純物からなる鋼を素材とし、該素材を1150℃以上に加熱した後、熱間穿孔連続圧延を行って中空素管とし、再加熱工程直前の素管温度を900℃以下まで降下させた後、900〜1050℃に再加熱を施し、Ar3 点+50℃以上の温度で仕上げ加工を完了した後、直ちにAr3 点以上の温度から急冷する焼入処理を行い、続いて660〜720℃の温度で焼き戻すことを特徴とする、MPaで表される降伏強度YSとMo量の関係が下記(1)式を満足する耐硫化物割れ特性に優れた758MPa以上の降伏強度YSを有する高強度油井用鋼管の製造方法。
α=Mo−0.0218YS≧−18.1・・・・・(1)式
In mass%, C: 0.10 to 0.25%, Si ≦ 0.5%, Mn ≦ 0.5%, P ≦ 0.015%, S ≦ 0.0050%, Mo: 0.82 to 2 0.5%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, 3.4 times or more of N, Nb: 0.01 to 0.1%, N ≦ 0.01 % And B: 0.0005% to 0.0050%, and the steel consisting of the remaining iron and impurities is used as a raw material, and after heating the raw material to 1150 ° C. or higher, hot piercing continuous rolling is performed to obtain a hollow shell. The tube temperature immediately before the reheating step is lowered to 900 ° C. or lower, then reheated to 900 to 1050 ° C., and after finishing processing at a temperature of Ar 3 point + 50 ° C. or higher, immediately Ar 3 point or higher It is expressed in MPa, characterized by performing a quenching process that rapidly cools from the temperature of, and subsequently tempering at a temperature of 660 to 720 ° C. A method for producing a high-strength oil well steel pipe having a yield strength YS of 758 MPa or more excellent in sulfide cracking resistance, wherein the relationship between the yield strength YS and the amount of Mo satisfies the following formula (1).
α = Mo−0.0218YS ≧ −18.1 (1)
質量%で、C:0.10〜0.25%、Si≦0.5%、Mn≦0.5%、P≦0.015%、S≦0.0050%、Mo:0.82〜2.5%、Al:0.005〜0.1%、Ti:0.005〜0.1%でNの3.4倍以上、Nb:0.01〜0.1%、N≦0.01%及びB:0.0005〜0.0050%を含有し、更に、Cr≦0.8%、W≦0.5%、V:0.01〜0.1%、Zr:0.001〜0.010%、Ca:0.001〜0.01%、Mg:0.001〜0.01%、REM:0.001〜0.01%のうちの1種または2種以上を含有し、残部鉄及び不純物からなる鋼を素材とし、該素材を1150℃以上に加熱した後、熱間穿孔連続圧延を行って中空素管とし、再加熱工程直前の素管温度を900℃以下まで降下させた後、900〜1050℃に再加熱を施し、Ar3 点+50℃以上の温度で仕上げ加工を完了した後、直ちにAr3 点以上の温度から急冷する焼入処理を行い、続いて660〜720℃の温度で焼き戻すことを特徴とする、MPaで表される降伏強度YSとMo量の関係が下記(1)式を満足する耐硫化物割れ特性に優れた758MPa以上の降伏強度YSを有する高強度油井用鋼管の製造方法。
α=Mo−0.0218YS≧−18.1・・・・・(1)式
In mass%, C: 0.10 to 0.25%, Si ≦ 0.5%, Mn ≦ 0.5%, P ≦ 0.015%, S ≦ 0.0050%, Mo: 0.82 to 2 0.5%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.1%, 3.4 times or more of N, Nb: 0.01 to 0.1%, N ≦ 0.01 % And B: 0.0005 to 0.0050%, Cr ≦ 0.8%, W ≦ 0.5%, V: 0.01 to 0.1%, Zr: 0.001 to 0 0.010%, Ca: 0.001-0.01%, Mg: 0.001-0.01%, REM: One or more of 0.001-0.01%, and the balance Steel made of iron and impurities is used as a raw material. After heating the raw material to 1150 ° C or higher, continuous hot rolling is performed to form a hollow shell, and the temperature of the raw tube immediately before the reheating step is lowered to 900 ° C or lower. After subjected to a re-heated to 900 to 1050 ° C., after completing the finishing with Ar 3 point + 50 ℃ temperatures above performs quenching treatment immediately quenched from Ar 3 point or higher, followed by 660~ A yield strength YS of 758 MPa or more excellent in sulfide cracking resistance, wherein the relationship between the yield strength YS expressed in MPa and the Mo amount satisfies the following formula (1), characterized by tempering at a temperature of 720 ° C. The manufacturing method of the steel pipe for high strength oil wells which has.
α = Mo−0.0218YS ≧ −18.1 (1)
JP12306799A 1999-04-28 1999-04-28 Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking Expired - Fee Related JP3680628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12306799A JP3680628B2 (en) 1999-04-28 1999-04-28 Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12306799A JP3680628B2 (en) 1999-04-28 1999-04-28 Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking

Publications (2)

Publication Number Publication Date
JP2000313919A JP2000313919A (en) 2000-11-14
JP3680628B2 true JP3680628B2 (en) 2005-08-10

Family

ID=14851383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12306799A Expired - Fee Related JP3680628B2 (en) 1999-04-28 1999-04-28 Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking

Country Status (1)

Country Link
JP (1) JP3680628B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1627931T3 (en) 2003-04-25 2018-11-05 Tubos De Acero De Mexico S A Seamless steel tube which is intended to be used as a guide pipe and production method thereof
JP4725216B2 (en) 2005-07-08 2011-07-13 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
EP2044228B1 (en) 2006-06-29 2010-05-19 Tenaris Connections AG Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
WO2009065432A1 (en) 2007-11-19 2009-05-28 Tenaris Connections Ag High strength bainitic steel for octg applications
MX2009012811A (en) 2008-11-25 2010-05-26 Maverick Tube Llc Compact strip or thin slab processing of boron/titanium steels.
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
IN2014DN09191A (en) 2012-06-20 2015-07-10 Nippon Steel & Sumitomo Metal Corp
BR112015016765A2 (en) 2013-01-11 2017-07-11 Tenaris Connections Ltd drill pipe connection, corresponding drill pipe and method for assembling drill pipes
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
CN105452515A (en) 2013-06-25 2016-03-30 特纳瑞斯连接有限责任公司 High-chromium heat-resistant steel
US20160305192A1 (en) 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Also Published As

Publication number Publication date
JP2000313919A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP3680628B2 (en) Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking
JP3969328B2 (en) Non-tempered seamless steel pipe
JP3959667B2 (en) Manufacturing method of high strength steel pipe
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP4123722B2 (en) High strength steel material for oil wells excellent in sulfide cracking resistance and method for producing the same
JPH09249940A (en) High-strength steel material excellent in sulfide stress cracking resistance and method for producing the same
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH07331381A (en) High strength and high toughness seamless steel pipe and its manufacturing method
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3717745B2 (en) Mandrel bar and its manufacturing method
JPH11335731A (en) Manufacturing method of high strength steel excellent in sulfide stress cracking resistance
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH11302785A (en) Steel for seamless steel pipes
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3938738B2 (en) High chromium steel having high toughness and method for producing the same
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH08120345A (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees