JP3677125B2 - Methods for introducing foreign genes into chromosomes - Google Patents
Methods for introducing foreign genes into chromosomes Download PDFInfo
- Publication number
- JP3677125B2 JP3677125B2 JP25776496A JP25776496A JP3677125B2 JP 3677125 B2 JP3677125 B2 JP 3677125B2 JP 25776496 A JP25776496 A JP 25776496A JP 25776496 A JP25776496 A JP 25776496A JP 3677125 B2 JP3677125 B2 JP 3677125B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- gene
- vector
- chromosome
- foreign gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title claims description 139
- 210000000349 chromosome Anatomy 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 27
- 239000013598 vector Substances 0.000 claims description 53
- 230000010354 integration Effects 0.000 claims description 24
- 241000588724 Escherichia coli Species 0.000 claims description 23
- 230000006801 homologous recombination Effects 0.000 claims description 19
- 238000002744 homologous recombination Methods 0.000 claims description 19
- 108010061833 Integrases Proteins 0.000 claims description 17
- 241000894006 Bacteria Species 0.000 claims description 15
- 230000000977 initiatory effect Effects 0.000 claims description 15
- 244000199866 Lactobacillus casei Species 0.000 claims description 11
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000010076 replication Effects 0.000 claims description 9
- 235000013958 Lactobacillus casei Nutrition 0.000 claims description 8
- 229940017800 lactobacillus casei Drugs 0.000 claims description 8
- 206010059866 Drug resistance Diseases 0.000 claims description 7
- 102100034343 Integrase Human genes 0.000 claims description 7
- 230000006798 recombination Effects 0.000 claims description 7
- 238000005215 recombination Methods 0.000 claims description 7
- 229940079593 drug Drugs 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 108010052160 Site-specific recombinase Proteins 0.000 claims description 5
- 235000014655 lactic acid Nutrition 0.000 claims description 5
- 239000004310 lactic acid Substances 0.000 claims description 5
- 238000010367 cloning Methods 0.000 claims description 4
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 239000006166 lysate Substances 0.000 claims 1
- 239000013612 plasmid Substances 0.000 description 33
- 101000607560 Homo sapiens Ubiquitin-conjugating enzyme E2 variant 3 Proteins 0.000 description 22
- 102100039936 Ubiquitin-conjugating enzyme E2 variant 3 Human genes 0.000 description 22
- 108020004414 DNA Proteins 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 230000002950 deficient Effects 0.000 description 8
- 230000004543 DNA replication Effects 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 230000002759 chromosomal effect Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 239000007857 degradation product Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 241000194032 Enterococcus faecalis Species 0.000 description 2
- 241000588722 Escherichia Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940032049 enterococcus faecalis Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000001320 lysogenic effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000006872 mrs medium Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 101100364969 Dictyostelium discoideum scai gene Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241000194035 Lactococcus lactis Species 0.000 description 1
- 101100364971 Mus musculus Scai gene Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241001437281 Piophila casei Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000001726 chromosome structure Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000010469 pro-virus integration Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 235000020138 yakult Nutrition 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は宿主染色体への外来遺伝子の導入方法に関するものであり、詳しくは、溶原性のベクターを用いて染色体への外来遺伝子の導入を行う際に、導入の時点では必要であるが外来遺伝子の発現と保持には不要であるベクター由来の不要遺伝子部分を、最終的に除くための導入方法に関する。
【0002】
【従来の技術】
プラスミドを用いて外来遺伝子を宿主細胞内に導入することは大腸菌を始めとして種々の微生物において行われている。宿主細胞内でのより安定な外来遺伝子の特性を得るため、溶原ファージを利用して、外来遺伝子を宿主染色体上に組込む試みも行われている。
【0003】
本発明者らは、先に、ラクトバチラス・カゼイ(Lactobacillus casei ;以下、「L.カゼイ」と記す)の溶原ファージφFSW由来の組み込み機構を応用するL.カゼイ菌用ベクターpMSK742を提案し、これを用いるL.カゼイ菌の染色体上への外来遺伝子の組み込み方法を示した(特願平8−184266号)。
【0004】
しかし、このL.カゼイ菌用ベクターpMSK742に限らず、溶原ファージを利用した方法では、目的とする外来遺伝子だけでなく、導入後には不要となる遺伝子配列も同時に導入される。例えば、上記L.カゼイ菌用ベクターでは、組み込み機構の機能に必要である部位特異的組換え酵素(int)遺伝子領域、組込み体の選択の際に必要である薬剤耐性遺伝子領域、また、大腸菌で機能する複製開始領域などが、同時に宿主染色体上に組み込まれるが、これらの部分は、遺伝子導入後には機能的には不要である。
【0005】
【発明が解決しようとする課題】
これらの遺伝子導入後には機能的に不要になる部分は、その後の形質転換体の利用という観点では障害になる場合もあり、最終的に外来遺伝子以外のベクター等に由来する不要部分を除く方法の開発が課題であった。
【0006】
本発明者は、このような観点のもと鋭意研究を行った結果、宿主細胞に導入する時点で、溶原ファージを利用したベクターへの外来遺伝子の組み込みを工夫することにより、外来遺伝子以外のベクター等に由来する不要遺伝子を除去することができることを確認して、本発明に至った。
【0007】
本発明では、外来遺伝子以外のベクター等に由来する不要遺伝子を除去することのできる染色体への外来遺伝子の導入方法を得ることを目的とする。
【0008】
【課題を解決するための手段】
本発明では、溶原ファージの特性を有するベクターを用いて宿主染色体上に外来遺伝子を組込む方法であって、
導入を目的とする外来遺伝子の一方の末端領域が削除された第1の部分配列と、他方の末端領域が削除されて第1の部分配列の一部と重複する領域を持った第2の部分配列とを、溶原ファージの組込み部位(attP部位)の両側に各々配置したベクターを得て、
このベクターを宿主染色体上に組込んだ後に、第1の部分配列と第2の部分配列との重複する領域の相同組換え機構によりベクターに由来する不要遺伝子部分が除去された形質転換体を選択する方法である。
【0009】
本発明における溶原ファージの特性を利用したベクターとは、宿主細胞に導入した際に、宿主染色体上に組込まれる機能を有するベクターを指す。即ち、宿主細胞の染色体上の組込み部位(attB領域)に対して組換えを起こす組込み部位(attP領域)を有するものであればよい。このようなベクターによって外来遺伝子を宿主染色体に組込んだものは、外来遺伝子と共にベクターに由来する遺伝子をも組み込まれる。
【0010】
このため、導入を目的とする外来遺伝子の一方の末端領域が削除された第1の部分配列と、他方の末端領域が削除されて第1の部分配列の一部と重複する領域を持った第2の部分配列とを、溶原ファージの組込み部位(attP部位)の両側に各々配置したベクターを得て、このベクターを宿主染色体上に組込み、相同組換えを促す。
【0011】
これら第1の部分配列と第2の部分配列とは、共に削除側の配列が重複する領域を備えればよい。この重複する領域については、短ければ組込まれた後の相同組換えの頻度が低下するので、相同組換えによって不要遺伝子が切除されることがない。また、逆に重複する領域を長くして、例えば外来遺伝子の末端領域を切除しないで第1の部分配列及び第2の部分配列を全く同じものとしても、相同組換えは発現する。しかし、外来遺伝子の発現を一種のマーカーにする場合には、ベクターに由来する不要遺伝子部分が除去された形質転換体を選択することができなくなる可能性がある。従って、重複する領域の下限は、相同組換え機構が充分な頻度で行われる長さ以上であればよい。また、重複する領域の長さの上限は相同組換えに関してはないが、外来遺伝子の発現を一種のマーカーにする場合には、末端領域が切除された部分配列で外来遺伝子が発現しない長さ以下であればよい。
【0012】
また、第1の部分配列及び第2の部分配列の配置の方向については、重複する領域によって相同組換えが行われ、行われた後に、本来の外来遺伝子となるような方向に配置される。即ち、第1及び第2の部分配列の方向を同じ方向にし、尚且、機構溶原ファージの組込み部位(attP部位)の両側に外来遺伝子のN,C末端部の各々側が組込み部位側になるように配置される。
【0013】
また、本発明で言う「外来遺伝子」とは、必ずしも導入しようとする宿主菌以外の菌に由来するものを意味するのではなく、同菌種由来のものや、同じ菌株でも例えばプラスミド上の遺伝子を染色体上へ導入することも含まれる。また、複数の蛋白情報の結合体としての遺伝子群であってもよい(例えば、複数のサブユニットからなる酵素全体の遺伝子)。
【0014】
ベクターに由来する不要遺伝子部分が除去された形質転換体を選択するには、ベクター由来の薬剤耐性形質が失われたことをマーカーにすることもできるが、前述のように、組込みを目的とする外来遺伝子の発現を確認して、これを一種のマーカーにして行うのが、最も簡略である。即ち、本発明の方法においては、ベクターに由来する不要遺伝子が除去された場合とは、外来遺伝子が相同組換えを起こして本来の外来遺伝子の状態になった場合である。従って、外来遺伝子の発現を一種のマーカーにして、選択する。
【0015】
具体的な本発明としては、L.カゼイ YIT9018株の溶原ファージφFSW由来の部位特異的組換え酵素(インテグラーゼ,int)遺伝子領域及び宿主染色体への組み込み部位(attP領域)と、乳酸菌及び大腸菌で機能する薬剤耐性遺伝子領域と、大腸菌(Escherichia coli)で機能する複製開始領域と、クローニング部位とを備えたL.カゼイ菌用ベクターを用いて、L.カゼイ菌の染色体上へ、A領域とB領域とC領域とからなる外来遺伝子(A−B−C)(但し、A領域及びC領域は、外来遺伝子の切断末端を含む領域を示し、B領域は外来遺伝子中の両切断の間の任意の重複部分の配列を示す)を組込む方法であって、
▲1▼導入を目的とする外来遺伝子(A−B−C)のC領域を除いた第1の部分配列(A−B)と、外来遺伝子(A−B−C)のA領域を除いた第2の部分配列(B−C)とを、前記ベクター中のattP領域の両側に配置したベクターを得る行程と、
▲2▼これをL.カゼイ菌の染色体へ組込み、形質転換体を得る行程と、
▲3▼しかる後に、相同組換え機構により、前記部位特異的組換え酵素領域と薬剤耐性領域と複製開始領域とを含む不要遺伝子部分が除去された形質転換体を選択する工程と
を備えた方法があげられる。
【0016】
尚、本発明の染色体への外来遺伝子の導入方法は、溶原ファージの特性を利用したベクターと宿主菌との組合わせがあれば、如何なる微生物に対しても適用できる方法である。従って、本発明は、後述するL.カゼイ菌用ベクターを用いるL.カゼイへの外来遺伝子の導入に限ることがないのは言うまでもない。具体的には、ラクトコッカス・ラクチスのφLC3ファージ、ラクトバチルス・ガッセリのφadhファージ、ラクトバチルス・デルブルッキー・subp・ブルガリスのmv4ファージ、エッシェリキア・コリとλファージ、HK22ファージ、φ80ファージ、P4ファージ、186ファージ等との組合わせ、等を利用したベクターで応用が可能である(参照;L.Dupontら,J.Bacteriol.177:586-595(1995) )。
【0017】
【発明の実施の形態】
本発明者は、溶原ファージの特性を利用したベクター等に由来する外来遺伝子以外の不要遺伝子を除去することのできる染色体への外来遺伝子の導入方法を得るために、鋭意研究を行った結果、導入を目的とする外来遺伝子をベクターに組み込む際に、そのまま組み込むのでなく、外来遺伝子の任意の中間配列の部分が重複するような、2つの部分配列に分割し、これを、attP配列の両側に組み込むことにより、その後、自然発生的な相同組換え機構により、相当の確率で、A−BとB−Cに挟まれた部分が脱離して、結果としてA−B−Cの配列が染色体に組み込まれたものとしての、宿主形質転換体が得られることを確認して、本発明を完成した。
【0018】
即ち、導入を目的とする外来遺伝子を例えばA−B−C(この時、AおよびCは切断末端を含む領域を示し、Bは中間配列部分の任意の重複部分を示す)としたとき、A−B−Cの部分配列である第1の部分配列A−Bと第2の部分配列B−C(A−BとB−Cは配列Bの部分で重複する部分を有するものである)とを、ベクターのattP領域の両側に配置して宿主の染色体へ形質転換することにより、その後、自然発生的な相同組換え機構により、相当の確率で、A−BとB−Cに挟まれた部分が脱離して、結果としてA−B−Cの配列が染色体に組み込まれる。
【0019】
まず、本発明の方法では、例えば外来遺伝子の導入方法に用いるL.カゼイ菌用のベクターは、本発明者による特許出願(特願平8−184266号)に開示されているものが使用できる。即ち、L.カゼイ YIT9018株の溶原ファージφFSW由来のint領域及びattP領域と、乳酸菌及び大腸菌で機能する薬剤耐性遺伝子領域と、大腸菌(Escherichia coli)で機能する複製開始領域と、適当なクローニング部位とを備えたL.カゼイ菌用ベクターである。
【0020】
具体的には、L.カゼイYIT9018株由来の溶原ファージφFSW由来の部位特異的組換え酵素(インテグラーゼ、int)領域及び宿主染色体への組み込み部位(attP領域)と、乳酸菌及び大腸菌で機能する薬剤耐性遺伝子領域と、大腸菌(E.coli)で機能する複製開始領域と、クローニング部位とを備えたものである。
【0021】
さらに詳しくは、L.カゼイYIT9018株由来の溶原ファージφFSW由来の部位特異的組換え酵素(インテグラーゼ、int)遺伝子領域及び宿主染色体への組み込み部位(attP領域)と、エンテロコッカス・フェカリス由来の大腸菌と乳酸菌の両方で機能するエリスロマイシン(Em)耐性遺伝子と、大腸菌由来の複製開始領域とを備えたことを確認ずみである。
【0022】
また、導入する外来遺伝子としては、特に制限はないが、後述する実施例においては、クロラムフェニコール(Cm)耐性遺伝子を使用した。この外来遺伝子を2つの部分配列として、ベクターのattP領域の両側に組み込む方法は、ベクターの有する制限酵素部位を利用して、また、導入しようとする遺伝子の有する制限酵素部位等を検討したうえで任意に設計することができるが、前記一般式において重複するB配列部分は、その後の相同組換え機構を誘導するために、十分な長さは必要である(好ましくは200〜1000塩基、更に好ましくは400〜600塩基程度)。
【0023】
後述する実施例においては、いったん、attP領域の両側に、A−B−Cに対応するものとしてのCm耐性遺伝子を導入し、しかる後に、余分な部分を除去することにより、結果として、A−BおよびB−Cの部分配列が目的どおり導入された形になるよう、操作を行ったが、もちろん方法はこの方法に限定されるものではない。
【0024】
ベクターpMSK742へ、A−BおよびB−Cを導入した遺伝子導入用ベクターは、L.カゼイ菌へ形質転換することにより、染色体への組み込みを行う。pMSK742が有するEm耐性遺伝子を指標に、形質転換体の選択を行い、目的どおり染色体への組み込みが行われたものを獲得する。この作出されたベクターには、pMSK742由来のint領域や、Em耐性遺伝子領域などが含まれたままであり、また、導入を目的としたCm遺伝子も2つに分割されて完全な状態で組み込まれていない。
【0025】
ここで得られた形質転換体をEm耐性およびCm耐性を指標に継代培養していくと、相当の確率(10-3)で、Cm耐性を発現する株が得られ、またこのものは、Em感受性(Em耐性を失った)となっていた。このものは、導入したA−B部分とB−C部分の間で、相同組換えが起こり、A−BとB−Cの間の部分が除かれたものであり、この確率は、通常のEm耐性株が突然変異によりEm耐性を失う確率より十分に高く、期待した機構により、外来遺伝子A−B−Cの導入および、ベクター由来の不要部分が除去が行われたものである。
以下実施例によりさらに詳細に本発明を説明する。
【0026】
【実施例】
1.材料と方法
(1-1) 使用菌株とプラスミド
Lactobacillus casei YlT9029(FERM BP-1366, φFSW 非溶原菌)はヤクルト中央研究所で保存のものを用いた。Eschirihia coli JM109 は組換えプラスミド作製の宿主として用いた。φFSW 由来の integrase遺伝子と attP、大腸菌用プラスミドDNA複製開始領域ori177、Enterococcus faecalis のプラスミドpAMβ1 由来のEm耐性遺伝子を持つL.カゼイ菌用ベクターpMSK742は特願平8−184266号で示した。尚、このベクターpMSK742は、生工研菌寄第15695号として、生命工学研究所に平成08年06月20日付けで寄託されている。Staphylococcus aureus のプラスミドpC194 (S.Horinouchi & B.Weisblum. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J.Bacteriol.150:815-825,1982)は田中暉夫博士より分与された。
【0027】
(1-2) 培地
YlT9029はMRS培地(Difco,USA) またはILS培地を用いて37℃で好気条件で生育させた(液体培地では静置)。プラスミドpC194 のCm耐性遺伝子によるCm耐性の発現は誘導的なので、Cm耐性遺伝子保持菌に耐性を発現させるため 0.5μg/mlのCm(Cm感受性株でもCm耐性株と同様に生育する濃度)を耐性、非耐性にかかわらず常に加えた。必要な場合は20μg/mlのEm(Em感受性株は生育できない濃度)または2.5 μg/mlのCm(Cm感受性株は生育できない濃度)を加えた。E. coli JM109 の生育にはLB培地を用い、必要な場合は500 μg/mlのEmを加えた。
【0028】
(1-3) DNAの調製と操作及び形質転換法
基本的DNA操作は文献(J.Sambrook, E.F.Fritsch & T.Maniatis. Molecular cloning : A laboratory manual. Cold Spring Harbor Laboratory Press. 1989)を参照して行い、L. casei YlT9029とE. coli との形質転換法は特願平8−184266号に記した操作により行った。また、PCR反応はToyobo社のK0D polymeraseと、同社buffer shystem #l とを用い、MJ Research 社製DNAEngine PTC-200を使って、98℃l5秒60℃5 秒74℃30秒を30回繰り返した。使用プライマーは20マー以上のものを適宜合成した。
【0029】
(1-4) DNA塩基配列の決定とその解析
YIT9029形質転換体における染色体構造はPCR法を用いて調べた。PCR産物は、 Pharmacia社製 Micro SpinTM S-400 HRカラムにより精製した。プライマーは、17マー以上のものを適宜合成した。反応はABI PRISMTM Terminator Cycle Sequencing Ready Reaction Kit(PerkinElmer社製) を用い、373S DNA Sequencerによって行った。塩基配列の解析にはソウトウェア開発社製GENETYX ver.9.0 とGENETYX -CD バイオデータベースソフトウエアver.29.0を用いた。
【0030】
(1-5) 安定性試験
被検菌であるYlT9029 派生体を2.5 μg/mlのCmを加えたILSで一晩培養後の培養液を0.5 μg/mlのCmを加えたILSに10-5希釈し37℃で静置培養後、24時間ごとに0.5 μg/mlのCmを加えたILSに10-3希釈して同様に継代培養を続けた。各希釈時に2.5 μg/mlのCmを加えたILSプレート( 選択プレート) 、および0.5 μg/mlのCmを加えたISL(非選択プレート)を用いて生菌数を測定した。世代数はlog2(各時生菌数×希釈率/ 初発生菌数)で計算した。
【0031】
2.外来遺伝子の導入方法の概要
例えば、特願平8−184266号で報告したYlT9029 のファージφFSW の持つプロファージ組込み用の部位特異的組換え酵素 integraseを用いた染色体組込み型ベクターpMSK742によって得られた形質転換体は、目的遺伝子に加えて、ベクタープラスミドの大腸菌における増殖用のプラスミドDNA複製開始領域(異種由来)、組込みの際必要であった選択用Em耐性遺伝子(異種由来)、及び integrase遺伝子( 同種由来)を持っている。これら三領域は組込みまでの一連の操作では必要だが目的遺伝子のYlT9029 細胞内での安定的保持には不要と考えられた。そこで、ベクター由来の前述の異種由来の遺伝子領域を取り除くことを目的とした。
【0032】
染色体上に導入したい目的の外来遺伝子(A−B−C)を各々の末端を切除した第1の部分配列(A−B)と第2の部分配列(B−C)とを attP領域の両側に配置したベクターを作出し、これを宿主菌となるL.カゼイ菌の染色体に組込み後、相同組換えによる不要遺伝子領域の欠失を目的としてプラスミドの作成を試みた。
【0033】
図1は本発明の染色体への外来遺伝子の導入方法の一実施例の工程の概要を示す説明図である。計画と手順の詳細を図1のa〜d図と共に説明する。
▲1▼ a図に示す通り、ベクタープラスミド上でファージゲノム上の部位特異的組換え領域 attPの両側に目的遺伝子(群)のN末端部を欠損した第2の部分配列(B−C)とC末端部を欠損した第1の部分配列(A−B)を同方向に配置し、両欠損遺伝子に対して attPの反対側に除くべき領域として、Em耐性遺伝子(Em)、大腸菌用プラスミドDNA複製開始領域(ori)、および integrase遺伝子(int)を配置する。
【0034】
▲2▼ このプラスミドのDNAをYlT9029 の細胞に導入し、 integraseによる attPと attB間の部位特異的組換えによりYlT9029 染色体上へプラスミドが組込まれた株を、Em耐性を指標として選択する。b図に示す通り、形質転換体の染色体上では attL〜C末端欠損目的遺伝子(群)(A−B)〜大腸菌用プラスミドDNA複製開始領域(ori)〜Em耐性遺伝子(Em)〜 integrase遺伝子(int)〜N末端欠損目的遺伝子(群)(B−C)〜 attRの順に並ぶと期待される。
