JP3678598B2 - 固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 - Google Patents
固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 Download PDFInfo
- Publication number
- JP3678598B2 JP3678598B2 JP03882299A JP3882299A JP3678598B2 JP 3678598 B2 JP3678598 B2 JP 3678598B2 JP 03882299 A JP03882299 A JP 03882299A JP 3882299 A JP3882299 A JP 3882299A JP 3678598 B2 JP3678598 B2 JP 3678598B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- stator
- poles
- rotor
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Electric Motors In General (AREA)
Description
【発明の属する技術分野】
本発明は、固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータ、例えば、スイッチドリラクタンスモータ(以下SRモータという)の駆動方法及び駆動装置に関するものである。
【0002】
【従来の技術】
図14に従来のSRモータとその駆動回路図を示す。この図において、1は、SRモータの固定子で、6個の突極を有する。3は、固定子1 の各突極に巻装された巻線で、U相の巻線は、図示のように、互いに対向する2つの突極に巻装された巻線を直列に接続して構成されている。
V相、W相の巻線についても同様に構成されている。
【0003】
2は、SRモータの回転子で、等間隔で形成された4個の突極を有する。Vbは、上記巻線3に駆動電流を供給する電源、29はSRモータの駆動回路で、次のように構成されている。即ち、4,5はU相の巻線3に駆動電流を流すためのトランジスタ、6,7は、上記トランジスタ4、5とそれぞれ直列に接続され、U相の巻線3に蓄積された磁気エネルギーを回生するためのダイオードである。同様に8、9は、V相の巻線3に駆動電流を流すためのトランジスタ、10、11はV相の巻線3に蓄積された磁気エネルギーを回生するためのダイオード、12、13はW相の巻線についてのトランジスタ、14、15はW相の巻線についてのダイオードである。
【0004】
次に動作について説明する。トランジスタ4、5をONすると、電源Vbからトランジスタ4を経て実線矢印の電流径路26で示すように、U相の巻線3を通ってトランジスタ5から電源Vbに至る駆動電流が流れる。その後、トランジスタ4、5をOFFすると、U相の巻線3に蓄積されている磁気エネルギーによって点線矢印の電流径路27で示すように、回生電流が流れ、電源Vbにエネルギーを回生する。
【0005】
トランジスタ4、5をOFFした後にトランジスタ8、9をONすると、電源Vbからトランジスタ8を経てV相の巻線及びトランジスタ9を経て駆動電流が流れ、同様に、トランジスタ8、9をOFFした後にトランジスタ12、13をONすることによってW相の巻線に駆動電流が流れる。これを繰り返すことによってSRモータの回転子2を回転することができる。トランジスタ4、5、トランジスタ8、9、トランジスタ12、13をONまたはOFFするタイミングは、巻線3に対する回転子2の突極の位置関係で決まるが、これについては後述する。
【0006】
図15は、図14に示す駆動回路29の一相分(U相)に、回転子の位置検出を行うセンサレス回路28を接続した概略図を示すものである。
この図において、Vccは検出用電源、16は抵抗で、ダイオード17を介して駆動回路29に接続され、電源Vccから巻線3に検出用電流を流し、巻線3のインダクタンスに相当する電圧を検出するためのものである。
なお、ダイオード17は、母線電圧Vbから抵抗16側に電流が流れ込むのを防止するためのものである。
【0007】
19は、回転子2の回転位置を検出する位置検出回路で、上述した巻線3のインダクタンスに相当する電圧が入力され、この電圧とあらかじめ設定されたしきい値(図示せず)とを比較して後述するような位置検出信号を出力するものである。20は、位置検出信号にもとづいて、固定子1の各相の巻線に印加する駆動信号を発生すると共に、そのタイミングを制御する制御回路で、マイコンなどによって構成されている。18は、制御回路20からのステップ関数信号によってON、OFFが制御され、スイッチの働きをするトランジスタで、ON時に、抵抗16、巻線3にステップ電圧を供給する。
【0008】
次にこの回路の動作について説明する。制御回路20から出力されたステップ関数信号によってトランジスタ18がONされると、抵抗16とSRモータの巻線3(この場合はU相)にステップ関数電圧が印加される。このとき、位置検出回路19の入力端子には、抵抗16と巻線3のインダクタンスのLR直列回路による過渡応答電圧が印加される。位置検出回路19は、入力された電圧と、後述するように所定のレベルに設定されたしきい値とを比較し、回転子2の所定の回転位置に相当するインダクタンス、または電圧に到達したことを検知して位置検出信号を制御回路20に出力する。制御回路20は、入力された位置検出信号からSRモータを駆動するタイミングを算出し、駆動回路29に駆動信号を出力する。
【0009】
図16は代表的なSRモータの固定子1と回転子2の相対位置関係に対する固定子の巻線のインダクタンスの変化を示した図である。横軸は、固定子1と回転子2の相対位置関係を示すもので、両者の突極が対向している位置を0度とし、両者の突極のずれの程度を角度で示したものである。
【0010】
モータの巻線3のインダクタンスは、図示のように、固定子1の突極と回転子2の突極とが対向している0度の位置で最大となり、回転子2 の突極が固定子1の突極から離れると、回転子2の回転角に比例して減少し、固定子1の突極と回転子2の突極が最も離れた時に最小となる。回転子2に回転トルクを発生させるためには、回転角に比例してインダクタンスが変化する期間に駆動回路29から巻線3に駆動信号を供給する。一方、回転子2の回転トルクの方向は、インダクタンスが増加する範囲と減少する範囲とでは逆となるため、同一方向に回転トルクを発生させるためには、常に同じ範囲(一般には増加する範囲)に回転子2がある時に駆動信号を印加する必要がある。この範囲が、相によって異なると回転が不安定となり、効率も低下する。
【0011】
インダクタンスが増加する範囲で駆動信号を供給するためには、回転子の位置を知る必要がある。インダクタンスの変化は、図16に示すように、固定子1の突極と回転子2の突極とが対向した後は、回転子の回転角に対して直線的に変化(減少)している。従って、この範囲でのインダクタンスの大きさを検出すれば固定子1の突極と回転子2の突極が対向した位置からの回転子2の突極の回転位置を推定することが出来る。即ち、位置検出回路19で所定の回転角に相当するインダクタンスの大きさに設定されたしきい値と、上述のように変化するインダクタンスとを比較することにより、回転子2が所定の回転位置に到達したことを推定することができる。制御回路20は、位置検出回路19からの信号と所定の駆動位置との関係にもとづいてSRモータ駆動に最適な回転位置で駆動信号を出力することになる。
【0012】
【発明が解決しようとする課題】
従来のSRモータの駆動方法及び装置は、以上のように構成されているが、センサレス回路から見たSRモータの巻線のインダクタンスは、他相の駆動電流や回生電流による磁界等の影響の違いにより、各相で大きさが異なるため、回転子の所定の回転角に相当する巻線インダクタンスの大きさに設定された単一のしきい値を使用して位置検出を行った場合、図17及び図18に示すように、検出相によって回転子の検出位置が異なってしまうため、U相で検出した位置信号は、V相やW相の他相では最適の位置信号とはならず、従って安定した運転ができなくなり、効率も低下するという問題があった。
なお、図17の(a)は回転角に対する各相の巻線のインダクタンスの変化を示す特性図、(b)は位置検出信号を示すものである。
【0013】
図19は、各相の電流による影響の違いを分かりやすくするため、各電流による磁界を示した図である。図19(a)は、W相に駆動電流が流れ、V相に回生電流が流れているときに、U相に検出電流を流して回転子2の回転位置を検出しているときの図である。図19(b)は、U相に駆動電流が流れ、W相に回生電流が流れているときに、V相に検出電流を流して回転子2の回転位置を検出しているときの図である。図19(c)は、V相に駆動電流が流れ、U相に回生電流が流れているときに、W相に検出電流を流して回転子2の回転位置を検出しているときの図である。
【0014】
この図から分かるように、位置検出電流による磁界から見た駆動電流、回生電流による磁界は各相によって異なっている。このため、位置検出電流による磁界に対する他相の駆動電流、回生電流による磁界の影響は、各相によって異なることになる。図17に示すように、検出された巻線インダクタンスの大きさも各相によって異なってくるため、所定の回転子2の位置に相当するインダクタンスの大きさに設定されたしきい値と、各相のインダクタンスの大きさとを比較して回転子2が所定の位置に到達したかどうかを推定するセンサレス駆動の場合、各相の巻線インダクタンスの違いがそのまま駆動信号の印加タイミングの違いとなるため、安定した運転ができず、効率も低下することは上述した通りである。
【0015】
本発明は、このような問題点を解消するためになされたもので、各相の巻線のインダクタンスの大きさに違いがあっても、各相の駆動信号の印加位置を同じにすることができるモータの駆動方法及び駆動装置を提供しようとするものである。
【0016】
【課題を解決するための手段】
本発明の駆動方法は、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出し、各相の電圧と各相ごとに異なる値が設定されたしきい値とを比較し、上記各相の電圧が上記各相のしきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力すると共に、上記各相のしきい値を上記各相の位置検出信号の出力位置が同じとなるように設定したものである。
【0017】
本発明の駆動方法は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出し、各相の電圧と所定のしきい値とを比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力すると共に、上記各相の位置検出信号を各相ごとに異なった遅延時間要素を経て出力することにより各相の位置検出信号の出力位置が同じとなるようにしたものである。
【0018】
本発明の駆動方法は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出すると共に、各相の電圧を各相ごとに異なる増幅率で増幅して各相の電圧が同じ大きさとなるようにした後、各相の電圧を所定のしきい値と比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を出力するようにしたものである。
【0019】
本発明の駆動方法は、また、各相の電圧の増幅率は、各相のインダクタンスの大きさに逆比例するようにされているものである。
【0021】
本発明の駆動方法は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の巻線のインダクタンスに対応する電圧を所定のしきい値と比較することにより、上記回転子の回転位置に対応した位置検出信号を出力し、この位置検出信号に基づいて駆動信号を上記固定子の巻線に印加するようにしたモータにおいて、上記固定子の巻線に対する駆動信号印加時の駆動電流による磁界と、駆動信号停止時の回生電流による磁界との合成磁界の方向に、位置検出時の電流による磁界が発生するように、上記固定子の巻線の巻き方を設定するようにしたものである。
【0022】
本発明の駆動方法は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の巻線のインダクタンスに対応する電圧を所定のしきい値と比較することにより、上記回転子の回転位置に対応した位置検出信号を出力し、この位置検出信号を駆動信号として上記固定子の巻線に印加するようにしたモータにおいて、上記固定子の巻線に対する駆動信号印加時の駆動電流による磁界と、駆動信号停止時の回生電流による磁界との合成磁界の向きと、位置検出時の電流による磁界の向きとが一致するようにしたものである。
【0023】
本発明の駆動装置は、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧と各相ごとに異なる値が設定されたしきい値とを比較し、上記各相の電圧が各相のしきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力する出力手段とを備え、上記各相の位置検出信号の出力位置が同じとなるように上記各相のしきい値を設定したものである。
【0024】
本発明の駆動装置は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧と所定のしきい値とを比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力する出力手段と、上記各相の位置検出信号を各相ごとに異なった遅延時間要素を経て出力し、各相の位置検出信号の出力位置が同じとなるようにした手段とを備えたものである。
【0025】
本発明の駆動装置は、また、複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧を各相ごとに異なる増幅率で増幅して各相の電圧が同じ大きさとなるようにした増幅手段と、上記増幅された各相の電圧を所定のしきい値と比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を出力する手段とを備えたものである。
【0028】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1を図にもとづいて説明する。
図1は、実施の形態1のベースとなるセンサレス回路から見たSRモータの巻線のインダクタンスの変化と位置検出信号との関係を示す図で、(a)は回転角に対する各相の巻線のインダクタンスの変化を示す特性図、(b)は位置検出信号を示すものである。モータの巻線3のインダクタンスは、上述のように、固定子1 の突極と回転子2の突極とが対向している位置で最大となる(この時の角度を0としている)。回転子2の突極が固定子1の突極から離れると、インダクタンスは図1(a)のように回転子2の回転角に比例して減少し、固定子1の突極と回転子2の突極が最も離れた時に最小となる。回転子2の回転角に対してインダクタンスの大きさが比例するため、インダクタンスの大きさが予め設定したしきい値(予め設定した回転子の位置に相当するインダクタンスの大きさ)となった時に図1(b)に示すように、位置検出信号を出力することにより、回転子の位置を検出することが出来る。
【0029】
センサレス回路28から見た各相の巻線のインダクタンスは、他相の駆動電流や回生電流による磁界などの影響により図示するようにそれぞれ大きさが異なる。このため、各相のしきい値を同じにすれば、出力される位置検出信号の回転子角が各相で異なってしまい、位置検出信号と同じタイミングで出力される駆動信号の印加位置も異なってしまうことになる。そこで、位置検出信号が各相とも同じ回転位置で出力されるように、各相の巻線のインダクタンスのしきい値を図1(a)に示すように、各巻線のインダクタンスに合わせて異なった値にあらかじめ設定する。これにより、各相の位置検出信号の検出位置を図1(b)に示すように、同じにすることができるため、SRモータの駆動信号を印加する印加位置も同じになり、安定した運転が可能となる他、効率も改善される。
【0030】
図2は、実施の形態1を示す一相分の回路構成図である。この図において、1は、SRモータの固定子で、6個の突極を有する。
3は、固定子1 の各突極に巻装された巻線で、U相の巻線は、図示のように、互いに対向する2つの突極に巻装された巻線を直列に接続して構成されている。
V相、W相の巻線についても同様であるが、図2では接続導体は省略している。
【0031】
2は、SRモータの回転子で、等間隔で形成された4個の突極を有する。Vbは、上記巻線3に駆動電流を供給する母線電圧源、29はSRモータの駆動回路で、次のように構成されている。即ち、4,5はU相の巻線3に駆動電流を流すためのトランジスタ、6,7は、上記トランジスタ4、5とそれぞれ直列に接続され、U相の巻線3に蓄積された磁気エネルギーを回生するためのダイオードである。28は、上記巻線のインダクタンスに相当する電圧を検出して回転子の位置検出を行うセンサレス回路で、次のように構成されている。即ち、Vccは検出用電源、16は抵抗で、ダイオード17を介して駆動回路29に接続され、電源Vccから巻線3に検出用電流を流し、巻線3のインダクタンスに相当する電圧を検出するためのものである。
【0032】
なお、ダイオード17は母線電圧源Vbから抵抗16側に電流が流れ込むのを防止するためのものである。19は回転子2の回転位置を検出して後述する位置検出信号を出力する位置検出回路で、抵抗21、22の直列接続体を電源Vccに接続し、両抵抗の中間点電位をしきい値として出力するしきい値設定手段と、抵抗16とダイオード17の接続点から得られる上記巻線3のインダクタンスに相当する電圧を入力し、上記しきい値と比較する比較回路23とを有する。
比較回路23は、上記入力電圧がしきい値に達した時に位置検出信号を出力するようにされているものである。
20は位置検出信号にもとづいて固定子1の各相の巻線に印加する駆動信号のタイミングを制御する制御回路で、マイコンなどによって構成されている。
18は制御回路20からのステップ関数信号によってON、OFFが制御され、スイッチの働きをするトランジスタで、ON時に抵抗16、巻線3にステップ電圧を供給する。
【0033】
次に、実施の形態1の動作について説明する。制御回路20から出力されたステップ関数信号によってトランジスタ18がONされると、抵抗16とSRモータの巻線3(この場合はU相)にステップ関数電圧が印加される。このとき、位置検出回路19の入力端子には、抵抗16と巻線3のインダクタンスのLR直列回路による過渡応答電圧が印加される。位置検出回路19は、入力された電圧と、抵抗21、22によって設定されたしきい値とを比較回路23で比較し、入力電圧がしきい値に到達したことを検知して位置検出信号を制御回路20に出力する。制御回路20は、入力された位置検出信号からSRモータを駆動するタイミングを算出し、駆動回路29に駆動信号を出力する。
【0034】
図2の回路において、位置検出回路19の抵抗21、22の大きさを選択することによりしきい値を設定することができる。このしきい値設定手段は、各相ごとに設けられ、それぞれの抵抗21、22の値を変えることにより、各相のしきい値が図1に示したしきい値となるように設定される。この結果、図1に示すように、位置検出信号が各相とも同じ回転角で出力されるため、位置検出信号を検出してから駆動信号を出力するまでのアルゴリズムを各相同じにすることができ、駆動信号を印加する位置を各相同じにすることができる。
従って、SRモータの巻線インダクタンスが各相によって異なってもSRモータを安定に運転することができ、さらに、効率も改善できる。
なお、本実施の形態では、位置検出回路19を独立した回路として設けているが、この機能を制御回路20に組み込んでも良い。
【0035】
実施の形態2.
次に本発明の実施の形態2を図にもとづいて説明する。
図3は、実施の形態2のベースとなるセンサレス回路から見たSRモータの巻線のインダクタンスの変化と位置検出信号との関係を示す図で、(a)は回転角に対する各相の巻線のインダクタンスの変化を示す特性図、(b)は実施の形態2によって各相の巻線のインダクタンスの大きさが同じになった状態を示す特性図、(c)は位置検出信号を示すものである
【0036】
センサレス回路28から見た各相の巻線のインダクタンスが、他相の駆動電流や回生電流による磁界などの影響により図3(a)に示すようにそれぞれ大きさが異なることは、すでに説明した通りである。
そこで、各相の巻線のインダクタンス、またはそれに対応する検出信号を各相ごとに増幅し、かつ各相の増幅率を図3(a)の各相のインダクタンスの大きさに逆比例する形で異ならせ、各相の増幅回路の出力がいずれも図3(b)のように同じ大きさになるようにする。この結果、検出位置を各相とも同じにすることができ、SRモータの駆動信号を印加する回転位置も各相とも同じになるため、安定した運転ができ、効率も改善される。
【0037】
図4は、実施の形態2を示す一相分の回路構成図で、上述の考え方を具体化したものである。この図において、図2と同一または相当部分には同一符号を付して説明を省略する。図2と異なるところは、位置検出回路19のしきい値を各相に共通の単一のしきい値とした点及び位置検出回路19の入力側に増幅回路24を設けた点である。増幅回路24は、巻線インダクタンスに相当する検出電圧を増幅するために設けられたものである。
また、この増幅回路24は、各相ごとに設けられ、それぞれの増幅率を上述したように異ならせることにより、各増幅回路の出力が図3(b)に示すように同じ大きさとなるようにされている。
【0038】
次に動作について説明する。制御回路20から出力されたステップ関数信号によってトランジスタ18がONされると、抵抗16とSRモータの巻線3(この場合はU相)にステップ関数電圧が印加される。このとき、増幅回路24の入力端子には、抵抗16と巻線3のインダクタンスのLR直列回路による過渡応答電圧が印加される。入力された電圧は、上述のように、各相異なることになるが、各相の増幅回路の増幅率を上述のように異ならせておくことにより、各相の増幅回路の出力は、それぞれ図3(b)のように同じ大きさとなる。
位置検出回路19は、各相の増幅回路24の出力と、図3(b)に示すような単一のしきい値(所定の回転位置のインダクタンスに対応する電圧)とを比較し、増幅回路の出力がしきい値に到達したことを検知して位置検出信号を制御回路20に出力する。制御回路20は、位置検出信号からSRモータを駆動するタイミングを算出し、そのタイミングで駆動回路29に駆動信号を出力する。
【0039】
回転角に対するインダクタンスの大きさ、または検出電圧が各相によって異なるため、各相の検出電圧をそれぞれ異なる増幅率で増幅し、同じ大きさにした後、位置検出を行う点に特徴がある。
なお,本実施の形態では、位置検出回路19と増幅回路24を独立した回路として設けているが、この機能を制御回路20に組み込んでも良い。
【0040】
実施の形態3.
次に、本発明の実施の形態3を図にもとづいて説明する。
図5は、実施の形態3を説明するためのセンサレス回路から見たSRモータの巻線のインダクタンスの変化と位置検出信号、駆動信号との関係を示す図で、(a)は回転角に対する各相の巻線のインダクタンスの変化を示す特性図、(b)は各相の位置検出信号を示す特性図、(c)は位置検出信号と駆動信号との関係を示す特性図である
【0041】
センサレス回路28から見た各相の巻線のインダクタンスが、他相の駆動電流や回生電流による磁界などの影響により図5(a)に示すようにそれぞれ大きさが異なることは実施の形態2でも説明した通りである。
このため、各相に対して単一のしきい値を設定している場合には、比較結果として出力される位置検出信号の回転角が図5(b)に示すように、各相で異なることになり、位置検出信号と同じタイミングで出力される駆動信号の印加位置も各相で異なることになる。
【0042】
回転子の巻線に駆動信号を印加するタイミングは、予め設定してある位置検出信号の検出位置と、予め設定してある駆動信号印加位置との回転角に相当する時間(delay時間)を算出し、位置検出信号を検出してから駆動信号を印加するようにすれば、予め設定してある駆動信号印加位置で駆動信号を印加することができる。これを各相について順次繰り返すことによってセンサレスでSRモータを運転することができる。delay時間は、位置検出信号を出力した位置から駆動信号を印加する位置までの回転角に相当する時間としてSRモータの回転数から算出することができる。
【0043】
しかし、予め設定してある位置検出信号の検出位置が、実際には、他相の駆動電流、回生電流による磁界などの影響により図5(b)に示すように、相によって異なるため、駆動信号の印加位置も異なる結果となり、SRモータを安定して運転することができず、効率も低下する。
【0044】
そのため、実施の形態3は、図5(b)に示すように、予め設定した位置検出信号の出力位置と実際に検出される検出位置との差に相当する時間でdelay時間を補正するようにしたものである。この結果、図5(b)のように、各相の位置検出信号の検出位置が異なれば、それに対応してdelay時間が変わり、駆動信号は各相とも同じ位置で印加することができる。
【0045】
予め設定した検出信号の出力位置と実際に検出される検出位置との差は、SRモータの巻線構成や回転子2の回転位置を検出するための位置検出電流の大きさや方向などが決まれば決定されるものであるため、予め設定した補正の大きさを制御回路20に組み込んでおくことができる。
【0046】
実施の形態4.
次に、本発明の実施の形態4を図にもとづいて説明する。
図6は、実施の形態4を示す一相分の回路構成図である。この図において、図4と同一または相当部分には同一符号を付して説明を省略する。
図4と異なるところは、増幅回路24を除去した点及び固定子の巻線の巻き方向を各相ごとに逆にした点である。
25は、固定子1の突極に巻装され、巻き方向が各相ごとに逆になっている巻線である。。
【0047】
図7は、実施の形態4による磁界の関係を示した図である。図7(a)は、W相に駆動電流が流れ、V相に回生電流が流れているときに、U相に検出電流を流して回転子2の回転位置を検出しているときの図である。図7(b)は、U相に駆動電流が流れ、W相に回生電流が流れているときに、V相に検出電流を流して回転子2の回転位置を検出しているときの図である。図7(c)は、V相に駆動電流が流れ、U相に回生電流が流れているときに、W相に検出電流を流して回転子2の回転位置を検出しているときの図である。
【0048】
図7に示したように、駆動電流による磁界(実線)と回生電流による磁界(二点鎖線)とを合成した方向(直線上)に位置検出電流による磁界(一点鎖線)が発生するように巻線25の巻き方を設定する。または、駆動電流による磁界と回生電流による磁界が位置検出電流による磁界に対して対称的な方向に発生するように巻線25の巻き方を設定する。
【0049】
SRモータの場合、固定子1の突極が励磁されることにより、固定子1の突極の磁気抵抗が最小となる向きに回転子2が磁気吸引され回転するため、励磁された固定子1の突極の磁極には依存しない。このため、巻線25の巻き方は各相自由に巻くことが可能である。
【0050】
図8は、図15と同じセンサレス回路側から見たSRモータの巻線のインダクタンスの変化と位置検出信号との関係を示す図で、(a)は回転角に対する各相の巻線のインダクタンスの変化を示す特性図、(b)は位置検出信号を示すものである。
図7に示す磁界を発生させることにより、位置検出電流による磁界から見た駆動電流、回生電流による磁界関係は各相とも同じになるため、他相の駆動電流、回生電流による磁界などの影響も同じになる。このため、検出された巻線のインダクタンスの大きさも各相とも同じになる。従って、図9に示すように、各相の位置検出信号が出力される位置を同じにすることができる。
この結果、SRモータの駆動信号を印加するタイミングも各相同じになり、安定した運転をすることができ、効率も改善される。
【0051】
なお、本実施の形態では、固定子1の突極が6個、回転子2の突極が4個の3相SRモータについて説明したが、固定子1の突極が12個、回転子2の突極が8個のSRモータであっても、検出電流による磁界から見た他の電流の磁界が各相同じになるようにSRモータの巻線を設定すれば、同じ効果が得られることは云うまでもない。
【0052】
実施の形態5.
次に、本発明の実施の形態5を図にもとづいて説明する。
図10は、実施の形態5を示す一相分の回路構成図である。この図において、図6と同一または相当部分には同一符号を付して説明を省略する。
図6と異なるところは、ダイオード17の陰極がトランジスタ5とダイオード7の接続点に接続されている点及びトランジスタ18が、トランジスタ4とダイオード6の接続点に接続されている点である。このため、SRモータを駆動するためにトランジスタ4、5をONしたときに巻線3(この場合はU相)に流れる電流と、固定子2の位置を検出するために制御回路20から出力されたステップ関数信号によってトランジスタ18がONされることによって流れる位置検出電流の向きとは逆になる。
【0053】
図11は、実施の形態5による磁界の関係を示した図である。図11(a)は、W相に駆動電流が流れ、V相に回生電流が流れているときに、U相に検出電流を流して回転子2の回転位置を検出しているときの図である。図11(b)は、U相に駆動電流が流れ、W相に回生電流が流れているときに、V相に検出電流を流して回転子2の回転位置を検出しているときの図である。図11(c)は、V相に駆動電流が流れ、U相に回生電流が流れているときに、W相に検出電流を流して回転子2の回転位置を検出しているときの図である。
【0054】
実施の形態4で説明したようなSRモータの巻線の巻き方としているため、駆動電流による磁界(実線)と回生電流による磁界(二点鎖線)とを合成した方向(直線上)に位置検出電流による磁界(一点鎖線)が発生する。さらに、図11に示すように、駆動電流、回生電流と位置検出電流の向きを逆にしてあるため、同じ巻線での駆動電流、回生電流による磁界と位置検出電流による磁界の向きが反対になっている。このため、駆動電流による磁界と回生電流による磁界を合成した向きに位置検出電流による磁界が発生する。
【0055】
図12は、図8と同じセンサレス回路側から見たSRモータの巻線のインダクタンスの変化と位置検出信号との関係を示す図である。モータの巻線3のインダクタンスは、実施の形態4の場合と同様に、図12(a)のようになるため、所定のしきい値と比較することにより、巻線のインダクタンスの大きさがしきい値と一致した時に図12(b)のように位置検出信号を出力することが出来る。
【0056】
なお、上述したように、図11で示す磁界を発生させることにより、位置検出電流による磁界から見た駆動電流、回生電流による磁界は各相とも同じになるため、他相の駆動電流、回生電流による磁界などの影響も同じになる。
従って、図12及び図13に示すように、各相の位置検出信号が出力される位置を同じにすることができる。
この結果、SRモータの駆動信号を印加するタイミングも各相同じになり、安定した運転をすることができ、効率も改善される。
【0057】
また、駆動電流と回生電流による磁界を合成した方向と位置検出電流による磁界の方向が同じになることにより、固定子1や回転子2内の磁界関係が各相同じになり、さらに同じ方向を向く範囲が多くなるため、位置検出信号が実施の形態4に比べてさらに安定し、外乱となる他相の駆動電流や回生電流による磁界の影響が小さくなる。
このため、図12に示すように、SRモータが停止している状態(駆動電流と回生電流が流れていない状態)と運転している状態(駆動電流と回生電流が流れている状態)とで位置検出信号が出力される位置が同じになる結果、巻線のインダクタンスのしきい値の調整が、モータを停止した状態で簡単に行えるので生産性が非常に良くなる。
【0058】
なお、本実施の形態では、固定子1の突極が6個、回転子2の突極が4個の3相SRモータについて説明したが、固定子1の突極が12個、回転子2の突極が8個のSRモータであっても、検出電流による磁界から見た他の電流の磁界が各相同じになるようにSRモータの巻線を設定すれば、同じ効果が得られることは云うまでもない。
また、以上の各実施の形態では、SRモータについて説明したが、これに限られるものではなく、固定子巻線のインダクタンスの変化を利用して回転子の位置を検知する他のモータについても同様に実施することが可能である。
【0059】
【発明の効果】
本発明は、以上説明したように構成されているため、以下のような効果を奏する。
【0060】
本発明は、各相の位置検出信号の出力位置が同じとなるように補正するものであるため、制御回路の制御アルゴリズムが簡略化でき安価な制御回路で制御することができる。
【0061】
本発明は、また、各相の位置検出信号を、各相ごとに異なるしきい値と比較することにより、駆動信号の出力位置が同じとなるようにしたため、制御回路の制御アルゴリズムが簡略化でき安価な制御回路で制御することができる。
【0062】
本発明は、また、各相の位置検出信号を各相ごとに異なる増幅率で増幅することにより、同じ大きさとなるようにし、その後、所定のしきい値と比較して駆動信号を出力するようにしたため、制御回路の制御アルゴリズムが簡略化でき安価な制御回路で制御することができる。
【0063】
本発明は、また、各相の位置検出信号を、各相ごとに異なる遅延時間要素を経て駆動信号とすることにより、駆動信号の印加位置が各相同じになるようにしたため、制御回路(マイコン)のアルゴリズムだけの変更で従来の回路をそのまま利用することができる。
【0064】
本発明は、また、駆動電流と回生電流による磁界の合成磁界の方向に、巻線インダクタンス検出電流による磁界が発生するようにしたため、モータ巻線の巻き方または回路構成を変更するだけで従来の回路をそのまま流用することができる。
【0065】
本発明は、また、駆動電流と回生電流による磁界の合成磁界の向きと、巻線インダクタンス検出電流による磁界の向きとが一致するようにしたため、モータ巻線の巻き方または回路構成を変更するだけで従来の回路をそのまま流用することができ、生産性もよくなる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のベースとなるSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図2】 本発明の実施の形態1を示す一相分の回路構成図である。
【図3】 本発明の実施の形態2のベースとなるSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図4】 本発明の実施の形態2を示す一相分の回路構成図である。
【図5】 本発明の実施の形態3を説明するためのSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図6】 本発明の実施の形態4を示す一相分の回路構成図である。
【図7】 本発明の実施の形態4による磁界の関係を示す図である。
【図8】 本発明の実施の形態4におけるSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図9】 本発明の実施の形態4における各相の検出角度を示す図である。
【図10】 本発明の実施の形態5を示す一相分の回路構成図である。
【図11】 本発明の実施の形態5による磁界の関係を示す図である。
【図12】 本発明の実施の形態5におけるSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図13】 本発明の実施の形態5における各相の検出角度を示す図である。
【図14】 従来の一般的なSRモータの駆動回路を示す概略図である。
【図15】 従来の一般的なSRモータのインダクタンス検出回路を示す概略図である。
【図16】 従来の一般的なSRモータの巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図17】 従来の一般的なSRモータの各相の巻線インダクタンスの変化と位置検出信号との関係を示す図である。
【図18】 従来の一般的なSRモータの各相の検出角度を示す図である。
【図19】 従来の一般的なSRモータの電流による磁界を示す図である。
【符号の説明】
1 固定子、 2 回転子、 3、25 巻線、
4、5、8、9、12、13、18 トランジスタ、
6、7、10、11、14、15、17 ダイオード、
16、21、22 抵抗、 19 位置検出回路、 20 制御回路、
23 比較回路、 24 増幅回路、 26 駆動電流経路、
27 回生電流経路、 28 センサレス回路、 29 駆動回路、
Vb 電源、 Vcc 検出用電源。
Claims (9)
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出し、各相の電圧と各相ごとに異なる値が設定されたしきい値とを比較し、上記各相の電圧が上記各相のしきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力すると共に、上記各相のしきい値を上記各相の位置検出信号の出力位置が同じとなるように設定したことを特徴とする固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出し、各相の電圧と所定のしきい値とを比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力すると共に、上記各相の位置検出信号を各相ごとに異なった遅延時間要素を経て出力することにより各相の位置検出信号の出力位置が同じとなるようにしたことを特徴とする固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出すると共に、各相の電圧を各相ごとに異なる増幅率で増幅して各相の電圧が同じ大きさとなるようにした後、各相の電圧を所定のしきい値と比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を出力するようにしたことを特徴とする固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 上記各相の電圧の増幅率は、各相のインダクタンスの大きさに逆比例するようにされていることを特徴とする請求項3記載の固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の巻線のインダクタンスに対応する電圧を所定のしきい値と比較することにより、上記回転子の回転位置に対応した位置検出信号を出力し、この位置検出信号に基づいて駆動信号を上記固定子の巻線に印加するようにしたモータにおいて、上記固定子の巻線に対する駆動信号印加時の駆動電流による磁界と、駆動信号停止時の回生電流による磁界との合成磁界の方向に、位置検出時の電流による磁界が発生するように、上記固定子の巻線の巻き方を設定するようにしたことを特徴とする固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを備え、上記固定子の巻線のインダクタンスに対応する電圧を所定のしきい値と比較することにより、上記回転子の回転位置に対応した位置検出信号を出力し、この位置検出信号を駆動信号として上記固定子の巻線に印加するようにしたモータにおいて、上記固定子の巻線に対する駆動信号印加時の駆動電流による磁界と、駆動信号停止時の回生電流による磁界との合成磁界の向きと、位置検出時の電流による磁界の向きとが一致するようにしたことを特徴とする固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧と各相ごとに異なる値が設定されたしきい値とを比較し、上記各相の電圧が各相のしきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各 相ごとに出力する出力手段とを備え、上記各相の位置検出信号の出力位置が同じとなるように上記各相のしきい値を設定したことを特徴とするモータの駆動装置。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧と所定のしきい値とを比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を各相ごとに出力する出力手段と、上記各相の位置検出信号を各相ごとに異なった遅延時間要素を経て出力し、各相の位置検出信号の出力位置が同じとなるようにした手段とを備えたことを特徴とするモータの駆動装置。
- 複数対の極を有し、各対の極にそれぞれ異なる相の巻線を装着した固定子と、この固定子の各対の極に順次対向し得るようにされた極を有する回転子とを具備するモータにおいて、上記固定子の各相の巻線のインダクタンスに対応した電圧を導出する手段と、各相の電圧を各相ごとに異なる増幅率で増幅して各相の電圧が同じ大きさとなるようにした増幅手段と、上記増幅された各相の電圧を所定のしきい値と比較し、上記各相の電圧が上記しきい値を超えた時、上記回転子の回転位置に対応した位置検出信号を出力する手段とを備えたことを特徴とするモータの駆動装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03882299A JP3678598B2 (ja) | 1999-02-17 | 1999-02-17 | 固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03882299A JP3678598B2 (ja) | 1999-02-17 | 1999-02-17 | 固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000245185A JP2000245185A (ja) | 2000-09-08 |
JP3678598B2 true JP3678598B2 (ja) | 2005-08-03 |
Family
ID=12535958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03882299A Expired - Fee Related JP3678598B2 (ja) | 1999-02-17 | 1999-02-17 | 固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3678598B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6388299B2 (ja) * | 2014-01-29 | 2018-09-12 | 株式会社荏原製作所 | スイッチドリラクタンスモータのセンサレス駆動装置 |
JP6707788B2 (ja) * | 2015-07-27 | 2020-06-10 | 株式会社荏原製作所 | スイッチドリラクタンスモータのセンサレス駆動装置、および該センサレス駆動装置を備えたモータ装置 |
DE102017100515A1 (de) * | 2017-01-12 | 2018-07-12 | Rolf Strothmann | Verfahren zur Bestimmung der Drehwinkelposition des Rotors einer mehrphasigen elektrischen Maschine |
-
1999
- 1999-02-17 JP JP03882299A patent/JP3678598B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000245185A (ja) | 2000-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0820140B1 (en) | Single phase permanent magnet motor | |
US6879129B2 (en) | Brushless motor control method and controller | |
US6900613B2 (en) | Motor control apparatus | |
JP3531428B2 (ja) | モータの制御装置及び制御方法 | |
US7030583B2 (en) | Method for the commutation of brushless direct current motor | |
WO1998058444A1 (fr) | Procede de deduction de position polaire d'un moteur sans balais a aimants permanents | |
KR100242445B1 (ko) | 센서리스 3상 비엘디시 모터의 구동 회로 | |
JPWO2008120737A1 (ja) | ブラシレスモータ、ブラシレスモータ制御システム、およびブラシレスモータ制御方法 | |
US20070222409A1 (en) | Controller for brushless motor | |
WO2012111505A1 (ja) | モータ制御装置 | |
JP2004112942A (ja) | 電動機械制御装置、電動機械制御方法及びそのプログラム | |
CN100356680C (zh) | 电动机驱动器及其驱动控制系统 | |
JP3397013B2 (ja) | 同期モータの制御装置 | |
JP5136839B2 (ja) | モータ制御装置 | |
JP2002359991A (ja) | ブラシレスモータの制御方法及び制御装置 | |
JP3353586B2 (ja) | ブラシレスdcモータの駆動装置 | |
JP5233262B2 (ja) | 回転位置検出装置の位相調整方法 | |
JP3678598B2 (ja) | 固定子巻線のインダクタンスの変化を利用して回転子位置を検出するモータの駆動方法及び駆動装置 | |
JP2004080851A (ja) | 駆動用電源装置 | |
JPH09215382A (ja) | 永久磁石同期モータの駆動方法 | |
US6969962B2 (en) | DC motor drive circuit | |
JP4000866B2 (ja) | 駆動用電源装置及びフェール判定方法 | |
JP4281316B2 (ja) | 電動機械制御装置、電動機械制御方法及びプログラム | |
JP4168287B2 (ja) | ブラシレスdcモータの駆動装置および同期運転引き込み方法 | |
JP2005229736A (ja) | 電動機駆動装置およびそれを用いた空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050311 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050510 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080520 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130520 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |