[go: up one dir, main page]

JP3677518B2 - Fine powder heating method and apparatus - Google Patents

Fine powder heating method and apparatus Download PDF

Info

Publication number
JP3677518B2
JP3677518B2 JP33734699A JP33734699A JP3677518B2 JP 3677518 B2 JP3677518 B2 JP 3677518B2 JP 33734699 A JP33734699 A JP 33734699A JP 33734699 A JP33734699 A JP 33734699A JP 3677518 B2 JP3677518 B2 JP 3677518B2
Authority
JP
Japan
Prior art keywords
fine powder
heating
heating furnace
upright
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33734699A
Other languages
Japanese (ja)
Other versions
JP2001158629A (en
Inventor
邦夫 木村
吉忠 根本
茂 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP33734699A priority Critical patent/JP3677518B2/en
Publication of JP2001158629A publication Critical patent/JP2001158629A/en
Application granted granted Critical
Publication of JP3677518B2 publication Critical patent/JP3677518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • C03B19/103Fluidised-bed furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微粉体、特に粒径75μm以下の微粉体を大量かつ均一に加熱処理するための方法及び装置に関するものである。
【0002】
【従来の技術】
比較的大きいサイズの粉体の加熱には、大量かつ連続的な処理が可能なことから、一般にロータリーキルンが用いられている。しかしながら、粒径75μm以下というような微粉体にこれを用いると、粒子の移動が円滑に行われないため、均一に加熱することができない上に、粉塵が発生し、取り扱いにくいなど工業的に実施するには、解決すべき多くの問題がある。
【0003】
したがって、このような微粉体の加熱には、主に砂を分散媒体とした流動炉が用いられている。例えば、火山ガラス質堆積物微粉体を加熱処理して微細中空ガラス球状体を製造する方法として、ガラス中実球とケイ砂とを充填した分散部の下方から脈動空気流を送入し、分散部上方に供給された微粉体を10〜100cm/秒の速度で搬送上昇させ、900〜1100℃に加熱した発泡部で発泡させる方法が知られている(特開平8−73232号公報)。
【0004】
図4は、従来方法に用いられていた装置を説明するための断面図であり、図5はその分散層の構造を示す断面図である。この装置は、多孔板7の上にガラス中実球9とケイ砂8とを充填してなる分散層Cを内蔵し、その分散層C上方に開口する原料供給口2を備えた分散室Aと、その上部に連結した直立円筒型加熱炉Bから構成され、かつ加熱炉Bを3〜20本の細管を集束した集束管構造3としたものである。
【0005】
従来方法によると、微粉体Dは、ホッパー1からスクリューフィーダーにより搬送され、原料供給口2から分散室Aへ供給され、分散層Cの下方の脈動空気流導入口5から送られる脈動空気流により分散層Cで分散され、分散層Cの上方の加熱炉Bに配置された集束管3で周囲から加熱され、発泡したのち、粉体排出口4から取り出される。この際、必要に応じ加熱炉Bの側壁又は上部に設けられた空気取入口6から空気を導入し、回収を容易にすることができる。
しかしながら、このような装置を用いる方法では、処理量が限られ、スケールアップも不可能なため、大量に処理する必要がある工業的方法として不適当である。
【0006】
【発明が解決しようとする課題】
本発明は、微粉体、特に粒径75μm以下の微粉体を加熱処理するに際し、大量に処理することができ、かつ個々の粒子の温度履歴を均一にすることができ、等品質の製品が得られる方法及び装置を提供するためになされたものである。
【0007】
【課題を解決するための手段】
本発明者らは、微粉体を均一かつ大量に加熱処理する方法及び装置について種々研究を重ねた結果、図1及び図2に示された装置を用いる方法において、加熱炉中に少なくとも3個の集束管を配設し、これら集束管中を上昇する個々の微粉体が均一に加熱されるように燃焼バーナーを配置することにより、均質な加熱が行われ、大量処理が可能になることを見出し、この知見に基づいて本発明をなすに至った。
【0008】
すなわち、本発明は、粒状分散媒充填帯域上に処理すべき微粉体を供給し、該充填帯域の下方より送入される脈動空気流に担送させて、10〜100cm/秒の速度で上昇させながら、加熱処理する方法において、微粉体を分割された経路により上昇させるとともに、これらの分割された経路を集束して、少なくとも3個のユニットを形成させ、各ユニットを側方より噴射される加熱ガス流により均一に加熱することを特徴とする微粉体加熱方法、及び粒状分散媒充填層を内蔵し、かつ該充填層上方において開口する微粉体供給口2を備えた分散室Aと、分散室A上部に気密的に連結した直立円筒型加熱炉Bと該加熱炉Bの加熱手段とから構成された微粉体加熱装置において、該直立円筒型加熱炉B中に複数本の細管を集束した直立集束管3、少なくとも3個を並列的に配置するとともに、該加熱炉壁面の適所に複数個の噴射式燃焼バーナー11を偏心放射状に、ほぼ等間隔で取り付けて加熱手段としたことを特徴とする微粉体加熱装置を提供するものである。
【0009】
【発明の実施の形態】
次に添付図面に従って本発明方法及び本発明装置を詳細に説明する。
図1は、本発明装置の1例を示す略解縦断面図、図2はそのX−X線に沿った横断面図であり、原料微粉体Dはホッパー1からスクリューフィーダーにより分散室Aの上部に設けられた供給口2を介して分散室Aに供給され、分散室Aから加熱炉B中に配置されている複数の直立集束管3,…の中を上昇して、粉体排出口4から取り出される。
【0010】
分散室Aは、従来の装置と同様の構造を有し、多孔板7の上部に粒状分散媒8,9、例えばケイ砂やガラス中実球を充填して分散層Cが形成され、この分散層Cの下方には脈動空気流導入口5が設けられている。
【0011】
加熱炉Bは、直立円筒状本体B′と円錐状頂部B″から構成され、円錐状頂部B″の最上部は開口して、排気口10が設けられている。
加熱炉の直立円筒状本体B′の中段部壁面には複数個の噴射式燃焼バーナー11,…が偏心放射状に、ほぼ等間隔で取り付けられている。
ここで偏心放射状とは、図2の一点鎖線で示すように、各燃焼バーナー11,…の噴射方向を加熱炉本体の断面の円の直径よりも小さい直径を有する同心円aの接線に一致させて取り付けられている状態をいう。
【0012】
このように燃焼バーナー11,…を配設することにより、加熱炉B内に並列的に配置されている各直立集束管3,…の中を上昇する微粉体Dは、均一に加熱される。この各直立集束管3,…の中における微粉体Dの上昇速度は10〜100cm/秒の範囲内で選ばれる。また、この微粉体Dの加熱温度は、処理の目的によって左右されるが、通常500〜1300℃、好ましくは900〜1100℃の範囲である。
【0013】
各直立集束管3,…は、図3に示すようにそれぞれ複数の管体12,…の集束管体からなり、この集束管が加熱炉内に少なくとも3本、好ましくは10〜20本並列的に立設されて内蔵されている。上記の管体12,…は、それぞれ内径10〜20mmの細長管からなり、これが10〜30本束ねられて構成されている。
このような構造の加熱炉Bで加熱処理された微粉体Dは、各集束体の上部出口から排出管13,…を経て集められ、排出口4から取り出され、回収される。
【0014】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
【0015】
実施例1
この例においては原料粉末として、火山ガラス質堆積物(福島市飯坂町産出、通称福島白土)を解砕し、10μm及び30μmで分級された10〜30μmの粉末を使用した。この原料粉末中に含まれる30μmを越える粒子の割合は、15重量%以下であり、また粒径10μm未満の粒子の割合は、15重量%以下であった。
【0016】
原料粉末を図1に示す加熱装置に供給した。この加熱装置は、加熱炉中央上部に排気口10を有し、ガスバーナー11,…により、熱風の流れが回転するように設置された円筒縦型炉内に、18本の集束管3,…が分離して設置されている。
【0017】
まず、原料粉末をホッパー1に入れ、多孔板7の上部に、粒度約200μmに整粒されたケイ砂475gを充填した断面積475cm2の分散層Cにスクリューフィーダーにより1時間当り10kgの割合で供給し、分散層下部より、脈動数が30回/秒の脈動空気を1分間当り0.855m3の割合で送入した。このようにして分散させた粒子を、垂直に設置した18本の集束管を通って上昇させた。なお、個々の集束管は、個々の内径が13.3mmの細長管を19本束ねて構成した。この集束管内部の最高温度は、ガスバーナー11,…を調整し、1000℃に保った。
【0018】
加熱空気並びに発泡体の冷却と、発泡体回収部内の水分の凝縮を抑えるために、加熱炉上部の空気導入口6から空気を導入した。導入量の調整は、発泡体回収部に直結した吸引ブロワーの流量の調整により行った。
生成した発泡体を回収し、その密度及び強度を測定した。その結果、かさ密度0.50g/cm3、粒子密度0.85g/cm3、粗粒含有率1.5重量%、強度90.6重量%の火山ガラス質発泡体が得られた。なお、この強度は、8MPaの静水圧下に1分間保持した後の非破壊粒子の含有割合を表わしたものである。
【0019】
【発明の効果】
本発明によると、75μm以下の微粉体を大量かつ均一に加熱処理することができる。
【図面の簡単な説明】
【図1】 本発明装置の1例の略解縦断面図。
【図2】 図1のX−X線に沿った横断面図。
【図3】 本発明の集束管の断面図。
【図4】 従来例の略解縦断面図。
【図5】 従来例における分散層の断面図。
【符号の説明】
1 ホッパー
2 原料供給口
3 直立集束管
4 粉体排出口
5 脈動空気流導入口
6 空気取入口
7 多孔板
8,9 粒状分散媒
10 排気口
11 燃焼バーナー
12 管体
13 排出管
A 分散室
B 直立円筒型加熱炉
C 分散層
D 微粉体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for heat-treating a fine powder, particularly a fine powder having a particle size of 75 μm or less, in a large amount and uniformly.
[0002]
[Prior art]
A rotary kiln is generally used for heating a powder having a relatively large size because a large amount of continuous processing is possible. However, if this is used for fine powders with a particle size of 75 μm or less, the particles will not move smoothly, so they cannot be heated uniformly, and dust is generated, making it difficult to handle industrially. There are many problems to be solved.
[0003]
Therefore, a fluidized furnace using mainly sand as a dispersion medium is used for heating such fine powder. For example, as a method of manufacturing fine hollow glass spheres by heat treatment of volcanic glassy sediment fine powder, pulsating air flow is sent from below the dispersion part filled with solid glass spheres and silica sand, and dispersed There is known a method in which fine powder supplied to the upper part is conveyed and raised at a speed of 10 to 100 cm / second and foamed by a foaming part heated to 900 to 1100 ° C. (Japanese Patent Laid-Open No. 8-73232).
[0004]
FIG. 4 is a cross-sectional view for explaining an apparatus used in the conventional method, and FIG. 5 is a cross-sectional view showing the structure of the dispersion layer. This apparatus incorporates a dispersion layer C formed by filling a glass solid sphere 9 and silica sand 8 on a perforated plate 7, and a dispersion chamber A having a raw material supply port 2 opened above the dispersion layer C. And an upright cylindrical heating furnace B connected to the upper part thereof, and the heating furnace B has a focusing tube structure 3 in which 3 to 20 narrow tubes are converged.
[0005]
According to the conventional method, the fine powder D is conveyed by the screw feeder from the hopper 1, supplied from the raw material supply port 2 to the dispersion chamber A, and pulsating airflow sent from the pulsating airflow inlet 5 below the dispersion layer C. It is dispersed in the dispersion layer C, heated from the surroundings by the focusing tube 3 disposed in the heating furnace B above the dispersion layer C, foamed, and taken out from the powder discharge port 4. At this time, if necessary, air can be introduced from the air intake 6 provided on the side wall or the upper portion of the heating furnace B to facilitate recovery.
However, the method using such an apparatus is not suitable as an industrial method that requires a large amount of processing because the amount of processing is limited and scale-up is impossible.
[0006]
[Problems to be solved by the invention]
In the present invention, when heat-treating a fine powder, particularly a fine powder having a particle size of 75 μm or less, it can be processed in a large amount, and the temperature history of individual particles can be made uniform, thereby obtaining a product of equal quality. In order to provide an improved method and apparatus.
[0007]
[Means for Solving the Problems]
As a result of various researches on a method and an apparatus for heat-treating a fine powder uniformly and in large quantities, the present inventors have found that in the method using the apparatus shown in FIG. 1 and FIG. It is found that by arranging a focusing tube and arranging a combustion burner so that the individual fine powder rising in the focusing tube is heated uniformly, uniform heating is performed and mass processing becomes possible. Based on this finding, the present invention has been made.
[0008]
That is, the present invention supplies fine powder to be processed on the granular dispersion medium filling zone, and is carried by a pulsating air flow sent from below the filling zone, and rises at a speed of 10 to 100 cm / sec. In the heat treatment method, the fine powder is raised by the divided paths, and the divided paths are converged to form at least three units, and each unit is ejected from the side. A fine powder heating method characterized by heating uniformly by a heated gas flow, a dispersion chamber A having a fine particle supply port 2 having a built-in granular dispersion medium packed bed and opened above the packed bed, and dispersion In a fine powder heating apparatus composed of an upright cylindrical heating furnace B hermetically connected to the upper part of the chamber A and heating means of the heating furnace B, a plurality of thin tubes are focused in the upright cylindrical heating furnace B. Upright focusing tube 3 A fine powder heating apparatus characterized in that at least three are arranged in parallel and a plurality of injection-type combustion burners 11 are attached at appropriate positions on the wall surface of the heating furnace in an eccentric radial manner at substantially equal intervals to serve as heating means. Is to provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the method and the device of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic longitudinal sectional view showing an example of the apparatus of the present invention, FIG. 2 is a transverse sectional view along the line XX, and the raw material fine powder D is transferred from the hopper 1 to the upper part of the dispersion chamber A by a screw feeder. Is supplied to the dispersion chamber A through the supply port 2 provided in the upper part, and ascends from the dispersion chamber A through the plurality of upright focusing tubes 3,. Taken from.
[0010]
The dispersion chamber A has the same structure as that of the conventional apparatus, and the dispersion layer C is formed by filling the upper part of the perforated plate 7 with granular dispersion media 8, 9 such as silica sand or solid glass spheres. Below the layer C, a pulsating airflow inlet 5 is provided.
[0011]
The heating furnace B is composed of an upright cylindrical main body B ′ and a conical top portion B ″. The uppermost portion of the conical top portion B ″ is opened and an exhaust port 10 is provided.
A plurality of injection-type combustion burners 11,... Are attached to the middle wall surface of the upright cylindrical main body B ′ of the heating furnace in an eccentric radial manner at substantially equal intervals.
Here, the eccentric radial shape means that the injection direction of each combustion burner 11,... Is made to coincide with the tangent line of the concentric circle a having a diameter smaller than the diameter of the circle of the cross section of the heating furnace body, as shown by the one-dot chain line in FIG. The state that is attached.
[0012]
As described above, by arranging the combustion burners 11,..., The fine powder D rising in the upright focusing tubes 3, which are arranged in parallel in the heating furnace B, is heated uniformly. The rising speed of the fine powder D in each of the upright focusing tubes 3,... Is selected within a range of 10 to 100 cm / second. Moreover, although the heating temperature of this fine powder D is influenced by the objective of a process, it is 500-1300 degreeC normally, Preferably it is the range of 900-1100 degreeC.
[0013]
As shown in FIG. 3, each of the upright focusing tubes 3,... Is composed of a plurality of focusing tubes 12,... It is built up and built in. Each of the tube bodies 12,... Is composed of an elongated tube having an inner diameter of 10 to 20 mm, and 10 to 30 tubes are bundled.
The fine powder D heat-treated in the heating furnace B having such a structure is collected from the upper outlet of each focusing body via the discharge pipes 13,.
[0014]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these.
[0015]
Example 1
In this example, volcanic glassy deposits (produced in Iizaka-cho, Fukushima City, commonly known as Fukushima Shirato) were crushed as the raw material powder, and 10-30 μm powder classified at 10 μm and 30 μm was used. The proportion of particles exceeding 30 μm contained in this raw material powder was 15% by weight or less, and the proportion of particles having a particle size of less than 10 μm was 15% by weight or less.
[0016]
The raw material powder was supplied to the heating apparatus shown in FIG. This heating device has an exhaust port 10 at the center upper part of the heating furnace, and 18 focusing tubes 3,... In a cylindrical vertical furnace installed so that the flow of hot air is rotated by gas burners 11. Are installed separately.
[0017]
First, the raw material powder is put in the hopper 1, and the dispersion layer C having a cross-sectional area of 475 cm 2 filled with 475 g of silica sand having a particle size of about 200 μm is placed on the perforated plate 7 at a rate of 10 kg per hour by a screw feeder. Then, pulsating air with a pulsation rate of 30 times / second was sent from the lower part of the dispersion layer at a rate of 0.855 m 3 per minute. The particles dispersed in this way were raised through 18 vertically arranged focusing tubes. In addition, each focusing tube was configured by bundling 19 elongated tubes having an inner diameter of 13.3 mm. The maximum temperature inside the focusing tube was maintained at 1000 ° C. by adjusting the gas burners 11.
[0018]
In order to suppress heating air and cooling of the foam and condensation of moisture in the foam recovery part, air was introduced from the air inlet 6 at the top of the heating furnace. The amount of introduction was adjusted by adjusting the flow rate of the suction blower directly connected to the foam recovery unit.
The produced foam was collected and its density and strength were measured. As a result, a volcanic glassy foam having a bulk density of 0.50 g / cm 3 , a particle density of 0.85 g / cm 3 , a coarse particle content of 1.5% by weight and a strength of 90.6% by weight was obtained. In addition, this intensity | strength represents the content rate of the nondestructive particle | grains after hold | maintaining for 1 minute under the hydrostatic pressure of 8 MPa.
[0019]
【The invention's effect】
According to the present invention, a fine powder of 75 μm or less can be heat-treated in a large amount and uniformly.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an example of an apparatus of the present invention.
FIG. 2 is a cross-sectional view taken along line XX in FIG.
FIG. 3 is a cross-sectional view of the focusing tube of the present invention.
FIG. 4 is a schematic longitudinal sectional view of a conventional example.
FIG. 5 is a cross-sectional view of a dispersion layer in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hopper 2 Raw material supply port 3 Upright focusing tube 4 Powder discharge port 5 Pulsating air flow introduction port 6 Air intake port 7 Perforated plate 8,9 Granular dispersion medium 10 Exhaust port 11 Combustion burner 12 Tube 13 Discharge tube A Dispersion chamber B Upright cylindrical heating furnace C Dispersion layer D Fine powder

Claims (2)

粒状分散媒充填帯域上に処理すべき微粉体を供給し、該充填帯域の下方より送入される脈動空気流に担送させて、10〜100cm/秒の速度で上昇させながら、加熱処理する方法において、微粉体を分割された経路により上昇させるとともに、これらの分割された経路を集束して、少なくとも3個のユニットを形成させ、各ユニットを側方より噴射される加熱ガス流により均一に加熱することを特徴とする微粉体加熱方法。The fine powder to be processed is supplied onto the granular dispersion medium filling zone, and is carried by the pulsating air flow sent from the lower side of the filling zone, and is heated at a rate of 10 to 100 cm / sec. In the method, the fine powder is raised by the divided paths, and these divided paths are converged to form at least three units, and each unit is made uniform by the heated gas flow injected from the side. A fine powder heating method, characterized by heating. 粒状分散媒充填層を内蔵し、かつ該充填層上方において開口する微粉体供給口を備えた分散室と、分散室上部に気密的に連結した直立円筒型加熱炉と該加熱炉の加熱手段とから構成された微粉体加熱装置において、該直立円筒型加熱炉中に複数本の細管を集束した直立集束管、少なくとも3個を並列的に配置するとともに、該加熱炉壁面の適所に複数個の噴射式燃焼バーナーを偏心放射状に、ほぼ等間隔で取り付けて加熱手段としたことを特徴とする微粉体加熱装置。A dispersion chamber having a granular dispersion medium packed bed and a fine powder supply port opened above the packed bed; an upright cylindrical heating furnace hermetically connected to the upper part of the dispersion chamber; and heating means of the heating furnace In the fine powder heating apparatus constituted by the above, at least three upright focusing tubes in which a plurality of thin tubes are converged in the upright cylindrical heating furnace are arranged in parallel, and a plurality of at a suitable location on the heating furnace wall surface. A fine powder heating apparatus characterized in that a jetting combustion burner is attached in an eccentric radial manner at substantially equal intervals to serve as a heating means.
JP33734699A 1999-11-29 1999-11-29 Fine powder heating method and apparatus Expired - Lifetime JP3677518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33734699A JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33734699A JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Publications (2)

Publication Number Publication Date
JP2001158629A JP2001158629A (en) 2001-06-12
JP3677518B2 true JP3677518B2 (en) 2005-08-03

Family

ID=18307772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33734699A Expired - Lifetime JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Country Status (1)

Country Link
JP (1) JP3677518B2 (en)

Also Published As

Publication number Publication date
JP2001158629A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
EP0125516B1 (en) Granulating apparatus
JP2594818B2 (en) Pelletizing furnace and method for producing vitreous beads
JPH0680416A (en) Preparation of crystalling sodium bisilicate
US7823810B2 (en) Method and device for the production and/or conditioning of powdered material
US2265358A (en) Apparatus for exfoliation of vermiculite
US4511384A (en) Thermally toughening glass
US4547151A (en) Method of heat-treating particles and apparatus therefor
JP3677518B2 (en) Fine powder heating method and apparatus
US4519777A (en) Method and apparatus for bloating granular material
US5291935A (en) Process for the mechanical cleaning of foundry used sand
JP5674018B2 (en) Perlite manufacturing method, inorganic foam material manufacturing method, and foam material manufacturing apparatus
JP3478468B2 (en) Method and apparatus for producing inorganic spherical particles
MXPA06011620A (en) Fluid bed granulation process.
CN108940135B (en) Multi-stage temperature difference frequency vibratory fluidization system and method for oxidizing and non-melting coal tar pitch pellets
GB1581672A (en) Fluidised bed combustion
JPH07277851A (en) Production of low water absorptive granular perlite for building material formed by using perlite and pitchstone
US3396477A (en) Agglomerating apparatus
RU2083937C1 (en) Plant for milling and roasting mineral raw material
EP3943465A1 (en) Method for producing hollow granules from inorganic raw material and device for implementing same
JPS6025182B2 (en) Granulation method and equipment
RU2117630C1 (en) Method of dehydrating magnesium chloride solutions
CN115183573B (en) Vertical continuous roasting furnace for activated alumina balls
RU2270875C2 (en) Method of production of pellets
JPS5934143B2 (en) Slag cooling device
CN208382724U (en) A kind of novel vibrating fluidized bed dryer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041220

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Ref document number: 3677518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term