【0035】
▲3▼ 2つの欠損目的遺伝子(群)に共通なB領域は相同なので、得られた形質転換体の一部では細胞が本来持っている相同組換え機構によって二つのB領域に挟まれた部分が欠失する可能性が考えられる(c図)。その場合、欠失体染色体上のDNA導入部分では、 attL〜完全な目的遺伝子(群)(A−B−C)〜 attRの順に並び、欠失体の表現型はEm感受性かつABC+ となると考えられる(d図)。すなわち、この欠失体上では異種由来等の不要遺伝子を除くことができる。
【0036】
3.Cm耐性遺伝子の組み込み
Cm耐性遺伝子(CAT)をモデル遺伝子(目的遺伝子)とした、後の欠失を期待する組込み型プラスミドを実際に作製した。
【0037】
YIT9029 染色体上に組込ませる目的遺伝子として、同株および大腸菌における発現と選択性、遺伝子中の制限酵素切断点、遺伝子の長さ等を考慮して、S. aureus のプラスミドpC194 由来のCm耐性遺伝子を選んだ。この構造遺伝子は216 アミノ酸をコードし、N末端から9アミノ酸相当のところに制限酵素MunI切断点が、C末端から42アミノ酸相当のところに制限酵素VspI切断点がある。
【0038】
図2に従って目的とする組込み型プラスミドを作製した。まず完全なCm遺伝子(CAT)を attPのそれぞれの側に挿入した2種類のプラスミドpMSK755とpMSK751とを作出した。
【0039】
具体的には、PCRを用いて両末端がBstXI 切断点で構造遺伝子N末端側の BstXI切断点のすぐ内側にMunI切断点を設けたpC194 のCm耐性遺伝子を含むフラグメントを増幅してBstXI で切断し、pMSK742ダイマーDNAのSacI部分分解物と連結してpMSK753を得た。同様に構造遺伝子N末端側の末端にNheI切断点、C末端側の末端にXbaI切断点を設けたpC194 のCm耐性遺伝子を含むフラグメントを増幅して NheI とXbaIで切断し、pMSK742DNAのXbaI完全分解物と連結してpMSK751を得た。これら2つのプラスミドは、Cm遺伝子(CAT)のほかに、Em耐性遺伝子(Em)、大腸菌用プラスミドDNA複製開始領域(ori)、及び integrase遺伝子(int)を有する。
【0040】
それぞれのプラスミドを用いてYlT9029 を形質転換したところその頻度は103/μg・DNA以上であり、形質転換体においては attPと attBを介して各プラスミドが染色体に組込まれていることと、Em耐性と同時にCm耐性が発現していることを確認した。即ち、2.5 μ/ml の濃度のCmを培地に加えるとCm耐性遺伝子保持株は生育でき親株は生育できなかった。
【0041】
次にそれぞれのプラスミドpMSK753及びpMSK751のCm耐性遺伝子を欠損させた。具体的には、pMSK753DNAのMunI部分分解物と、pMSK751DNAのXbaIとVspI分解産物からそれぞれpMSK760とpMSK756を得た。これらのプラスミドのYIT9029 形質転換体はCm2.5 μ/ml 感受性となっていた。
【0042】
続いてpMSK760とpMSK756の両DNAをBssHIIとScaIでそれぞれ切断し、おのおのの欠損Cm遺伝子を持つ方のフラグメント同士を選んで連結することにより、目的とするプラスミドpMSK761を得た。pMSK761の構造を図3に示す。二つの欠損遺伝子に共通する相同部分の長さは494塩基、 attPを経由しない側での両欠損Cm遺伝子の距離は3545塩基であった。
【0043】
4.形質転換体の獲得及びCm発現株の選択
3.で得られたpMSK761のYlT9029 染色体組込みと不要遺伝子の除去を行った。pMSK761を用いてYIT9029 を形質転換したところ、pMSK755と変わらぬ頻度でEm耐性形質転換体を得ることができ、すべてCm2.5 μg/mlには感受性であった。
【0044】
このEm耐性Cm感受性株を0.5 μg/mlのCm( 非選択的かつ誘導的な濃度) を加えたMRS培地で約40世代分裂するように培養した後、Cm2.5 μg/mlを含む培地で選択すると、10-3の頻度で耐性株が分離された。調べたCm耐性株16株について全てはEm感受性になっていた。
【0045】
一方、 欠損Cm遺伝子を一つしか持たないpMSK756やpMSK760の形質転換体からはl0-5の頻度でCm2.5 μg/ml耐性株が分離され、調べた16株について全てはEm耐性のままであった。この10-5の頻度は、YlT9029 におけるCm2.5 μg /ml 自然耐性変異株の分離頻度と変わらない。
【0046】
これらの結果は、pMSK761のDNAが染色体に組込まれた形質転換体の一部では、細胞内の自発的相同組換えが二つの欠損Cm耐性遺伝子内の相同領域で起き、完全長のCm遺伝子が生じて耐性を発現すると共に、Em耐性遺伝子を含む領域が除かれたことを示している。
【0047】
このことは、得られたEm感受性Cm耐性株染色体の構造を、PCR産物のDNA塩基配列を解析することによっても支持された。すなわち、i) attL〜完全長のCm耐性遺伝子〜 attRの順に並んでいた、ii) 大腸菌用プラスミドDNA複製開始領域〜Em耐性遺伝子〜 integrase遺伝子は存在しなかった、の2点が明かとなった。
【0048】
4.染色体組込み型形質転換体の安定性
pMSK761形質転換体より得られたEm感受性Cm耐性欠失体(integrase 遺伝子欠失型)2株の表現型の安定度を、非選択培地での継代後の薬剤耐性株の割合を、選択、非選択プレート上でコロニー形成数を測定することにより調べた。その結果、図4に示すようにいずれの組み込み体も導入された薬剤耐性の形質がYIT9029 形質転換体中で約50世代間100%保持された。尚、溶原ファージ特性を有しないプラスミドを導入した形質転換株の場合は、約50世代分裂後の薬剤耐性を示す株は5%程度である。
【0049】
更に、pMSK761形質転換体由来のEm感受性Cm耐性欠失体の約50世代分裂後の細胞由来のコロニー100個づつについて個別の液体培養により検討すると、すべて薬剤耐性を保持していた。以上の結果から、φFSW の integraseによる染色体へ組込みは、目的遺伝子の安定的保持のため非常に有効であることは明白である。この期間においては integrase遺伝子の有無は安定度に影響しなかった。
【0050】
以上のように、YIT9029 のファージφFSW のintcgrase を利用した染色体組込み型ベクターにおいて、染色体上に導入したい目的遺伝子をベクター上へ挿入する際に構造上の工夫を加えた。その結果、染色体組込み後に細胞内の自発的相同組換えによって、最終育種株から、異種由来のEm耐性遺伝子と大腸菌用プラスミドDNA複製開始領域、および同種由来の integrase遺伝子を除くことができた。
【0051】
また、表現型の安定度を調べたところ、この染色体組込み型ベクターを用いたφFSW の integraseによる attPと attBの間の部位特異的組み換えによって導入された形質は非選択的条件のもとYIT9029 形質転換体中で少なくとも約50世代間細胞分裂させても全く安定であった。この期間においては integrase遺伝子の有無は安定度に差は見いだせなかった。
【0052】
以上のことから、ここで示したφFSW の integraseを利用した染色体組込みと、その後の不要遺伝子の除去は、YIT9029 株における安定で安全、かつ目的遺伝子の種類によっては最終育種株が組換え体でない遺伝子工学的な育種を可能とすることが明かとなった。
【0053】
【発明の効果】
本発明は以上説明したとおり、外来遺伝子以外のベクター等に由来する不要遺伝子を除去することのできる染色体への外来遺伝子の導入方法を得ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の染色体への外来遺伝子の導入方法の一実施例の工程の概要を示す説明図である。
【図2】プラスミドpMSK742からのプラスミドpMSK761の作成経路を示す説明図である。
【図3】図2で得られたプラスミドpMSK761の構造を示す説明図である。
【図4】pMSK761形質転換により得られた染色体組込み型形質転換体の安定性試験の結果を示す線図である。縦軸は薬剤耐性株の割合、横軸は世代数を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for introducing a foreign gene into a host chromosome. Specifically, when a foreign gene is introduced into a chromosome using a lysogenic vector, the foreign gene is necessary at the time of introduction. The present invention relates to an introduction method for finally removing an unnecessary gene portion derived from a vector which is unnecessary for the expression and maintenance of.
[0002]
[Prior art]
Introduction of a foreign gene into a host cell using a plasmid is performed in various microorganisms including Escherichia coli. In order to obtain more stable characteristics of foreign genes in host cells, attempts have been made to incorporate foreign genes into host chromosomes using lysogen phages.
[0003]
The present inventors previously described Lactobacillus casei (Lactobacillus casei ; Hereinafter referred to as “L. casei”), and the incorporation mechanism derived from the lysogenic phage φFSW is applied. Proposed vector pMSK742 for Lactobacillus casei and L. A method for incorporating a foreign gene into the chromosome of casei was shown (Japanese Patent Application No. 8-184266).
[0004]
However, this L.P. Not only the casei vector pMSK742 but also a method using a lysogen phage, not only the target foreign gene but also a gene sequence that becomes unnecessary after the introduction is simultaneously introduced. For example, the L. In the casei vector, the site-specific recombinase (int) gene region necessary for the function of the integration mechanism, the drug resistance gene region required for selection of the integrant, and the replication initiation region functioning in E. coli Are integrated on the host chromosome at the same time, but these parts are functionally unnecessary after gene introduction.
[0005]
[Problems to be solved by the invention]
The parts that become functionally unnecessary after the introduction of these genes may become an obstacle from the viewpoint of the use of the subsequent transformant, and finally the unnecessary parts derived from vectors other than foreign genes are removed. Development was an issue.
[0006]
As a result of intensive studies based on such a viewpoint, the present inventor has devised the incorporation of a foreign gene into a vector using a lysogen phage at the time of introduction into a host cell. After confirming that unnecessary genes derived from vectors and the like can be removed, the present invention has been achieved.
[0007]
An object of the present invention is to obtain a method for introducing a foreign gene into a chromosome that can remove an unnecessary gene derived from a vector other than the foreign gene.
[0008]
[Means for Solving the Problems]
In the present invention, a method for incorporating a foreign gene onto a host chromosome using a vector having the characteristics of a lysogen phage,
A first partial sequence in which one end region of a foreign gene intended for introduction is deleted, and a second portion having a region in which the other end region is deleted and overlaps a part of the first partial sequence Obtaining a vector in which the sequence is arranged on both sides of the lysogen phage integration site (attP site),
After integrating this vector onto the host chromosome, select a transformant from which the unnecessary gene portion derived from the vector has been removed by the homologous recombination mechanism of the overlapping region of the first partial sequence and the second partial sequence It is a method to do.
[0009]
The vector utilizing the characteristics of the lysogen phage in the present invention refers to a vector having a function of being integrated on a host chromosome when introduced into a host cell. In other words, any one having an integration site (attP region) that causes recombination with the integration site (attB region) on the chromosome of the host cell may be used. When a foreign gene is integrated into a host chromosome by such a vector, a gene derived from the vector is also incorporated together with the foreign gene.
[0010]
For this reason, the first partial sequence in which one end region of a foreign gene intended to be introduced is deleted, and the first partial sequence in which the other end region is deleted and has a region overlapping with a part of the first partial sequence. A vector in which two partial sequences are arranged on both sides of the integration site (attP site) of the lysogen phage is obtained, and this vector is integrated on the host chromosome to promote homologous recombination.
[0011]
Both the first partial array and the second partial array may have a region where the deletion side arrays overlap. If this overlapping region is short, the frequency of homologous recombination after integration decreases, so that unnecessary genes are not excised by homologous recombination. On the other hand, homologous recombination is expressed even when the overlapping region is lengthened, for example, the first partial sequence and the second partial sequence are made completely the same without excising the terminal region of the foreign gene. However, when the expression of a foreign gene is used as a kind of marker, there is a possibility that a transformant from which an unnecessary gene portion derived from a vector has been removed cannot be selected. Therefore, the lower limit of the overlapping region may be longer than the length at which the homologous recombination mechanism is performed with sufficient frequency. In addition, although the upper limit of the length of the overlapping region is not related to homologous recombination, when the expression of the foreign gene is used as a kind of marker, it is less than the length where the foreign gene is not expressed in the partial sequence with the terminal region excised. If it is.
[0012]
Moreover, about the direction of arrangement | positioning of a 1st partial sequence and a 2nd partial sequence, after homologous recombination is performed by the overlapping area | region and it is performed, it arrange | positions in the direction which becomes an original foreign gene. That is, the first and second partial sequences are oriented in the same direction, and the N and C terminal portions of the foreign gene are on the integration site side on both sides of the integration site (attP site) of the mechanical lysogen phage. Placed in.
[0013]
The term “foreign gene” as used in the present invention does not necessarily mean a gene derived from a bacterium other than the host bacterium to be introduced. It is also included to introduce into the chromosome. Moreover, it may be a gene group as a conjugate of a plurality of protein information (for example, a gene of the whole enzyme composed of a plurality of subunits).
[0014]
In order to select a transformant from which an unnecessary gene portion derived from a vector has been removed, the loss of a drug-resistant trait derived from a vector can be used as a marker. It is simplest to confirm the expression of a foreign gene and use this as a kind of marker. That is, in the method of the present invention, the case where the unnecessary gene derived from the vector is removed is the case where the foreign gene has undergone homologous recombination and has become the original foreign gene. Therefore, selection is made using the expression of the foreign gene as a kind of marker.
[0015]
Specific examples of the present invention include L.P. Casei YIT9018 strain lysogen phage φFSW-derived site-specific recombinase (integrase, int) gene region, integration site into host chromosome (attP region), drug-resistant gene region functioning in lactic acid bacteria and E. coli, E. coli (Escherichia coliL.), which has a replication initiation region that functions in) and a cloning site. Using the vector for casei bacteria, A foreign gene (ABC) consisting of an A region, a B region, and a C region on the chromosome of casei (where the A region and the C region indicate the region containing the cut end of the foreign gene, and the B region Is a method of incorporating an arbitrary overlapping portion between both cleavages in a foreign gene),
(1) The first partial sequence (AB) excluding the C region of the foreign gene (ABC) intended for introduction and the A region of the foreign gene (ABC) were excluded. A step of obtaining a vector in which the second partial sequence (BC) is arranged on both sides of the attP region in the vector;
(2) L. Integrating into the chromosome of casei and obtaining transformants;
(3) After that, a step of selecting a transformant from which an unnecessary gene part including the site-specific recombination enzyme region, the drug resistance region and the replication initiation region has been removed by the homologous recombination mechanism;
The method provided with.
[0016]
The method for introducing a foreign gene into the chromosome of the present invention can be applied to any microorganism as long as there is a combination of a vector and a host bacterium utilizing the characteristics of lysogen phage. Therefore, the present invention relates to L.P. L. using a vector for casei bacteria. Needless to say, the introduction of foreign genes into casei is not limited. Specifically, Lactococcus lactis φLC3 phage, Lactobacillus gasseri φadh phage, Lactobacillus delbruecki subp Bulgaris mv4 phage, Escherichia coli and λ phage, HK22 phage, φ80 phage, P4 phage Application with a vector using a combination with 186 phage, etc. is possible (see L. Dupont et al., J. Bacteriol. 177: 586-595 (1995)).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As a result of earnest research, in order to obtain a method for introducing a foreign gene into a chromosome capable of removing an unnecessary gene other than a foreign gene derived from a vector or the like utilizing the characteristics of lysogen phage, When a foreign gene intended for introduction is incorporated into a vector, it is not incorporated as it is, but is divided into two partial sequences that overlap with any intermediate sequence of the foreign gene, and this is divided on both sides of the attP sequence. Then, the portion between AB and BC is detached with a considerable probability by a naturally occurring homologous recombination mechanism. As a result, the sequence of ABC is transferred to the chromosome. The present invention was completed by confirming that a host transformant was obtained as an integrated one.
[0018]
That is, when the foreign gene to be introduced is, for example, A-B-C (where A and C indicate a region including a cut end and B indicates an arbitrary overlapping portion of the intermediate sequence portion), A A first partial sequence AB and a second partial sequence BC which are partial sequences of -B-C (AB and BC have overlapping portions in the portion of sequence B); Is placed on both sides of the attP region of the vector and transformed into the host chromosome, which is then sandwiched between AB and BC with considerable probability by a naturally occurring homologous recombination mechanism. The part is detached and as a result the sequence ABC is integrated into the chromosome.
[0019]
First, according to the method of the present invention, for example, L.P. As the vector for casei, those disclosed in the patent application by the present inventor (Japanese Patent Application No. 8-184266) can be used. That is, L. Casei YIT9018 strain lysogen phage φFSW-derived int region and attP region, drug resistance gene region that functions in lactic acid bacteria and E. coli, E. coli (Escherichia coliL.) which has a replication initiation region that functions in) and an appropriate cloning site. It is a vector for casei.
[0020]
Specifically, L.M. A site-specific recombinase (integrase, int) region derived from the casei YIT9018 strain derived from the casei YIT9018 strain, an integration site into the host chromosome (attP region), a drug resistance gene region that functions in lactic acid bacteria and E. coli, and E. coli A replication initiation region that functions in (E. coli) and a cloning site.
[0021]
For more details, see L.L. Site-specific recombinase (integrase, int) gene region derived from the casei YIT9018 strain and the integration site into the host chromosome (attP region), and functions in both Escherichia coli and lactic acid bacteria derived from Enterococcus faecalis The erythromycin (Em) resistance gene and the replication initiation region derived from E. coli have been confirmed.
[0022]
The foreign gene to be introduced is not particularly limited, but in the examples described later, a chloramphenicol (Cm) resistance gene was used. The method of incorporating this foreign gene as two partial sequences on both sides of the attP region of the vector is based on the use of the restriction enzyme site of the vector and after examining the restriction enzyme site etc. of the gene to be introduced. Although it can be arbitrarily designed, the B sequence portion overlapping in the above general formula needs to be long enough to induce the subsequent homologous recombination mechanism (preferably 200 to 1000 bases, more preferably Is about 400 to 600 bases).
[0023]
In the examples described later, once the Cm resistance gene as corresponding to ABC is introduced into both sides of the attP region, and then the excess part is removed, as a result, A- Although the operation was performed so that the partial sequences of B and B-C were introduced as intended, the method is of course not limited to this method.
[0024]
Vectors for gene introduction in which AB and BC are introduced into vector pMSK742 are L.P. Integration into chromosomes by transformation into casei. Using the Em resistance gene of pMSK742 as an index, transformants are selected, and those that have been integrated into the chromosome as intended are obtained. The generated vector still contains the int region derived from pMSK742, the Em resistance gene region, and the like, and the Cm gene intended for introduction is also divided into two and integrated in a complete state. Absent.
[0025]
When the transformant obtained here is subcultured using Em resistance and Cm resistance as indicators, a strain expressing Cm resistance can be obtained with a considerable probability (10 −3). It was Em sensitive (losing Em resistance). In this, homologous recombination occurred between the introduced AB part and BC part, and the part between AB and BC was removed, and this probability is The probability that the Em resistant strain loses Em resistance due to the mutation is sufficiently higher, and the introduction of the foreign gene ABC and the unnecessary portion derived from the vector were removed by the expected mechanism.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0026]
【Example】
1. Materials and methods
(1-1) Strains and plasmids used
Lactobacillus casei YlT9029 (FERM BP-1366, φFSW non-lysogen) was stored at Yakult Central Laboratory. Eschirihia coli JM109 was used as a recombinant plasmid production host. L. has an integrase gene derived from φFSW, attP, plasmid DNA replication initiation region ori177 for Escherichia coli, and an Em resistance gene derived from plasmid pAMβ1 of Enterococcus faecalis. Casei bacteria vector pMSK742 was shown in Japanese Patent Application No. 8-184266. This vector pMSK742 has been deposited with the Biotechnology Research Institute as of Seiko Kenkyu No. 15695 on June 20, 2008. Staphylococcus aureus plasmid pC194 (S. Horinouchi & B. Weisblum. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150: 815-825, 1982) It was done.
[0027]
(1-2) Medium
YlT9029 was grown under aerobic conditions at 37 ° C. using MRS medium (Difco, USA) or ILS medium (still in liquid medium). Since expression of Cm resistance by the Cm resistance gene of plasmid pC194 is inductive, 0.5 μg / ml of Cm (concentration that grows in the same way as Cm-resistant strains) is resistant to Cm-resistant gene-bearing bacteria. Always added, regardless of non-tolerance. When necessary, 20 μg / ml of Em (concentration at which an Em-sensitive strain cannot grow) or 2.5 μg / ml of Cm (concentration at which a Cm-sensitive strain cannot grow) was added. LB medium was used for the growth of E. coli JM109, and 500 μg / ml of Em was added when necessary.
[0028]
(1-3) Preparation and manipulation of DNA and transformation method
Basic DNA manipulation is carried out with reference to the literature (J. Sambrook, EFFritsch & T. Maniatis. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press. 1989), and the characteristics of L. casei YlT9029 and E. coli The conversion method was carried out by the operation described in Japanese Patent Application No. 8-184266. The PCR reaction was repeated 30 times at 98 ° C for 5 seconds 60 ° C for 5 seconds 74 ° C for 30 seconds using MJ Research's DNAEngine PTC-200 using Toyobo's K0D polymerase and its buffer shystem #l. . Primers used were appropriately synthesized with 20-mer or more.
[0029]
(1-4) Determination and analysis of DNA sequence
The chromosome structure in the YIT9029 transformant was examined using the PCR method. PCR products are produced by Pharmacia Micro SpinTM Purified by S-400 HR column. Primers of 17 mer or more were appropriately synthesized. The reaction is ABI PRISMTM Using a 373S DNA Sequencer, Terminator Cycle Sequencing Ready Reaction Kit (PerkinElmer) was used. For analysis of the base sequence, GENETYX ver.9.0 and GENETYX-CD biodatabase software ver.29.0 manufactured by Software Development Co., Ltd. were used.
[0030]
(1-5) Stability test
The YlT9029 derivative, the test bacterium, was cultured overnight in ILS supplemented with 2.5 μg / ml Cm, and the culture broth was diluted 10-5 in ILS supplemented with 0.5 μg / ml Cm and statically cultured at 37 ° C. Then, every 24 hours, ILS containing 0.5 μg / ml Cm-3The subculture was continued in the same manner after dilution. The viable cell count was measured using an ILS plate (selection plate) to which 2.5 μg / ml Cm was added at each dilution and an ISL (non-selection plate) to which 0.5 μg / ml Cm was added. The number of generations is log2It was calculated by (number of viable bacteria at each time × dilution rate / number of first-occurring bacteria).
[0031]
2. Overview of foreign gene introduction methods
For example, the transformant obtained by the chromosomal integration vector pMSK742 using the site-specific recombination enzyme integrase for prophage integration possessed by the phage φFSW of YlT9029 reported in Japanese Patent Application No. 8-184266 is used as the target gene. In addition, it has a plasmid DNA replication initiation region (derived from a different species) for propagation in Escherichia coli as a vector plasmid, an Em resistance gene for selection (derived from a different species), and an integrase gene (derived from the same species) that were required for integration. These three regions were necessary for a series of operations up to integration, but were considered unnecessary for stable retention of the target gene in YlT9029 cells. Therefore, an object was to remove the above-described gene region derived from a heterogeneous vector.
[0032]
The first partial sequence (A-B) and the second partial sequence (B-C) obtained by excising each end of the target foreign gene (A-B-C) to be introduced onto the chromosome are located on both sides of the attP region. A vector placed in is prepared and used as a host fungus. After integration into the chromosome of casei, we attempted to construct a plasmid for the purpose of deleting unnecessary gene regions by homologous recombination.
[0033]
FIG. 1 is an explanatory diagram showing an outline of the steps of one embodiment of the method for introducing a foreign gene into a chromosome of the present invention. Details of the plan and procedure will be described with reference to FIGS.
(1) A second partial sequence (BC) lacking the N-terminal part of the target gene (s) on both sides of the site-specific recombination region attP on the phage genome on the vector plasmid as shown in FIG. The first partial sequence (AB) lacking the C-terminal part is arranged in the same direction, and the Em resistance gene (Em), Escherichia coli plasmid DNA are the regions to be removed on the opposite side of attP with respect to both defective genes. A replication initiation region (ori) and an integrase gene (int) are placed.
[0034]
(2) The DNA of this plasmid is introduced into YlT9029 cells, and a strain in which the plasmid is integrated onto the YlT9029 chromosome by site-specific recombination between attP and attB by integrase is selected using Em resistance as an index. As shown in FIG. b, on the chromosome of the transformant, attL to C-terminal deletion target gene (group) (AB) to plasmid DNA replication initiation region for E. coli (ori) to Em resistance gene (Em) to integrase gene ( int) to N-terminal deficient target gene (s) (BC) to attR.
[0035]
(3) Since the B region common to the two target genes (groups) is homologous, a part of the obtained transformant is sandwiched between the two B regions by the homologous recombination mechanism inherent in the cell. May be deleted (Fig. C). In that case, in the DNA introduction part on the deletion chromosome, it is arranged in the order of attL to complete target gene (group) (ABC) to attR, and the phenotype of the deletion is Em sensitive and ABC.+ (Fig. D). That is, an unnecessary gene such as a heterologous origin can be removed on this deletion.
[0036]
3. Integration of Cm resistance gene
An integrative plasmid was prepared in which Cm resistance gene (CAT) was used as a model gene (target gene) and expected to be deleted later.
[0037]
YIT9029 Cm resistance gene derived from plasmid pC194 of S. aureus is considered as the target gene to be integrated into the chromosome, taking into account the expression and selectivity in the same strain and Escherichia coli, restriction enzyme cleavage point, gene length, etc. I chose. This structural gene encodes 216 amino acids, and has a restriction enzyme MunI cleavage point at a position corresponding to 9 amino acids from the N-terminus and a restriction enzyme VspI cleavage point at a position corresponding to 42 amino acids from the C-terminal.
[0038]
The target integrative plasmid was prepared according to FIG. First, two plasmids, pMSK755 and pMSK751, were constructed in which the complete Cm gene (CAT) was inserted on each side of attP.
[0039]
Specifically, PCR was used to amplify a fragment containing the Cm-resistant gene of pC194 with both ends at the BstXI breakpoint and a MunI breakpoint immediately inside the BstXI breakpoint on the N-terminal side of the structural gene and cleaved with BstXI And ligated with a SacI partial degradation product of pMSK742 dimer DNA to obtain pMSK753. Similarly, a fragment containing a Cm-resistant gene of pC194 having a NheI cleavage point at the N-terminal end of the structural gene and an XbaI cleavage point at the C-terminal end was amplified and cleaved with NheI and XbaI to completely digest pMSK742 DNA with XbaI To give pMSK751. In addition to the Cm gene (CAT), these two plasmids have an Em resistance gene (Em), an E. coli plasmid DNA replication initiation region (ori), and an integrase gene (int).
[0040]
When YlT9029 was transformed with each plasmid, the frequency was 10ThreeIn the transformant, it was confirmed that each plasmid was integrated into the chromosome via attP and attB, and that Cm resistance was expressed simultaneously with Em resistance. That is, when Cm at a concentration of 2.5 μ / ml was added to the medium, the Cm-resistant gene-carrying strain could grow and the parent strain could not grow.
[0041]
Next, the Cm resistance genes of the respective plasmids pMSK753 and pMSK751 were deleted. Specifically, pMSK760 and pMSK756 were obtained from the MunI partial degradation product of pMSK753 DNA and the XbaI and VspI degradation products of pMSK751 DNA, respectively. The YIT9029 transformants of these plasmids were sensitive to Cm2.5 μ / ml.
[0042]
Subsequently, both DNAs of pMSK760 and pMSK756 were cleaved with BssHII and ScaI, respectively, and the fragments having the respective defective Cm genes were selected and ligated to obtain the target plasmid pMSK761. The structure of pMSK761 is shown in FIG. The length of the homologous portion common to the two defective genes was 494 bases, and the distance between both defective Cm genes on the side not passing through attP was 3545 bases.
[0043]
4). Acquisition of transformants and selection of Cm expression strains
3. PMSK761 obtained in
[0044]
This Em-resistant Cm-sensitive strain was cultured in MRS medium supplemented with 0.5 μg / ml of Cm (non-selective and inductive concentration) for about 40 generations, and then cultured in a medium containing Cm of 2.5 μg / ml. Select 10-3Resistant strains were isolated at a frequency of All 16 Cm resistant strains examined were Em sensitive.
[0045]
On the other hand, from the transformants of pMSK756 and pMSK760 having only one defective Cm gene, 10-FiveCm2.5 μg / ml resistant strains were isolated at a frequency of 1 and all 16 strains examined remained Em resistant. This 10-FiveThe frequency of this is the same as the frequency of isolation of the naturally resistant mutant of Cm2.5 μg / ml in YlT9029.
[0046]
These results show that in some transformants in which the DNA of pMSK761 is integrated into the chromosome, spontaneous homologous recombination in the cell occurs in the homologous region in the two defective Cm resistance genes, and the full-length Cm gene is As a result, resistance was exhibited and the region containing the Em resistance gene was removed.
[0047]
This was supported by analyzing the structure of the obtained Em-sensitive Cm resistant strain chromosome by analyzing the DNA base sequence of the PCR product. That is, i) attL-full length Cm resistance gene-attR were arranged in this order, ii) plasmid DNA replication initiation region for E. coli-Em resistance gene-no integrase gene was found. .
[0048]
4). Stability of chromosomally integrated transformants
Select the stability of the phenotypes of the two Em-sensitive Cm-resistant mutants (integrase gene-deficient) obtained from the pMSK761 transformant, and the proportion of drug-resistant strains after passage in a non-selective medium, It was examined by measuring the number of colonies formed on a non-selected plate. As a result, as shown in FIG. 4, the drug-resistant trait into which any of the integrants was introduced was retained in the YIT9029 transformant at 100% for about 50 generations. In the case of a transformed strain into which a plasmid having no lysogen phage characteristics is introduced, about 5% of strains exhibit drug resistance after about 50 generations of division.
[0049]
Furthermore, when 100 colonies derived from cells after approximately 50 generations of the Em-sensitive Cm-resistant mutant derived from the pMSK761 transformant were examined by individual liquid culture, they all retained drug resistance. From the above results, it is clear that the integration of φFSW into the chromosome by integrase is very effective for stable retention of the target gene. During this period, the presence or absence of the integrase gene did not affect the stability.
[0050]
As described above, in the chromosomal integration vector using intcgrase of the phage φFSW of YIT9029, structural ingenuity was added when inserting the target gene to be introduced onto the chromosome. As a result, the heterogeneous Em resistance gene, the plasmid DNA replication initiation region for E. coli, and the integrase gene derived from the same species could be removed from the final breeding strain by spontaneous homologous recombination in the cell after chromosome integration.
[0051]
In addition, the stability of the phenotype was examined. The trait introduced by site-specific recombination between attP and attB by φFSW integration using this chromosomal integrative vector was transformed into YIT9029 under non-selective conditions. It was quite stable even after cell division in the body for at least about 50 generations. During this period, no difference was found in the stability of the presence or absence of the integrase gene.
[0052]
Based on the above, chromosomal integration using the φFSW integral shown here and subsequent removal of unnecessary genes is stable and safe in the YIT9029 strain, and the final breeding strain is not a recombinant gene depending on the type of target gene. It became clear that engineering breeding was possible.
[0053]
【The invention's effect】
As described above, the present invention has an effect that a method for introducing a foreign gene into a chromosome that can remove an unnecessary gene derived from a vector other than the foreign gene can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing an outline of the steps of one embodiment of a method for introducing a foreign gene into a chromosome of the present invention.
FIG. 2 is an explanatory diagram showing a production path of plasmid pMSK761 from plasmid pMSK742.
3 is an explanatory diagram showing the structure of the plasmid pMSK761 obtained in FIG. 2. FIG.
FIG. 4 is a diagram showing the results of a stability test of a chromosomal integration transformant obtained by pMSK761 transformation. The vertical axis represents the ratio of drug resistant strains, and the horizontal axis represents the number of generations.
Claims (1)
1 導入を目的とする外来遺伝子(A−B−C)のC領域を除いた第1の部分配列(A−B)と、外来遺伝子(A−B−C)のA領域を除いた第2の部分配列(B−C)とを、前記ベクター中のattP領域の両側に配置したベクターを得る行程と、
2 これをラクトバチルス・カゼイ菌の染色体へ組込み、形質転換体を得る行程と、
3 しかる後に、相同組換え機構により、前記部位特異的組換え酵素領域と薬剤耐性領域と複製開始領域とを含む不要遺伝子部分が除去された形質転換体を選択する工程と
を備えたことを特徴とする染色体への外来遺伝子の導入方法。 Lactobacillus casei YIT9018 strain lysate phage φFSW-derived site-specific recombinase (integrase, int) gene region and integration site into host chromosome (attP region), and a drug that functions in lactic acid bacteria and Escherichia coli A region and B region on the chromosome of Lactobacillus casei using a vector for Lactobacillus casei provided with a resistance gene region, a replication initiation region that functions in Escherichia coli , and a cloning site And the C region, a foreign gene (ABC) (provided that the A region and the C region indicate a region including the cut end of the foreign gene, and the B region is an arbitrary region between both cuts in the foreign gene. Which shows the sequence of the overlapping portion),
1 a first partial sequence (AB) excluding the C region of the foreign gene (ABC) intended for introduction, and a second excluding the A region of the foreign gene (ABC) A step of obtaining a vector in which the partial sequence (BC) is placed on both sides of the attP region in the vector,
2 The process of integrating this into the chromosome of Lactobacillus casei and obtaining a transformant,
And 3) a step of selecting a transformant from which an unnecessary gene portion including the site-specific recombination enzyme region, the drug resistance region and the replication initiation region has been removed by a homologous recombination mechanism. A method for introducing a foreign gene into a chromosome.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25776496A JP3677125B2 (en) | 1996-09-06 | 1996-09-06 | Methods for introducing foreign genes into chromosomes |
US09/202,893 US6319692B1 (en) | 1996-06-26 | 1997-06-25 | Methods for transferring gene into chromosome |
EP97928454A EP0974666A4 (en) | 1996-06-26 | 1997-06-25 | METHODS FOR TRANSFERRING GENES INTO A CHROMOSOME |
PCT/JP1997/002187 WO1997049820A1 (en) | 1996-06-26 | 1997-06-25 | Methods for transferring gene into chromosome |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25776496A JP3677125B2 (en) | 1996-09-06 | 1996-09-06 | Methods for introducing foreign genes into chromosomes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1080275A JPH1080275A (en) | 1998-03-31 |
JP3677125B2 true JP3677125B2 (en) | 2005-07-27 |
Family
ID=17310779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25776496A Expired - Fee Related JP3677125B2 (en) | 1996-06-26 | 1996-09-06 | Methods for introducing foreign genes into chromosomes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3677125B2 (en) |
-
1996
- 1996-09-06 JP JP25776496A patent/JP3677125B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1080275A (en) | 1998-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Camilli et al. | Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions | |
JP5732496B2 (en) | DNA molecules and methods | |
Maguin et al. | New thermosensitive plasmid for gram-positive bacteria | |
US4713337A (en) | Method for deletion of a gene from a bacteria | |
US6833135B1 (en) | DNA integration into “Mycobacterium spp.” genome by trans-complementation using a site-specific integration system | |
Braunstein et al. | Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis | |
Storrs et al. | Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase | |
Jacobs et al. | In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium, Streptococcus mutans, and mycobacterial genomic libraries | |
US6566121B1 (en) | Insertional mutations in mycobacteria | |
US20120100616A1 (en) | Method of double crossover homologous recombination in clostridia | |
Smith et al. | Physical and functional characterization of the Bacillus subtilis spoIIM gene | |
JP3553065B2 (en) | Recombinant lactic acid bacterium containing inserted promoter and method for constructing the same | |
US6271034B1 (en) | One step allelic exchange in mycobacteria using in vitro generated conditional transducing phages | |
Fenno et al. | Characterization of allelic replacement in Streptococcus parasanguis: transformation and homologous recombination in a'nontransformable'streptococcus | |
US5919678A (en) | Methods for using a temperature-sensitive plasmid | |
US6423545B1 (en) | Unmarked deletion mutants of mycobacteria and methods of using same | |
Casey et al. | Chromosomal integration of plasmid DNA by homologous recombination in Enterococcus faecalis and Lactococcus lactis subsp. lactis hosts harboring Tn919 | |
US5872238A (en) | Thermophile gene transfer | |
JP3677125B2 (en) | Methods for introducing foreign genes into chromosomes | |
CZ152197A3 (en) | Process for preparing nisine variant | |
Van de Pol et al. | Genetic analysis of the mobilization of the non-conjugative plasmid Clo DF13 | |
US6319692B1 (en) | Methods for transferring gene into chromosome | |
Lyras et al. | Clostridial genetics | |
US5786174A (en) | Thermophile gene transfer | |
JP3653345B2 (en) | Lactobacillus casei vector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050420 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050506 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080513 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090513 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100513 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120513 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120513 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130513 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |