[go: up one dir, main page]

JP3680454B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3680454B2
JP3680454B2 JP29954796A JP29954796A JP3680454B2 JP 3680454 B2 JP3680454 B2 JP 3680454B2 JP 29954796 A JP29954796 A JP 29954796A JP 29954796 A JP29954796 A JP 29954796A JP 3680454 B2 JP3680454 B2 JP 3680454B2
Authority
JP
Japan
Prior art keywords
group
aqueous electrolyte
secondary battery
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29954796A
Other languages
Japanese (ja)
Other versions
JPH1050344A (en
Inventor
みほ 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29954796A priority Critical patent/JP3680454B2/en
Publication of JPH1050344A publication Critical patent/JPH1050344A/en
Application granted granted Critical
Publication of JP3680454B2 publication Critical patent/JP3680454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【技術分野】
本発明は,例えばコードレス電源,電気自動車等における電源として用いられる,充電により再利用可能な,非水電解質二次電池に関する。
【0002】
【従来技術】
リチウム等を吸蔵,放出できる正極及び負極と非水電解液とからなる非水電解質二次電池は,高電圧で,高エネルギー密度を有する。そのため,近年,コードレス電源,小型携帯用電源,或いは電気自動車等における電源としての利用が期待されている。
【0003】
【解決しようとする課題】
しかしながら,上記従来の非水電解質二次電池を,各種電源として使用するに当たっては,更に,電池の高寿命化が求められる。
かかる電池寿命を支配する要因としては,充放電サイクルに伴う負極上へのデンドライト生成,負極表面の状態に起因する電流集中,非水電解液と負極の副反応等があげられる。これらの要因には,負極表面の状態が大きく寄与しており,負極表面膜を改質する必要がある。
【0004】
本発明はかかる従来の問題点に鑑み,長期間使用することができる非水電解質二次電池を提供しようとするものである。
【0005】
【課題の解決手段】
請求項1の発明は,リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解質二次電池において,
上記非水電解液は,添加剤として,トリアジン及びその誘導体,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体,又はクマリン及びその誘導体のグループから選ばれる1種又は2種以上からなる複素環式化合物を,0.01mol・dm −3 以上,0.2mol・dm −3 未満の割合で含有することを特徴とする非水電解質二次電池である。
【0006】
上記非水電解質二次電池においては,非水電解液に上記の複素環式化合物が添加されている。そのため,負極表面が改質され,負極表面への電流集中を防止でき,デンドライトの成長を抑制することができる。また,電池の内部抵抗が小さくなり,かつ電池の保存性も向上する。従って,電池を長期間使用することができる。
【0007】
上記のごとき優れた性能を発揮する理由は,以下によるものと考えられる。
即ち,上記複素環式化合物は非共有電子対を持つ窒素原子を有する。この窒素原子は複素環式化合物における吸着サイトとなり,負極に吸着する。そのため,複素環式化合物と,リチウムとの相互作用性が高くなる。それ故,非水電解液と負極との界面を改質して抵抗の低い負極表面層を形成する。そのため,電流集中を防止し,デンドライトの生成を抑制できるものと思われる。
【0008】
上記非水電解液は,上記複素環式化合物を0.01mol・dm−3以上,0.2mol・dm−3未満の割合で含有している。0.01mol・dm−3未満の場合,又は0.2mol・dm−3以上の場合には,サイクル試験後の充放電効率が低下するおそれがある(表1参照)。
【0009】
次に,請求項の発明は,リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解質二次電池において,
上記負極は,添加剤として,トリアジン及びその誘導体,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体,又はクマリン及びその誘導体のグループから選ばれる1種又は2種以上からなる複素環式化合物を,0.01mol・dm −3 以上,0.2mol・dm −3 未満の割合で含有する処理液により,表面処理が施されていることを特徴とする非水電解質二次電池である。
【0010】
請求項の発明は,複素環式化合物を負極の処理液に添加している点が,複素環式化合物を非水電解液に添加している請求項1の発明と異なる。
請求項の発明において,処理液に含まれる複素環式化合物は,上記請求項1の発明と同様である。上記処理液による表面処理方法としては,例えば負極を処理液に浸漬する方法がある。
【0011】
請求項の発明においては,複素環式化合物を含む処理液により負極の表面処理を行っているため,上記請求項1の発明と同様の効果を発揮することができる。その理由は,上記複素環式化合物が,上記と同様に負極表面に抵抗の低い負極表面層を形成し,この負極表面層が負極と非水電解液との反応を抑制しているものと思われる。
【0012】
上記処理液は,上記複素環式化合物を0.01mol・dm−3以上,0.2mol・dm−3未満の割合で含有している。その理由は,0.01mol・dm−3未満の場合,又は0.2mol・dm−3以上の場合には,サイクル試験後の充放電効率が低下するおそれがあるからである(表1参照)。
【0013】
次に,請求項1,の発明において,上記トリアジン及びその誘導体は,請求項の発明のように,下記の「化1」又は「化2」に示す一般式により表される物質であり,かつ,「化1」及び「化2」におけるR,R,Rは,水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH基),ビニル基(−CH=CH),2−ピリジル基(CNH),又はフェニル基(−C)のいずれかであることが好ましい。
これにより,非水電解質二次電池の充放電効率が一層高くなる。「化1」及び「化2」において,R,R,Rは,互いに異種であってもよいし,同種であってもよい。
【0014】
【化1】

Figure 0003680454
【0015】
【化2】
Figure 0003680454
【0016】
また,請求項1,の発明において,上記2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体は,請求項の発明のように,下記の「化3」に示す一般式により表される物質であり,かつ,「化3」におけるR,Rは,水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH基),ビニル基(−CH=CH),2−ピリジル基(CNH)又はフェニル基(−C)のいずれかであることが好ましい。
これにより,非水電解質二次電池の充放電効率が一層高くなる。「化3」において,R,Rは,互いに異種であってもよいし,同種であってもよい。
【0017】
【化3】
Figure 0003680454
【0018】
次に,請求項の発明のように,上記クマリン及びその誘導体は,下記の「化4」に示す一般式により表される物質であり,かつ,「化4」におけるR,R,Rは水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH),カルボキシル基(−COOH),アセチル基(−COCH),トリフルオロメチル基(CF)のいずれかであることが好ましい。
これにより,非水電解質二次電池の充放電効率が一層高くなる。「化4」において,R,R,Rは,互いに異種であってもよいし,同種であってもよい。
【0019】
【化4】
Figure 0003680454
【0020】
【発明の実施の形態】
本発明の実施例に係る非水電解質二次電池について,図1〜図15を用いて,比較例と共に説明する。
まず,各種の実施例及び比較例における非水電解質二次電池の基本構成について,図1を用いて説明する。
非水電解質二次電池9は,図1に示すごとく,リチウムを吸蔵,放出できる正極21と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極22と,正極21と負極22との間に設けたセパレータ3と,セパレータ3に含浸させた非水電解液1と,電池容器5とを有している。
【0021】
非水電解液1は,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に,電解質としてのLiPF6 を1mol・dm-3濃度となるように溶解したものである。
【0022】
正極21としては,LiMn24 を正極活物質とする合剤をプレス成形したものを用いる。負極22としてはリチウム箔を用い,セパレータ3としてはポリプロピレン製のフィルムを用いる。
また,正極21及び負極22は,いずれもセパレータ3と反対側に集電体210,220を有している。正極側集電体210はSUS304を,負極側集電体220はニッケルエキスパンドメタルを用いる。
【0023】
電池容器5は,正極側容器51と,負極側容器52と,両者を電気絶縁すると共に固定するためのガスケット53とからなる。正極側容器51及び負極側容器52はステンレス鋼を,ガスケット53はポリプロピレンを用いる。
本例の非水電解質二次電池9は,コイン型非水電解質二次電池である。
以下,実施例1〜14,比較例C1〜C4について,個別に説明する。
【0024】
(実施例1)
本例の非水電解質二次電池は,上記基本構成の非水電解液に,更に,複素環式化合物としての1,3,5−トリアジンを溶解した非水電解液を用いている。
即ち,本例における非水電解液は,電解質を溶解した混合溶媒に,更に,1,3,5−トリアジン(図2)を0.01mol・dm-3濃度となるよう溶解したものである。
その他は,上記基本構成と同様である。
【0025】
(実施例2)
本例の非水電解質二次電池は,上記基本構成の非水電解液に,更に1,3,5−トリアジン(図2)を0.05mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0026】
(比較例C1)
本例の非水電解質二次電池は,上記基本構成の非水電解液そのものを非水電解液として用いている。
【0027】
(比較例C2)
本例の非水電解質二次電池は,上記基本構成の非水電解液に,更に1,3,5−トリアジン(図2)を0.005mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0028】
(実施例3)
本例の非水電解質二次電池は,上記基本構成の非水電解液に,更に1,3,5−トリアジン(図2)を0.1mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0029】
(比較例C3)
本例の非水電解質二次電池は,上記基本構成の非水電解液に,更に1,3,5−トリアジン(図2)を0.2mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0030】
(比較例C4)
本例の非水電解質二次電池は,エチレンカ−ボネ−トとジメチルカ−ボネ−トの等容積混合溶媒に電解質を溶解した非水電解液を用いている。
即ち,本例における非水電解液は,エチレンカ−ボネ−トとジメチルカ−ボネ−トとの等容積混合溶媒に,電解質としてのLiPF6 を1mol・dm-3濃度となるように溶解したものである。
その他は,上記基本構成と同様である。
【0031】
(実施例4)
本例の非水電解質二次電池は,比較例C4の混合溶媒及び電解質に,更に,1,3,5−トリアジン(図2)を0.05mol・dm-3濃度となるよう溶解した非水電解液を用いている。
その他は,上記基本構成と同様である。
【0032】
(実施例5)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル(図3)を0.05mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0033】
(実施例6)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に複素環式化合物としての2,4,6−トリアミノ−1,3,5−トリアジン(図4)を0.05mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0034】
(実施例7)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,1,3,5−トリアジン(図2)を0.05mol・dm-3濃度,2,4,6−トリアミノ−1,3,5−トリアジン(図4)を0.05mol・dm-3濃度となるよう溶解している他は,上記基本構成と同様である。
【0035】
(実施例8)
本例の非水電解質二次電池は,1,3,5−トリアジン(図2)を含む処理液で表面処理を施した負極を用いている。
即ち,本例における負極は,以下の処理液にリチウム金属を浸漬することにより得たものである。処理液は,エチレンカーボネートとジメトキシエタンとの等容積混合溶媒に,LiPF6 を1mol・dm-3濃度となるように溶解し,更に,1,3,5−トリアジン(図2)を0.05mol・dm-3濃度となるよう溶解したものである。
その他は,上記基本構成と同様である。
【0036】
(実施例9)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての2,4−ジアミノ−6−ヒドロキシ−1,3,5−トリアジン(図5)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0037】
(実施例10)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての2,4−ジアミノ−6−メチル−1,3,5−トリアジン(図6)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0038】
(実施例11)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての2−N−ジエチルメラミン(図7)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0039】
(実施例12)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての2−ビニル−4,6−ジアミノ−1,3,5−トリアジン(図8)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0040】
(実施例13)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての3−アミノ−5,6−ジメチル−1,2,4−トリアジン(図9)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0041】
(実施例14)
本例の非水電解質二次電池は,上記基本構成の非水電解液に更に,複素環式化合物としての5,6−ジフェニル−3−(2−ピリジル)−1,2,4−トリアジン(図10)を0.05mol・dm-3濃度となるように溶解している他は,上記基本構成と同様である。
【0042】
(実施例15)
本例の非水電解質二次電池は,上記基本構成の処理液に更に,複素環式化合物としてのクマリン(図11)を0.05mol・dm-3溶解したものを用いた他は,比較例1と同様の非水電解質二次電池を作製した。
【0043】
(実施例16)
本例の非水電解質二次電池は,上記基本構成の処理液に更に,複素環式化合物としてのクマリン−3−カルボン酸(図12)を0.05mol・dm-3溶解したものを用いた他は,比較例1と同様の非水電解質二次電池を作製した。
【0044】
(実施例17)
本例の非水電解質二次電池は,上記基本構成の処理液に更に,複素環式化合物としての3−アセチルクマリン(図13)を0.05mol・dm-3溶解したものを用いた他は,比較例1と同様の非水電解質二次電池を作製した。
【0045】
(実施例18)
本例の非水電解質二次電池は,上記基本構成の処理液に更に,複素環式化合物としての4−メチルウンベリフェロン(図14)を0.05mol・dm-3溶解したものを他は,比較例1と同様の非水電解質二次電池を作製した。
【0046】
(実施例19)
本例の非水電解質二次電池は,上記基本構成の処理液に更に,複素環式化合物としての7−アミノ−4−(トリフルオロメチル)クマリン(図15)を0.05mol・dm-3溶解したものを用いた他は,比較例1と同様の非水電解質二次電池を作製した。
【0047】
(実施例20)
本例の非水電解質二次電池は,1,3,5−トリアジンの代わりに,0.05mol・dm-3のクマリン(図11)を含む処理液で表面処理を施した負極を用いている。
その他は,上記実施例8と同様である。
【0048】
(実験例1)
上記実施例1〜20及び比較例C1〜C4の電池について充放電試験を行い,サイクル特性を評価した。
充放電条件は,充電電流密度0.5mA/cm2 ,充電上限電圧4.1V,充電時間5時間,放電電流密度2.0mA/cm2 ,放電下限電圧2.0Vとした。各電池の20サイクル後の充放電効率を表1,2に示した。
【0049】
次に,上記非水電解質二次電池の充放電効率の測定結果について表1を用いて説明する。
まず,1,3,5−トリアジンの濃度が0.01,0.05,0.1mol・dm-3である実施例1〜3では,1,3,5−トリアジン無添加の比較例C1に対して,電池の充放電効率が向上した。これは,1,3,5−トリアジンの添加により,負極表面が改質され,電流集中を防止し,デンドライトの成長が抑制されているためと考えられる。
【0050】
一方,比較例C2,C3の電池は,比較例C1に対して充放電効率の向上はみられなかった。これは,比較例C2では,1,3,5−トリアジンの濃度が0.005mol・dm-3と少ないために,負極の表面改質による効果が現れなかったものと考えられる。
【0051】
また,比較例C3では,1,3,5−トリアジンの濃度が0.2molと過剰なためにトリアジンの副反応が発生してしまい,却って充放電効率が低くなったものと考えられる。
以上のことから,0.01mol・dm-3以上,0.2mol・dm-3未満の割合で1,3,5−トリアジンを非水電解液に添加するのが最適といえる。
【0052】
また,溶媒の異なる非水電解液を用いた実施例4でも,実施例1と同等の効果が現れた。さらに,別の複素環式化合物を用いた場合(実施例5〜7,9〜14)にも,実施例1と同等の効果があった。
また,1,3,5−トリアジンを含む処理液を用いて負極表面を処理した実施例8の電池でも,実施例1と同等の効果が現れた。
これは,初期の負極の表面状態がサイクル性に大きく影響を及ぼしているためであると考えられる。
これらのことから,非水電解液又は負極表面処理用の処理液に,上記トリアジン,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ルを添加することにより,非水電解質二次電池の充放電効率が向上することがわかる。
【0053】
(実験例2)
上記実施例15〜20及び比較例C1の電池について充放電試験を行い,サイクル特性を評価した。
充放電条件は,充電電流密度0.5mA・cm-2,充電上限電圧4.1V,充電時間5時間,放電電流密度2.0mA・cm-2,放電下限電圧2.0Vとした。20サイクル後の充放電効率を表3に示した。
【0054】
次に,上記電池の充放電試験の結果を説明する。
表3より,クマリンおよびその誘導体を電解液に添加することにより,充放電効率が大幅に向上することがわかる。この効果のメカニズムは,トリアジンなどと同様に,クマリンが負極表面に吸着し,電解質と負極の界面を制御できるために,Liと電解質との副反応が抑制され,デンドライトの成長が防止され,結果として充放電効率が向上すると考えられる。
【0055】
【表1】
Figure 0003680454
【0056】
【表2】
Figure 0003680454
【0057】
【表3】
Figure 0003680454
【0058】
なお,本発明において,正極としては上記LiMn24 の他に,Li・Mn複素酸化物又はLi・Co複素酸化物等のLi化合物等を用いることができる。負極としては,上記リチウム箔の他に,Li金属,Li合金,炭素質材料等を用いることができる。
【0059】
また,電解質としては,上記LiPF6 の他に,LiBF4 ,LiAsF6 ,LiN(CF3 SO22 ,LiCF3 SO3 等を用いることができる。非水溶媒としては,環状エステル類(エチレンカ−ボネ−ト,プロピレンカ−ボネ−ト等),鎖状エステル類(ジエチルカ−ボネ−ト等),鎖状エ−テル(1,2−ジメトキシエタン等)のグループから1種の溶媒又は2種以上の溶媒を用いることができる。
【図面の簡単な説明】
【図1】実施例1〜20及び比較例C1〜C4の非水電解質二次電池の断面図。
【図2】実施例における,1,3,5−トリアジンの化学構造式の説明図。
【図3】実施例における,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ルの化学構造式の説明図。
【図4】実施例における,2,4,6−トリアミノ−1,3,5−トリアジンの化学構造式の説明図。
【図5】実施例における,2,4−ジアミノ−6−ヒドロキシ−1,3,5−トリアジンの化学構造式の説明図。
【図6】実施例における,2,4−ジアミノ−6−メチル−1,3,5−トリアジンの化学構造式の説明図。
【図7】実施例における,2−N−ジエチルメラミンの化学構造式の説明図。
【図8】実施例における,2−ビニル−4,6−ジアミノ−1,3,5−トリアジンの化学構造式の説明図。
【図9】実施例における,3−アミノ−5,6−ジメチル−1,2,4−トリアジンの化学構造式の説明図。
【図10】実施例における,5,6−ジフェニル−3−(2−ピリジル)−1,2,4−トリアジンの化学構造式の説明図。
【図11】実施例における,クマリンの化学構造式の説明図。
【図12】実施例における,クマリン−3−カルボン酸の化学構造式の説明図。
【図13】実施例における,3−アセチルクマリンの化学構造式の説明図。
【図14】実施例における,4−メチルウンベリフェロンの化学構造式の説明図。
【図15】実施例における,7−アミノ−4−(トリフルオロメチル)クマリンの化学構造式の説明図。
【符号の説明】
1...非水電解液,
21...正極,
22...負極,
3...セパレータ,
5...電池容器,
9...非水電解質二次電池,[0001]
【Technical field】
The present invention relates to a non-aqueous electrolyte secondary battery that can be reused by charging, for example, used as a power source in a cordless power source, an electric vehicle, or the like.
[0002]
[Prior art]
A nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium and a nonaqueous electrolyte has a high voltage and a high energy density. Therefore, in recent years, it is expected to be used as a cordless power source, a small portable power source, or a power source in an electric vehicle.
[0003]
[Problems to be solved]
However, when the conventional non-aqueous electrolyte secondary battery is used as various power sources, it is required to further increase the life of the battery.
Factors that govern such battery life include dendrite formation on the negative electrode during charge / discharge cycles, current concentration due to the state of the negative electrode surface, side reactions between the non-aqueous electrolyte and the negative electrode, and the like. The negative electrode surface state greatly contributes to these factors, and it is necessary to modify the negative electrode surface film.
[0004]
The present invention is intended to provide a non-aqueous electrolyte secondary battery that can be used for a long period of time in view of such conventional problems.
[0005]
[Means for solving problems]
The invention of claim 1 includes a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, and a separator provided between the positive electrode and the negative electrode. In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte impregnated in the separator and a battery container,
The non-aqueous electrolyte is one or two selected from the group of triazine and derivatives thereof, 2- (2-benzotriazole) -P-cresol and derivatives thereof, or coumarin and derivatives thereof as additives. A non-aqueous electrolyte secondary battery comprising the above-described heterocyclic compound at a ratio of 0.01 mol · dm −3 or more and less than 0.2 mol · dm −3 .
[0006]
In the non-aqueous electrolyte secondary battery, the above heterocyclic compound is added to the non-aqueous electrolyte. Therefore, the negative electrode surface is modified, current concentration on the negative electrode surface can be prevented, and dendrite growth can be suppressed. In addition, the internal resistance of the battery is reduced, and the storage stability of the battery is improved. Therefore, the battery can be used for a long time.
[0007]
The reason for the excellent performance as described above is considered to be as follows.
That is, the heterocyclic compound has a nitrogen atom having an unshared electron pair. This nitrogen atom becomes an adsorption site in the heterocyclic compound and is adsorbed on the negative electrode. Therefore, the interaction property between the heterocyclic compound and lithium is increased. Therefore, the interface between the non-aqueous electrolyte and the negative electrode is modified to form a negative electrode surface layer with low resistance. Therefore, it seems that current concentration can be prevented and generation of dendrites can be suppressed.
[0008]
The non-aqueous electrolyte, the upper Symbol heterocyclic compound 0.01 mol · dm -3 or more, are contained in a proportion of less than 0.2 mol · dm -3. If it is less than 0.01 mol · dm −3 or 0.2 mol · dm −3 or more, the charge / discharge efficiency after the cycle test may be reduced (see Table 1).
[0009]
Next, the invention of claim 2 is provided between a positive electrode capable of inserting and extracting lithium, a negative electrode made of lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, and the positive electrode and the negative electrode. A non-aqueous electrolyte secondary battery having a separator, a non-aqueous electrolyte impregnated in the separator, and a battery container,
The negative electrode comprises, as an additive, one or more selected from the group of triazine and derivatives thereof, 2- (2-benzotriazole) -P-cresol and derivatives thereof, or coumarin and derivatives thereof. A non-aqueous electrolyte secondary battery characterized in that a surface treatment is performed with a treatment liquid containing a heterocyclic compound at a ratio of 0.01 mol · dm −3 or more and less than 0.2 mol · dm −3. It is.
[0010]
The invention of claim 2 is different from the invention of claim 1 in that the heterocyclic compound is added to the non-aqueous electrolyte in that the heterocyclic compound is added to the treatment solution for the negative electrode.
In the invention of claim 2, the heterocyclic compound contained in the treatment liquid is the same as that of the invention of claim 1. Examples of the surface treatment method using the treatment liquid include a method of immersing the negative electrode in the treatment liquid.
[0011]
In the second aspect of the invention, since the negative electrode is surface-treated with the treatment liquid containing the heterocyclic compound, the same effect as the first aspect of the invention can be exhibited. The reason is that the above heterocyclic compound forms a negative electrode surface layer with low resistance on the negative electrode surface as described above, and this negative electrode surface layer suppresses the reaction between the negative electrode and the non-aqueous electrolyte. It is.
[0012]
The treatment liquid on the Symbol heterocyclic compound 0.01 mol · dm -3 or more, are contained in a proportion of less than 0.2 mol · dm -3. The reason is that, if it is less than 0.01 mol · dm −3 or 0.2 mol · dm −3 or more, the charge / discharge efficiency after the cycle test may be reduced (see Table 1). .
[0013]
Next, in the inventions of claims 1 and 2 , the triazine and derivatives thereof are substances represented by the general formulas shown in the following “formula 1” or “formula 2” as in the invention of claim 3 . And R 1 , R 2 and R 3 in “Chemical Formula 1” and “Chemical Formula 2” are hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group ( —NH 2 ), hydroxyl group (—OH group), vinyl group (—CH═CH 2 ), 2-pyridyl group (C 5 NH 4 ), or phenyl group (—C 6 H 5 ) Is preferred.
This further increases the charge / discharge efficiency of the nonaqueous electrolyte secondary battery. In “Chemical Formula 1” and “Chemical Formula 2”, R 1 , R 2 , and R 3 may be different from each other or the same type.
[0014]
[Chemical 1]
Figure 0003680454
[0015]
[Chemical formula 2]
Figure 0003680454
[0016]
In the inventions of claims 1 and 2 , the 2- (2-benzotriazol) -P-cresol and its derivatives are represented by the following “formula 3” as in the invention of claim 4. And R 4 and R 5 in “Chemical Formula 3” are hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group ( -NH 2), hydroxyl group (-OH group), a vinyl group (-CH = CH 2), be either 2-pyridyl group (C 5 NH 4) or phenyl group (-C 6 H 5) preferable.
This further increases the charge / discharge efficiency of the nonaqueous electrolyte secondary battery. In “Chemical Formula 3”, R 4 and R 5 may be different from each other or the same.
[0017]
[Chemical 3]
Figure 0003680454
[0018]
Next, as in the invention of claim 5 , the coumarin and its derivative are substances represented by the general formula shown in “Chemical Formula 4” below, and R 6 , R 7 , R 8 is hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group (—NH 2 ), hydroxyl group (—OH), carboxyl group (—COOH), acetyl It is preferably either a group (—COCH 3 ) or a trifluoromethyl group (CF 3 ).
This further increases the charge / discharge efficiency of the nonaqueous electrolyte secondary battery. In “Chemical Formula 4”, R 6 , R 7 , and R 8 may be different from each other or the same.
[0019]
[Formula 4]
Figure 0003680454
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A nonaqueous electrolyte secondary battery according to an example of the present invention will be described together with comparative examples with reference to FIGS.
First, the basic configuration of the nonaqueous electrolyte secondary battery in various examples and comparative examples will be described with reference to FIG.
As shown in FIG. 1, the nonaqueous electrolyte secondary battery 9 includes a positive electrode 21 that can occlude and release lithium, a negative electrode 22 made of a lithium metal, a lithium alloy, or a substance that can occlude and release lithium or a conductive material, and a positive electrode 21. And a negative electrode 22, a non-aqueous electrolyte 1 impregnated in the separator 3, and a battery container 5.
[0021]
The nonaqueous electrolytic solution 1 is obtained by dissolving LiPF 6 as an electrolyte in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane so as to have a concentration of 1 mol · dm −3 .
[0022]
As the positive electrode 21, a mixture obtained by press molding a mixture containing LiMn 2 O 4 as a positive electrode active material is used. A lithium foil is used as the negative electrode 22 and a polypropylene film is used as the separator 3.
The positive electrode 21 and the negative electrode 22 both have current collectors 210 and 220 on the side opposite to the separator 3. The positive electrode side current collector 210 uses SUS304, and the negative electrode side current collector 220 uses nickel expanded metal.
[0023]
The battery container 5 includes a positive electrode side container 51, a negative electrode side container 52, and a gasket 53 for electrically insulating and fixing the two. The positive electrode side container 51 and the negative electrode side container 52 use stainless steel, and the gasket 53 uses polypropylene.
The nonaqueous electrolyte secondary battery 9 of this example is a coin type nonaqueous electrolyte secondary battery.
Hereinafter, Examples 1 to 14 and Comparative Examples C1 to C4 will be described individually.
[0024]
(Example 1)
The non-aqueous electrolyte secondary battery of this example uses a non-aqueous electrolyte obtained by dissolving 1,3,5-triazine as a heterocyclic compound in the non-aqueous electrolyte having the above basic configuration.
That is, the nonaqueous electrolytic solution in this example is a solution obtained by further dissolving 1,3,5-triazine (FIG. 2) to a concentration of 0.01 mol · dm −3 in a mixed solvent in which an electrolyte is dissolved.
Others are the same as the above basic configuration.
[0025]
(Example 2)
In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) is further dissolved in the nonaqueous electrolyte solution having the above basic configuration to a concentration of 0.05 mol · dm −3 . Is the same as the above basic configuration.
[0026]
(Comparative Example C1)
The non-aqueous electrolyte secondary battery of this example uses the non-aqueous electrolyte itself having the above basic configuration as the non-aqueous electrolyte.
[0027]
(Comparative Example C2)
In the non-aqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) is further dissolved in the non-aqueous electrolyte having the above basic configuration to a concentration of 0.005 mol · dm −3 . Is the same as the above basic configuration.
[0028]
(Example 3)
In the non-aqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) is further dissolved in the non-aqueous electrolyte having the above basic configuration to a concentration of 0.1 mol · dm −3 . Others are the same as the above basic configuration.
[0029]
(Comparative Example C3)
In the nonaqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) is further dissolved in the nonaqueous electrolyte having the above basic configuration so as to have a concentration of 0.2 mol · dm −3 . Is the same as the above basic configuration.
[0030]
(Comparative Example C4)
The nonaqueous electrolyte secondary battery of this example uses a nonaqueous electrolyte solution in which an electrolyte is dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
That is, the non-aqueous electrolyte in this example is obtained by dissolving LiPF 6 as an electrolyte to a concentration of 1 mol · dm −3 in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate. is there.
Others are the same as the above basic configuration.
[0031]
(Example 4)
The nonaqueous electrolyte secondary battery of this example is a nonaqueous solution in which 1,3,5-triazine (FIG. 2) is further dissolved in the mixed solvent and electrolyte of Comparative Example C4 to a concentration of 0.05 mol · dm −3. An electrolytic solution is used.
Others are the same as the above basic configuration.
[0032]
(Example 5)
In the nonaqueous electrolyte secondary battery of this example, 2- (2-benzotriazole) -P-cresol (FIG. 3) as a heterocyclic compound was further added to the nonaqueous electrolyte solution having the above basic structure. The basic structure is the same as the above except that it is dissolved to a concentration of 05 mol · dm −3 .
[0033]
(Example 6)
In the nonaqueous electrolyte secondary battery of this example, 0.05 mol of 2,4,6-triamino-1,3,5-triazine (FIG. 4) as a heterocyclic compound was further added to the nonaqueous electrolyte having the above basic structure.・ It is the same as the above basic configuration except that it is dissolved to a dm -3 concentration.
[0034]
(Example 7)
In the non-aqueous electrolyte secondary battery of this example, 1,3,5-triazine (FIG. 2) was further added to the non-aqueous electrolyte having the above basic structure at a concentration of 0.05 mol · dm −3 , 2,4,6-triamino. Except that -1,3,5-triazine (FIG. 4) is dissolved to a concentration of 0.05 mol · dm −3 , it is the same as the above basic configuration.
[0035]
(Example 8)
The nonaqueous electrolyte secondary battery of this example uses a negative electrode that has been surface-treated with a treatment liquid containing 1,3,5-triazine (FIG. 2).
That is, the negative electrode in this example was obtained by immersing lithium metal in the following treatment liquid. The treatment solution was prepared by dissolving LiPF 6 in an equal volume mixed solvent of ethylene carbonate and dimethoxyethane to a concentration of 1 mol · dm −3 and 0.05 mol of 1,3,5-triazine (FIG. 2). -It dissolved so that it might become dm- 3 density | concentration.
Others are the same as the above basic configuration.
[0036]
Example 9
In the nonaqueous electrolyte secondary battery of this example, 2,4-diamino-6-hydroxy-1,3,5-triazine (FIG. 5) as a heterocyclic compound is further added to the nonaqueous electrolyte having the above basic structure. The basic structure is the same as the above except that it is dissolved to a concentration of 0.05 mol · dm −3 .
[0037]
(Example 10)
In the nonaqueous electrolyte secondary battery of this example, 2,4-diamino-6-methyl-1,3,5-triazine (FIG. 6) as a heterocyclic compound was further added to the nonaqueous electrolyte having the above basic structure. The basic structure is the same as the above except that it is dissolved to a concentration of 0.05 mol · dm −3 .
[0038]
(Example 11)
In the nonaqueous electrolyte secondary battery of this example, 2-N-diethylmelamine (FIG. 7) as a heterocyclic compound is further added to the nonaqueous electrolyte solution having the above basic configuration to a concentration of 0.05 mol · dm −3. The basic structure is the same as the above except that it is dissolved in
[0039]
(Example 12)
In the non-aqueous electrolyte secondary battery of this example, 2-vinyl-4,6-diamino-1,3,5-triazine (FIG. 8) as a heterocyclic compound is further added to the non-aqueous electrolyte having the above basic structure. The basic structure is the same as the above except that it is dissolved to a concentration of 0.05 mol · dm −3 .
[0040]
(Example 13)
In the nonaqueous electrolyte secondary battery of this example, 3-amino-5,6-dimethyl-1,2,4-triazine (FIG. 9) as a heterocyclic compound was further added to the nonaqueous electrolyte having the above basic structure. The basic structure is the same as the above except that it is dissolved to a concentration of 0.05 mol · dm −3 .
[0041]
(Example 14)
The non-aqueous electrolyte secondary battery of this example is obtained by adding 5,6-diphenyl-3- (2-pyridyl) -1,2,4-triazine as a heterocyclic compound to the non-aqueous electrolyte having the above basic structure. FIG. 10) is the same as the above basic structure except that 0.05 mol · dm −3 is dissolved.
[0042]
(Example 15)
The non-aqueous electrolyte secondary battery of this example was a comparative example except that 0.05 mol · dm −3 of coumarin (FIG. 11) as a heterocyclic compound was further dissolved in the treatment liquid having the above basic configuration. The same nonaqueous electrolyte secondary battery as 1 was produced.
[0043]
(Example 16)
The nonaqueous electrolyte secondary battery of this example was prepared by further dissolving 0.05 mol · dm −3 of coumarin-3-carboxylic acid (FIG. 12) as a heterocyclic compound in the treatment liquid having the above basic configuration. Other than that, a non-aqueous electrolyte secondary battery similar to Comparative Example 1 was produced.
[0044]
(Example 17)
The nonaqueous electrolyte secondary battery of this example was obtained by using 0.05 mol · dm −3 of 3-acetylcoumarin (FIG. 13) as a heterocyclic compound dissolved in the treatment liquid having the above basic configuration. A non-aqueous electrolyte secondary battery similar to Comparative Example 1 was produced.
[0045]
(Example 18)
The non-aqueous electrolyte secondary battery of this example is obtained by further dissolving 0.05 mol · dm −3 of 4-methylumbelliferone (FIG. 14) as a heterocyclic compound in the treatment liquid having the above basic configuration. A non-aqueous electrolyte secondary battery similar to Comparative Example 1 was produced.
[0046]
(Example 19)
In the non-aqueous electrolyte secondary battery of this example, 7-amino-4- (trifluoromethyl) coumarin (FIG. 15) as a heterocyclic compound was further added to the treatment liquid having the above basic configuration at 0.05 mol · dm −3. A non-aqueous electrolyte secondary battery similar to Comparative Example 1 was produced except that the dissolved one was used.
[0047]
(Example 20)
The non-aqueous electrolyte secondary battery of this example uses a negative electrode that is surface-treated with a treatment liquid containing 0.05 mol · dm −3 coumarin (FIG. 11) instead of 1,3,5-triazine. .
Others are the same as those in the eighth embodiment.
[0048]
(Experimental example 1)
The batteries of Examples 1 to 20 and Comparative Examples C1 to C4 were subjected to charge / discharge tests to evaluate cycle characteristics.
The charge / discharge conditions were a charge current density of 0.5 mA / cm 2 , a charge upper limit voltage of 4.1 V, a charge time of 5 hours, a discharge current density of 2.0 mA / cm 2 , and a discharge lower limit voltage of 2.0 V. Tables 1 and 2 show the charge and discharge efficiency after 20 cycles of each battery.
[0049]
Next, the measurement results of the charge / discharge efficiency of the nonaqueous electrolyte secondary battery will be described with reference to Table 1.
First, in Examples 1 to 3 in which the concentration of 1,3,5-triazine was 0.01, 0.05, 0.1 mol · dm −3 , Comparative Example C1 without addition of 1,3,5-triazine was used. In contrast, the charge / discharge efficiency of the battery was improved. This is presumably because the addition of 1,3,5-triazine modifies the negative electrode surface to prevent current concentration and suppress dendrite growth.
[0050]
On the other hand, the batteries of Comparative Examples C2 and C3 showed no improvement in charge / discharge efficiency over Comparative Example C1. This is probably because in Comparative Example C2, the concentration of 1,3,5-triazine was as low as 0.005 mol · dm −3 , so that the effect of surface modification of the negative electrode did not appear.
[0051]
Further, in Comparative Example C3, the 1,3,5-triazine concentration is excessively high at 0.2 mol, so that a side reaction of triazine occurs, and the charge / discharge efficiency is considered to be lowered.
From the above, it can be said that it is optimal to add 1,3,5-triazine to the non-aqueous electrolyte at a ratio of 0.01 mol · dm −3 or more and less than 0.2 mol · dm −3 .
[0052]
Also, in Example 4 using non-aqueous electrolytes with different solvents, the same effect as in Example 1 appeared. Furthermore, when another heterocyclic compound was used (Examples 5 to 7 and 9 to 14), the same effect as Example 1 was obtained.
Moreover, the effect equivalent to Example 1 appeared also in the battery of Example 8 which processed the negative electrode surface using the processing liquid containing 1,3,5-triazine.
This is thought to be because the surface state of the initial negative electrode has a great influence on the cycle performance.
Therefore, by adding the above triazine, 2- (2-benzotriazole) -P-cresol, to the non-aqueous electrolyte or the treatment solution for the negative electrode surface treatment, the non-aqueous electrolyte secondary battery can be obtained. It turns out that charging / discharging efficiency improves.
[0053]
(Experimental example 2)
The batteries of Examples 15 to 20 and Comparative Example C1 were subjected to charge / discharge tests to evaluate cycle characteristics.
The charge / discharge conditions were a charge current density of 0.5 mA · cm −2 , a charge upper limit voltage of 4.1 V, a charge time of 5 hours, a discharge current density of 2.0 mA · cm −2 , and a discharge lower limit voltage of 2.0 V. Table 3 shows the charge and discharge efficiency after 20 cycles.
[0054]
Next, the result of the charge / discharge test of the battery will be described.
Table 3 shows that charging and discharging efficiency is greatly improved by adding coumarin and its derivatives to the electrolyte. The mechanism of this effect is that, like triazine, coumarin is adsorbed on the negative electrode surface and the interface between the electrolyte and the negative electrode can be controlled, so the side reaction between Li and the electrolyte is suppressed, and dendrite growth is prevented. It is considered that the charge / discharge efficiency is improved.
[0055]
[Table 1]
Figure 0003680454
[0056]
[Table 2]
Figure 0003680454
[0057]
[Table 3]
Figure 0003680454
[0058]
In the present invention, in addition to the above LiMn 2 O 4 , Li compounds such as Li · Mn complex oxide or Li · Co complex oxide can be used as the positive electrode. As the negative electrode, in addition to the lithium foil, Li metal, Li alloy, carbonaceous material, or the like can be used.
[0059]
In addition to LiPF 6 described above, LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3, or the like can be used as the electrolyte. Nonaqueous solvents include cyclic esters (ethylene carbonate, propylene carbonate, etc.), chain esters (diethyl carbonate, etc.), and chain ether (1,2-dimethoxyethane). Etc.), one kind of solvent or two or more kinds of solvents can be used.
[Brief description of the drawings]
1 is a cross-sectional view of nonaqueous electrolyte secondary batteries of Examples 1 to 20 and Comparative Examples C1 to C4.
FIG. 2 is an explanatory diagram of a chemical structural formula of 1,3,5-triazine in Examples.
FIG. 3 is an explanatory diagram of a chemical structural formula of 2- (2-benzotriazole) -P-cresol in Examples.
FIG. 4 is an explanatory diagram of a chemical structural formula of 2,4,6-triamino-1,3,5-triazine in Examples.
FIG. 5 is an explanatory diagram of a chemical structural formula of 2,4-diamino-6-hydroxy-1,3,5-triazine in Examples.
FIG. 6 is an explanatory diagram of a chemical structural formula of 2,4-diamino-6-methyl-1,3,5-triazine in Examples.
FIG. 7 is an explanatory diagram of a chemical structural formula of 2-N-diethylmelamine in Examples.
FIG. 8 is an explanatory diagram of a chemical structural formula of 2-vinyl-4,6-diamino-1,3,5-triazine in Examples.
FIG. 9 is an explanatory diagram of a chemical structural formula of 3-amino-5,6-dimethyl-1,2,4-triazine in Examples.
10 is an explanatory diagram of a chemical structural formula of 5,6-diphenyl-3- (2-pyridyl) -1,2,4-triazine in Examples. FIG.
FIG. 11 is an explanatory diagram of a chemical structural formula of coumarin in an example.
FIG. 12 is an explanatory diagram of a chemical structural formula of coumarin-3-carboxylic acid in Examples.
FIG. 13 is an explanatory diagram of a chemical structural formula of 3-acetylcoumarin in Examples.
FIG. 14 is an explanatory diagram of a chemical structural formula of 4-methylumbelliferone in Examples.
FIG. 15 is an explanatory diagram of a chemical structural formula of 7-amino-4- (trifluoromethyl) coumarin in Examples.
[Explanation of symbols]
1. . . Non-aqueous electrolyte,
21. . . Positive electrode,
22. . . Negative electrode,
3. . . Separator,
5. . . Battery container,
9. . . Non-aqueous electrolyte secondary battery,

Claims (5)

リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解質二次電池において,
上記非水電解液は,添加剤として,トリアジン及びその誘導体,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体,又はクマリン及びその誘導体のグループから選ばれる1種又は2種以上からなる複素環式化合物を,0.01mol・dm −3 以上,0.2mol・dm −3 未満の割合で含有することを特徴とする非水電解質二次電池。
A positive electrode capable of inserting and extracting lithium, a negative electrode made of a lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, a separator provided between the positive electrode and the negative electrode, and the separator impregnated In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte and a battery container,
The non-aqueous electrolyte is one or two selected from the group of triazine and derivatives thereof, 2- (2-benzotriazole) -P-cresol and derivatives thereof, or coumarin and derivatives thereof as additives. A non-aqueous electrolyte secondary battery comprising the above heterocyclic compound in a proportion of 0.01 mol · dm −3 or more and less than 0.2 mol · dm −3 .
リチウムを吸蔵,放出できる正極と,リチウム金属,リチウム合金若しくはリチウムを吸蔵,放出できる物質又は導電性物質からなる負極と,上記正極と負極との間に設けたセパレータと,該セパレータに含浸させた非水電解液と,電池容器とを有する非水電解質二次電池において,
上記負極は,添加剤として,トリアジン及びその誘導体,2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体,又はクマリン及びその誘導体のグループから選ばれる1種又は2種以上からなる複素環式化合物を,0.01mol・dm −3 以上,0.2mol・dm −3 未満の割合で含有する処理液により,表面処理が施されていることを特徴とする非水電解質二次電池。
A positive electrode capable of inserting and extracting lithium, a negative electrode made of a lithium metal, a lithium alloy or a substance capable of inserting and extracting lithium or a conductive material, a separator provided between the positive electrode and the negative electrode, and the separator impregnated In a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte and a battery container,
The negative electrode comprises one or more selected from the group of triazine and derivatives thereof, 2- (2-benzotriazole) -P-cresol and derivatives thereof, or coumarin and derivatives thereof as additives. A non-aqueous electrolyte secondary battery characterized in that a surface treatment is performed with a treatment liquid containing a heterocyclic compound at a ratio of 0.01 mol · dm −3 or more and less than 0.2 mol · dm −3. .
請求項1又は2において,上記トリアジン及びその誘導体は,下記の「化1」又は「化2」に示す一般式により表される物質であり,かつ,「化1」及び「化2」におけるR,R,Rは,水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH基),ビニル基(−CH=CH),2−ピリジル基(CNH)又はフェニル基(−C)のいずれかであることを特徴とする非水電解質二次電池。
Figure 0003680454
Figure 0003680454
3. The triazine and a derivative thereof according to claim 1 or 2, wherein the triazine and the derivative thereof are substances represented by the general formulas shown in the following “Chemical Formula 1” or “Chemical Formula 2”, and R in “Chemical Formula 1” and “Chemical Formula 2”. 1 , R 2 and R 3 are hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group (—NH 2 ), hydroxyl group (—OH group), vinyl A non-aqueous electrolyte secondary battery, which is one of a group (—CH═CH 2 ), a 2-pyridyl group (C 5 NH 4 ), or a phenyl group (—C 6 H 5 ).
Figure 0003680454
Figure 0003680454
請求項1〜のいずれか一項において,上記2−(2−ベンゾトリアゾ−ル)−P−クレゾ−ル及びその誘導体は,下記の「化3」に示す一般式により表される物質であり,かつ,「化3」におけるR,Rは,水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH基),ビニル基(−CH=CH),2−ピリジル基(CNH),又はフェニル基(−C)のいずれかであることを特徴とする非水電解質二次電池。
Figure 0003680454
In any one of claims 1 to 3, the 2- (2-benzotriazole - Le) -P- cresol - le and its derivatives, be a material represented by the general formula shown in "Formula 3" below And R 4 and R 5 in “Chemical Formula 3” are hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group (—NH 2 ), hydroxyl group ( -OH group), a vinyl group (-CH = CH 2), 2- pyridyl group (C 5 NH 4), or a phenyl group (-C 6 H 5) non-aqueous electrolyte, characterized in that either of the two Next battery.
Figure 0003680454
請求項1〜4のいずれか一項において,上記クマリン及びその誘導体は,下記の「化4」に示す一般式により表される物質であり,かつ,「化4」におけるR,R,Rは水素(−H),メチル基(−CH),エチル基(−C),アミノ基(−NH),ヒドロキシル基(−OH),カルボキシル基(−COOH),アセチル基(−COCH),トリフルオロメチル基(CF)のいずれかであることを特徴とする非水電解質二次電池。
Figure 0003680454
In any one of Claims 1-4, the said coumarin and its derivative (s) are substances represented by the general formula shown in the following “Chemical Formula 4”, and R 6 , R 7 , R 8 is hydrogen (—H), methyl group (—CH 3 ), ethyl group (—C 2 H 5 ), amino group (—NH 2 ), hydroxyl group (—OH), carboxyl group (—COOH), acetyl A non-aqueous electrolyte secondary battery, which is either a group (—COCH 3 ) or a trifluoromethyl group (CF 3 ).
Figure 0003680454
JP29954796A 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3680454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29954796A JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-157635 1996-05-28
JP15763596 1996-05-28
JP29954796A JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1050344A JPH1050344A (en) 1998-02-20
JP3680454B2 true JP3680454B2 (en) 2005-08-10

Family

ID=26485017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29954796A Expired - Fee Related JP3680454B2 (en) 1996-05-28 1996-10-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3680454B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210060330A (en) * 2019-11-18 2021-05-26 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2021101174A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지에너지솔루션 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2023058922A1 (en) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023085843A1 (en) * 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 Non-aqueous electrolyte containing non-aqueous electrolyte additive, and lithium secondary battery including same
WO2024071832A1 (en) * 2022-09-30 2024-04-04 주식회사 엘지에너지솔루션 Nonaqueous electrolyte and lithium secondary battery comprising same
WO2024122996A1 (en) * 2022-12-09 2024-06-13 주식회사 엘지에너지솔루션 Lithium secondary battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882134B2 (en) * 1999-10-13 2012-02-22 パナソニック株式会社 Non-aqueous electrolyte secondary battery electrolyte, non-aqueous electrolyte secondary battery, and lithium secondary battery
JP4815660B2 (en) * 2000-06-16 2011-11-16 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002305022A (en) * 2001-04-04 2002-10-18 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolytic solution for secondary battery
CN1215595C (en) * 2001-07-10 2005-08-17 三菱化学株式会社 Non-aqueous electrolytic solution and storage battery using the same
JP4013032B2 (en) * 2001-10-03 2007-11-28 日本電気株式会社 Electrodes and batteries
JP4221550B2 (en) 2001-12-12 2009-02-12 日本電気株式会社 Electrolyte for lithium secondary battery and lithium secondary battery using the same
KR100658742B1 (en) 2004-10-28 2006-12-15 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
KR100628470B1 (en) 2004-11-03 2006-09-26 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
US7255965B2 (en) 2005-04-25 2007-08-14 Ferro Corporation Non-aqueous electrolytic solution
US7238453B2 (en) 2005-04-25 2007-07-03 Ferro Corporation Non-aqueous electrolytic solution with mixed salts
JP5017800B2 (en) * 2005-05-12 2012-09-05 ソニー株式会社 Secondary battery electrolyte and secondary battery
US7682754B2 (en) 2005-05-26 2010-03-23 Novolyte Technologies, Inc. Nonaqueous electrolytic solution for electrochemical cells
US8273484B2 (en) 2005-05-26 2012-09-25 Novolyte Technologies, Inc. Nitrogen silylated compounds as additives in non-aqueous solutions for electrochemical cells
US7727669B2 (en) 2005-05-26 2010-06-01 Novolyte Technologies Inc. Triazine compounds for removing acids and water from nonaqueous electrolytes for electrochemical cells
KR101287102B1 (en) 2011-01-27 2013-07-17 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101502500B1 (en) * 2011-07-01 2015-03-16 주식회사 엘지화학 Nonaqueous electrolyte and lithium secondary battery using the same
JP6593307B2 (en) 2016-11-15 2019-10-23 株式会社村田製作所 Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP7455498B2 (en) 2017-11-29 2024-03-26 株式会社Gsユアサ Non-aqueous electrolyte, non-aqueous electrolyte storage element, and method for manufacturing a non-aqueous electrolyte storage element
CN112216869B (en) * 2020-10-13 2022-08-09 中国科学院成都有机化学有限公司 High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery
EP4329038A4 (en) 2021-08-06 2024-10-23 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE WITH ADDITIVE FOR NON-AQUEOUS ELECTROLYTE AND LITHIUM SECONDARY BATTERY
CN117121255A (en) * 2021-08-06 2023-11-24 株式会社Lg新能源 Nonaqueous electrolyte containing additive for nonaqueous electrolyte and lithium secondary battery containing same
JP2024538135A (en) * 2021-12-01 2024-10-18 エルジー エナジー ソリューション リミテッド Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
US20230253624A1 (en) * 2022-02-08 2023-08-10 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte and Lithium Secondary Battery Including the Same
KR20240017699A (en) * 2022-08-01 2024-02-08 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising the same
KR102824104B1 (en) * 2022-09-30 2025-06-23 주식회사 엘지에너지솔루션 Non-aqueous electrolyte and lithium secondary battery comprising the same
CN120303803A (en) * 2022-12-09 2025-07-11 株式会社Lg新能源 Lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210060330A (en) * 2019-11-18 2021-05-26 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2021101174A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지에너지솔루션 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
US20220209299A1 (en) * 2019-11-18 2022-06-30 Lg Energy Solution, Ltd. Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR102633527B1 (en) 2019-11-18 2024-02-06 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US12243985B2 (en) * 2019-11-18 2025-03-04 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
WO2023058922A1 (en) * 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023085843A1 (en) * 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 Non-aqueous electrolyte containing non-aqueous electrolyte additive, and lithium secondary battery including same
WO2024071832A1 (en) * 2022-09-30 2024-04-04 주식회사 엘지에너지솔루션 Nonaqueous electrolyte and lithium secondary battery comprising same
WO2024122996A1 (en) * 2022-12-09 2024-06-13 주식회사 엘지에너지솔루션 Lithium secondary battery

Also Published As

Publication number Publication date
JPH1050344A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3680454B2 (en) Nonaqueous electrolyte secondary battery
JP5323487B2 (en) Life reduction inhibitor of redox shuttle agent, non-aqueous electrolyte containing the same, and secondary battery
JP4830279B2 (en) Nonaqueous electrolyte secondary battery
JP2009105069A (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
CN115275354B (en) A carbonate-free ethylene ester electrolyte suitable for alkali metal ion batteries and its application
KR970008713A (en) Non-aqueous electrolyte and lithium secondary battery
JPH10247519A (en) Lithium secondary battery
JP2000106211A (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000268861A (en) Nonaqueous electrolyte secondary battery
JPH1186901A (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP2000228216A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2003021707A1 (en) Nonaqueous electrolyte
JP2000113909A (en) Storing method for lithium secondary battery
JPWO2003036751A1 (en) Non-aqueous electrolyte secondary battery
JP3721678B2 (en) Non-aqueous electrolyte secondary battery
JP2000215911A (en) Flame retardant electrolyte and non-aqueous electrolyte secondary battery
JP2001266939A (en) Non-aqueous electrolytic solution for lithium ion secondary battery
JP2002231305A (en) Electrolyte for battery, and nonaqueous electrolyte battery
KR100558842B1 (en) Organic Electrolyte and Lithium Battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
KR20230028438A (en) Lithium-ion battery and electrolyte used therein
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JP2001143746A (en) Electrolyte for cell and non-aqueous electrolyte secondary cell
JP3086878B1 (en) Lithium metal secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees