[go: up one dir, main page]

JP3673633B2 - Assembling and adjusting method of projection optical system - Google Patents

Assembling and adjusting method of projection optical system Download PDF

Info

Publication number
JP3673633B2
JP3673633B2 JP36341797A JP36341797A JP3673633B2 JP 3673633 B2 JP3673633 B2 JP 3673633B2 JP 36341797 A JP36341797 A JP 36341797A JP 36341797 A JP36341797 A JP 36341797A JP 3673633 B2 JP3673633 B2 JP 3673633B2
Authority
JP
Japan
Prior art keywords
correction
optical
surface shape
optical system
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36341797A
Other languages
Japanese (ja)
Other versions
JPH11176744A (en
Inventor
雄平 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP36341797A priority Critical patent/JP3673633B2/en
Publication of JPH11176744A publication Critical patent/JPH11176744A/en
Application granted granted Critical
Publication of JP3673633B2 publication Critical patent/JP3673633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lens Barrels (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体露光装置に搭載するための投影光学系組立調整方法に関するものである。
【0002】
【従来の技術】
従来、ICやLSIなどの半導体集積回路は投影露光方式によって作製されるのが一般的であり、集積度の向上に伴う回路パターン寸法の小型化とチップ寸法の大型化に対応するために、投影光学系は高NA化、大画面化、短波長化している。そして、回路のパターン寸法は非常に小さく、現在では0.25μm以下の線幅のパターンを有する集積回路が作製されており、今後も線幅は益々小さくなってゆく傾向にある。
【0003】
このために、半導体製造装置用の投影レンズには、次のような非常に高い精度と性能が要求される。
【0004】
(1) 画面全体に渡って高いコントラストの投影像が得られること。
(2) 像の歪みや位置ずれが非常に小さいこと。
(3) 大きい焦点深度が得られること。
【0005】
これらの性能を満足するためには、波面収差RMS、コマ収差、像面湾曲及び非点収差、歪曲収差及びテレセン度等の収差を低く押さえ込まなければならない。
【0006】
先ず、画面全体で高コントラスト像を得るためには、波面収差RMS(自乗平均の平方根)がなるべく小さく、像高によって殆ど変化しないことが必要であり、マレシャルの評価基準 (Marechal's criterion) によれば、波面収差RMSが約0.07λ以下であればよい。次に、コマ収差は投影像のコントラスト低下や像ずれの原因となるために、なるべく小さく押さえる必要があり、像面湾曲、非点収差の存在は投影像のコントラストの画面内均一性を悪化させて焦点深度を狭める原因となる。更に、像の位置ずれの主な原因である歪曲収差、倍率誤差やデフォーカスしたときに像の位置がずれるテレセン度があり、物側(レチクル側)、像側(ウエハ側)共になるべくテレセントリック系にすることが望ましい。
【0007】
このような性能を満足する投影光学系を得るためには、良好な値のレンズ系を設計するだけではなく、作製時に生ずる誤差を相当に厳しく押さえ込まなければならない。
【0008】
従来の投影光学系はこれらの事項を考慮して設計組立されているが、投影光学系に求められる性能から算出すると、許容される作製誤差(公差)は極めて小さな値となるために、許容誤差内で作製することが技術的にかなり困難になる。また、作製できても歩留まりが非常に悪くなって、経済的に成り立たないという問題が生ずる。
【0009】
このために、予め修正することを前提にして公差を設定するようにする。球面収差、コマ収差、非点収差、歪曲収差等の一部の収差は、レンズ間の間隔を調整することによって、非常に微少であるが或る程度は修正することができる。従って、調整幅を考慮して若干緩い公差を設定し、投影光学系を構成する全てのレンズエレメントをその設定した公差に基づいて研磨して作製する。
【0010】
それぞれの光学部品のレンズエレメントに生ずる作製誤差としては、面形状(曲率半径)Rの誤差、肉厚dの誤差、面形状の球面からのずれがあるので、全てのレンズエレメントの面形状及び曲率半径R及び肉厚dの精密な測定を干渉法による面形状測定器等を用いて行い、測定したデータを基に最適なレンズエレメント間の間隔を計算し直してその間隔で組み立てを行う。そして、光学系の各収差や性能を計測しながら、レンズエレメント間の間隔調整(光軸方向への移動)、レンズエレメントの傾きの調整(光軸垂直方向を軸とする回転)、レンズエレメントの横ずれの調整(光軸垂直方向への移動)等の微妙な調整を行い、光学性能の劣化を最小限にして組立てを完成する。更に、研磨した数本分のレンズエレメントの面形状を測定し、そのデータを基に最適なレンズエレメントの組み合わせを選んで組み立てることも行われている。
【0011】
図10は従来の作製誤差の修正方法のフローチャート図を示し、ステップ1で全レンズエレメントを一度に加工し、ステップ2で面形状R及び肉厚dを計測する。そのとき、作製誤差が各レンズエレメントに付加されるので、ステップ3でそれにより発生した収差を各レンズ間の間隔を変数にとって最適化計算を行って修正する。その後に、ステップ4で組立調整を行う。
【0012】
このように、従来の組立方法では、投影光学系の性能を満足させるための調整を、全てレンズエレメントの移動や回転等により行っている。
【0013】
【発明が解決しようとする課題】
しかしながら上述の従来例においては、レンズの移動による間隔調整だけでは調整幅が少ないために、高精度化する投影光学系を作製する場合に公差が厳しくなり過ぎ、作製が困難となりかつ歩留まりが悪くなる等の問題が発生する。また、例えばレンズエレメントの数が少ない光学系では、調整に用いるレンズ間隔の数が少ないために上述の方法は適応できない。
【0014】
図11は従来の方法によって修正した光学系の収差のグラフ図を示し、図11(a) は各像高における波面収差RMSで、図11(b) は歪曲収差、図11(c) は像面湾曲及び非点収差であり、後述する図3の設計値の収差のグラフ図と比較して分かるように、間隔調整だけでは補正しきれない収差が存在する。また、例えば像面湾曲の一部であるペッツバール和は各レンズのパワーφと各レンズの硝材の屈折率nとからΣ(φ/n)で表され、これにより各レンズのパワーが決まってしまうために、間隔調整だけでは修正できないという問題がある。
【0015】
本発明の目的は、上述の問題点を解消し、光学部品の作成誤差により生ずる光学性能の劣化を良好に修正する投影光学系組立調整方法を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するための本発明に係る投影光学系の組立調整方法は、複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系としての球面収差を調整する前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする。
本発明に係る投影光学系の組立調整方法は、複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系としての波面収差を減少する前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする。
本発明に係る投影光学系の組立調整方法は、複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系の瞳位置付近に配置した前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする。
【0017】
【発明の実施の形態】
本発明を図1〜図9に図示の実施例に基づいて詳細に説明する。
図1は第1の実施例の投影光学系の断面図を示し、17枚のKrF用単硝材レンズG1〜G17によって、投影倍率1/5倍、画面寸法17mm×17mm、NA0.48、物体〜第1面間距離120mm、作動距離15mmの投影光学系が形成されている。
【0018】
この光学系の各レンズの面形状(曲率半径)R、肉厚及び間隔D、屈折率Nのデータを次表に示す。
【0019】

Figure 0003673633
Figure 0003673633
【0020】
ここで、このレンズデータに作製誤差に相当する面形状R、肉厚及び間隔Dの変化を与えて収差を発生させる。即ち、作製誤差として、各レンズにおいてニュートリング3本程度の面形状Rのずれ、及び20μm程度の肉厚及び間隔Dのずれが発生するものとし、作製誤差発生後の各レンズの面形状R及び肉厚及び間隔Dのデータを次表に示す。
【0021】
Figure 0003673633
Figure 0003673633
【0022】
ただし、実際の製造工程では、面形状Rが球面からずれるような非軸対称や非球面的な誤差も存在する。
【0023】
図2は作製誤差の修正方法のフローチャート図を示し、先に加工するレンズエレメントAと収差の修正に使用するレンズエレメントBをそれぞれ指定する。本実施例ではレンズエレメントBとして2つのレンズG1、G12を使用する。レンズG1は物体の近くにあり、歪曲収差やテレセン度の補正に適しており、またレンズG12は瞳付近に位置するために、波面収差RMSの減少や球面収差の調整、コマ収差の除去に適している。そして、レンズG1、G12以外のレンズエレメントは全て通常のレンズエレメントAである。
【0024】
ステップ11でレンズエレメントAを加工する。その結果、各レンズエレメントAに作製誤差が与えられるので、ステップ12で面形状Rと肉厚dを計測してそれぞれ表2に示す値になったとする。ステップ13でそれにより発生した収差を各レンズ間の間隔と、レンズエレメントBの面形状R及び肉厚dを変数にして最適化計算を行う。この最適化計算の結果、レンズエレメントBの面形状R、肉厚d及び各レンズエレメント間の間隔が決定され、ステップ14でそれに基づいてレンズエレメントBを加工する。この加工の際に、レンズエレメントBに加工誤差としてニュートリング3本程度のRのずれ、20μm程度の肉厚dのずれが生ずるものとし、ステップ15でレンズエレメントBの面形状Rと肉厚dを計測する。ステップ16でそれにより発生した収差を、各レンズ間の間隔を変数にして最適化計算を行って修正する。そして、ステップ17で組立調整を行う。
【0025】
図3は作製誤差を与える前の光学系の設計値の収差図を示し、光学系の性能を評価する量としては、波面収差RMS、歪曲収差、像面湾曲及び非点収差の3つを選んでいる。即ち、(a) は各像高における波面収差RMS、(b) は各像高における歪曲収差、(c) は各像高における像面湾曲及び非点収差を表している。
【0026】
図4は本発明の方法により修正した光学系の収差図を示し、(a) 〜(c) については、それぞれ図3の(a) 〜図3(b) と同じ諸量を表している。
【0027】
先ず、図3(a) 、図4(a) 及び従来例の図11(a) の波面収差RMSに関し、設計値の波面収差RMSの最大値は、最軸外で0.053λである。従来の方法で調整した結果、波面収差RMSは完全に修正しきれず、最軸外で0.291λとマレシャルの評価基準を大幅に上廻っている。これは、ニュートリング3本という公差では緩る過ることを示しており、更に厳しい公差を設定しなければならない。それに対して本実施例の方法では、波面収差RMSは最軸外で0.067λとほぼ設計値まで回復している。即ち、従来の方法では設定不可能であったニュートリング3本という公差を設定し得ることを示している。
【0028】
次に、図3(b) 、図4(b) 及び図11(b) の歪曲収差に関し、設計値の最大値と最小値の差である歪曲収差の幅は0.59・10-3%であるのに対し、従来の方法では1.10・10-3%でほぼ倍近い値までにしか修正できない。一方、実施例の方法によれば、歪曲収差の幅は0.66・10-3%と設計値の約1割増し程度にまで修正できている。
【0029】
更に、図3(c) 、図4(c) 及び図11(c) の像面湾曲、非点収差に関し、設計値の像面幅は2.073μmである。それに対して、従来の方法による修正の結果、像面幅は4.233μmであり、本実施例の方法によれば1.586μmとなる。特に、従来の方法による修正の結果、非点収差が大幅に発生しているが、これは作製誤差によって生じた間隔調整では修正できないペッツバール和の変化を、非点収差でバランスさせて修正しようとしたことによる。この結果からも本発明の優位性が示されている。
【0030】
従って、レンズG1、G12の2つのレンズエレメントBの形状を性能補正に使用することによって、波面収差RMS、歪曲収差、像面湾曲が設計値にほぼ劣らない性能の投影光学系を作製することができる。
【0031】
また、図5はレンズエレメントBを非球面として最適化計算を行った場合の結果である。図5(a) は波面収差RMS、図5(b) は歪曲収差、図5(c) は像面湾曲及び非点収差の修正状態を示している。これらの収差図からレンズエレメントBを非球面化することにより、更に大きな修正効果を得ることができることが分かる。
【0032】
なお、波面収差RMS、歪曲収差、像面湾曲及び非点収差の3つの性質に着目してレンズエレメントBの形状を決定したが、他の光学性能例えば球面収差やコマ収差等のより細かい評価項目をレンズエレメントBの形状決定のために設けることもできる。また、測定量として各レンズエレメントの面形状Rと肉厚dとしたが、他にも各レンズエレメントの光軸と垂直な面内の屈折率分布を測定し、レンズエレメントBの形状決定に反映させてもよい。更に、レンズエレメントBをレンズG1、G12の2つとしたが、この2つのレンズに限定する必要はなく、またKrF投影レンズを用いているが、i線,ArFなど他の露光波長用投影光学系に適用することができる。
【0033】
このように、光学系を構成するレンズエレメントをそのまま補正用光学素子として使用することができるので、新たに補正用光学素子を設計的に付加することなく本実施例を投影光学系に適用することが可能となる。
【0034】
図6は第2の実施例の投影光学系の断面図を示し、第1の実施例では面形状R及び肉厚dの変化を作製誤差として与えたが、実際の作製工程では面形状Rが球面からずれるような面形状誤差が生ずる。従って、本実施例ではこの面形状誤差による性能劣化の補正を行う。
【0035】
この面形状Rが非球面になるような誤差は、測定面の球面からのずれを各成分に分解して表され、その成分分けとして動径変数rと角度変数θの直交関数系であるゼルニケ(Zernike) 級数展開する。これらの非球面的誤差成分は、画面内で非軸対称な振舞いをする球面収差及びコマ収差、歪曲収差の非軸対称成分やランダム成分、軸対称に分布しない像面湾曲及び非点収差等の間隔修正では補正が困難な収差の発生原因となる。そして、この非球面的な面形状の誤差により発生した諸性能の劣化を修正するには、補正用光学素子の面形状を非軸対称な非球面にして対応することが有効である。
【0036】
図6において、設計上3枚の平行平面板G21、G27、G34、17枚のKrF用単硝材から成るレンズG22〜G26、G28〜G33、G35〜G40を使用して、投影倍率1/5倍、画面寸法17mm×17mm,NA0.50、物体〜第1面間距離100mm、作動距離15.69mmの投影光学系が形成されている。この投影光学系の面形状R、肉厚及び間隔D、屈折率Nを次表に示す。
【0037】
Figure 0003673633
Figure 0003673633
【0038】
これらの平行平面板G21、G27、G34を第1の実施例のレンズエレメントBに対応させ、残りの光学部材を同様にレンズエレメントAに対応させて、同様の手順で組み立て調整を行うことにより、良好な組立調整結果を得ることができる。このとき、レンズエレメントBの平行平面板G21、G27、G34を非球面にして最適化計算を行うと、より大きな効果を得ることができる。
【0039】
このようなレンズ面形状Rの軸対称な誤差成分については、第1の実施例と同様なので説明は省略し、像高により非対称な収差を補正する方法、即ちレンズ面形状の非軸対称な誤差を補正する方法を説明する。
【0040】
図7〜図9は平行平面板G21、G27、G34の後面に非球面量を与えて収差の変化を調べたものであり、図7は歪曲収差の変化、図8は像面湾曲の変化、図9はコマ収差の変化を表している。
【0041】
図7は平行平面板G21の後面を非球面形状にして歪曲収差の変化を調べ、非球面形状にすることによって発生する位置ずれを20,000倍に拡大して、理想格子に対してプロットしている。
【0042】
図7(a) はゼルニケ級数のZ4項で表される非球面を0.10λ与えたものであり、倍率誤差成分が発生している。図7(b) はZ5項で表される非球面を0.10λ与えたもので、縦横倍率誤差成分が発生している。図7(c) はZ7項で表される非球面を0.10λ与えたもので、画面の左から右にかけて倍率が線形に変化している。図7(d) はZ9項で表される非球面を0.10λ与えたもので、三次の歪曲収差成分が発生している。図7(e) はZ10項で表される非球面を0.10λ与えたものである。なお、高次のゼルニケ項形状の非球面を与えることにより、更に複雑な形状の歪曲収差を発生させることができる。
【0043】
図8は像面湾曲の変化を調べ、非球面形状にすることによって発生するフォーカス位置の変化をプロットしたものである。マーク■は画面内垂直方向に並んだ0.25μmL/Sパターンに対してのフォーカス位置の変化を示し、マーク□は画面内水平方向に並んだ0.25μmL/Sパターンに対してのフォーカス位置の変化を表している。
【0044】
図8(a) は平行平面板G34の後面にZ5項で表される非球面を0.10λ与え、図8(b) は平行平面板G34の後面にZ12項で表される非球面を0.10λ与えたものである。このように、平行平面板G34を非球面にすることにより画面全体に渡って均一な非点収差を発生させることができる。
【0045】
また、図8(c) は平行平面板G27の後面にZ7項で表される非球面を0.10λ与えたもの、図8(d) は平行平面板G27の後面にZ9項で表される非球面を0.10λ与えたもの、図8(e) は平行平面板G27の後面にZ12項で表される非球面を0.10λ与えたものである。このように、平行平面板G27を非球面にすると、画面全体に渡って非軸対称に変化する像面湾曲や非点収差を発生させることができる。なお、図8(d) のように軸対称な非球面形状を与えれば、軸対称な振舞をする像面湾曲、非点収差を発生させることもできる。
【0046】
図9はコマ収差の変化を調べたものであり、各像高における波面収差をゼルニケ展開したときのZ7項及びZ8項即ち低次のコマ収差の変化を示している。各像高における線の長さはコマ収差の大きさを表し、線の方向はコマ収差の方向を表している。
【0047】
図9(a) は平行平面板G34の後面にZ7項で表される非球面を0.10λ与えたもので、全画面に渡って均一なコマ収差を発生させることができる。図9(b) は平行平面板G34の後面にZ8項で表される非球面を0.10λ与えたもので、全画面に渡って変化するコマ収差を発生させることができる。なお、より高次の非対称形状を与えることにより、更に複雑な像高依存性を持たせることも可能である。
【0048】
このように、平行平面板G21、G27、G34に非軸対称な非球面形状を与えることにより、種々なパターンの軸非対称な歪曲収差、像面湾曲、非点収差、コマ収差等を発生させることができるので、平行平面板G21、G27、G34以外のレンズエレメントの各面形状R、中心肉厚dを測定し、それらのデータを用いてレンズデータを再構成すれば、発生する収差を非軸対称な収差も含めて予測することができる。
【0049】
このようにして発生する収差を修正するには、軸対称な収差については、第1の実施例の場合と同じ方法で修正し、軸対称な収差を修正した後の残った非軸対称な収差については、上述のような種々のパターンを組み合わせて発生した非軸対称な収差を打ち消すような非球面形状を平行平面板G21、G27、G34に付加することにより修正することができる。
【0050】
【発明の効果】
以上説明したように本発明に係る投影光学系組立調整方法は、レンズ間の間隔だけではなく、特定のレンズの面形状、肉厚を収差の修正に使うことができ、修正の幅が広がり、光学部品の作製誤差によって生ずる光学性能の劣化を良好に修正することができ、より高精度な投影光学系の作製が容易になり、更に公差設定を緩和することができるので歩留まりが向上する。
【図面の簡単な説明】
【図1】第1の実施例の投影光学系の断面図である。
【図2】組立調整法のフローチャート図である。
【図3】設計値の収差図である。
【図4】修正後の収差図である。
【図5】他の修正後の収差図である。
【図6】第2の実施例の投影光学系の断面図である。
【図7】歪曲収差の変化の平面図である。
【図8】像面湾曲の変化の斜視図である。
【図9】コマ収差の変化の平面図である。
【図10】従来例の組立調整法のフローチャート図である。
【図11】従来の方法による修正後の収差図である。
【符号の説明】
G1、G12、G2〜G11 、G13 〜G17、G22〜G26、G28〜G33、G35〜G40 レンズ
G21、G27、G34 平行平面板[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, relates to an assembly method of adjusting a projection optical system for mounting the semiconductor exposure apparatus.
[0002]
[Prior art]
Conventionally, a semiconductor integrated circuit such as an IC or an LSI is generally manufactured by a projection exposure method. In order to cope with a reduction in a circuit pattern size and an increase in a chip size accompanying an increase in the degree of integration, projection is performed. The optical system has a higher NA, larger screen, and shorter wavelength. The circuit pattern dimension is very small, and an integrated circuit having a pattern with a line width of 0.25 μm or less is currently produced, and the line width tends to become smaller in the future.
[0003]
For this reason, a projection lens for a semiconductor manufacturing apparatus is required to have the following very high accuracy and performance.
[0004]
(1) A high-contrast projection image can be obtained over the entire screen.
(2) Image distortion and displacement are very small.
(3) A large depth of focus can be obtained.
[0005]
In order to satisfy these performances, aberrations such as wavefront aberration RMS, coma aberration, field curvature and astigmatism, distortion aberration, and telecentricity must be kept low.
[0006]
First, in order to obtain a high-contrast image on the entire screen, it is necessary that the wavefront aberration RMS (root mean square) is as small as possible and hardly changes depending on the image height. According to Marechal's criterion, The wavefront aberration RMS may be about 0.07λ or less. Next, since coma aberration causes a decrease in the contrast of the projected image and an image shift, it must be suppressed as small as possible. The presence of field curvature and astigmatism deteriorates the in-screen uniformity of the contrast of the projected image. Cause the depth of focus to narrow. Furthermore, there are distortions, magnification errors, and telecentricity that shifts the position of the image when defocused, which are the main causes of image displacement, and the telecentric system can be used on both the object side (reticle side) and the image side (wafer side). It is desirable to make it.
[0007]
In order to obtain a projection optical system that satisfies such performance, it is necessary not only to design a lens system having a good value, but also to strictly suppress errors that occur during production.
[0008]
The conventional projection optical system is designed and assembled in consideration of these matters, but if it is calculated from the performance required for the projection optical system, the allowable manufacturing error (tolerance) is a very small value. It is technically very difficult to fabricate within. Moreover, even if it can be manufactured, the yield is very poor, and there is a problem that it cannot be economically realized.
[0009]
For this purpose, a tolerance is set on the assumption that correction is made in advance. Some aberrations such as spherical aberration, coma aberration, astigmatism, and distortion aberration are very small but can be corrected to some extent by adjusting the distance between the lenses. Therefore, a slightly loose tolerance is set in consideration of the adjustment width, and all the lens elements constituting the projection optical system are polished and manufactured based on the set tolerance.
[0010]
As manufacturing errors that occur in the lens elements of the respective optical components, there are errors in the surface shape (radius of curvature) R, errors in the thickness d, and deviation of the surface shape from the spherical surface. Therefore, the surface shape and curvature of all lens elements. Precise measurement of the radius R and the wall thickness d is performed using a surface shape measuring instrument or the like by the interferometry method, and the optimum distance between the lens elements is recalculated based on the measured data, and assembly is performed at the distance. Then, while measuring each aberration and performance of the optical system, adjusting the distance between the lens elements (moving in the optical axis direction), adjusting the tilt of the lens element (rotating around the vertical direction of the optical axis), Subtle adjustments such as lateral shift adjustment (movement in the vertical direction of the optical axis) are made to complete the assembly with minimal degradation of optical performance. Furthermore, the surface shape of several polished lens elements is measured, and an optimum combination of lens elements is selected and assembled based on the measured data.
[0011]
FIG. 10 is a flowchart of a conventional method for correcting a manufacturing error. In step 1, all lens elements are processed at once, and in step 2, a surface shape R and a thickness d are measured. At this time, since a manufacturing error is added to each lens element, in step 3, the aberration generated thereby is corrected by performing an optimization calculation using the interval between the lenses as a variable. Thereafter, assembly adjustment is performed in step 4.
[0012]
Thus, in the conventional assembling method, all adjustments for satisfying the performance of the projection optical system are performed by moving or rotating the lens element.
[0013]
[Problems to be solved by the invention]
However, in the above-described conventional example, since the adjustment range is small only by adjusting the distance by moving the lens, the tolerance becomes too strict when producing a highly accurate projection optical system, making the production difficult and the yield worsening. Problems occur. For example, in an optical system having a small number of lens elements, the above method cannot be applied because the number of lens intervals used for adjustment is small.
[0014]
11A and 11B are graphs showing aberrations of the optical system corrected by the conventional method. FIG. 11A shows the wavefront aberration RMS at each image height, FIG. 11B shows the distortion aberration, and FIG. 11C shows the image. There are aberrations that are surface curvature and astigmatism, and cannot be corrected only by adjusting the distance, as can be seen from comparison with the graph of aberration of design values in FIG. 3 described later. For example, the Petzval sum, which is a part of the curvature of field, is expressed by Σ (φ / n) from the power φ of each lens and the refractive index n of the glass material of each lens, which determines the power of each lens. Therefore, there is a problem that it cannot be corrected only by adjusting the interval.
[0015]
An object of the present invention is to provide a method for assembling and adjusting a projection optical system in which the above-described problems are solved and the deterioration of optical performance caused by an optical component production error is favorably corrected.
[0016]
[Means for Solving the Problems]
To achieve the above object, a projection optical system assembly and adjustment method according to the present invention includes a plurality of optical members and a plurality of correction optical members including a first correction optical member. A first step of processing the plurality of optical members to measure the surface shapes of the plurality of optical members, and the first correction optics for adjusting the spherical aberration as the projection optical system from the measurement results A second step of calculating a predetermined surface shape of the member; and processing the first correction optical member so as to be the predetermined surface shape calculated in the second step, and A third step of measuring the surface shape of the optical member, and a fourth step of assembling all of the optical member and the correction optical member to adjust the optical performance are provided.
The projection optical system assembly and adjustment method according to the present invention is a projection optical system assembly and adjustment method comprising a plurality of optical members and a plurality of correction optical members including a first correction optical member. A first step of measuring the surface shapes of the plurality of optical members, and a predetermined surface shape of the first correction optical member that reduces wavefront aberration as the projection optical system from the measurement result. A second step of calculating, and processing the first correction optical member so as to have the predetermined surface shape calculated in the second step, and measuring the surface shape of the first correction optical member And a fourth step of assembling all of the optical member and the correcting optical member to adjust the optical performance.
The projection optical system assembly and adjustment method according to the present invention is a projection optical system assembly and adjustment method comprising a plurality of optical members and a plurality of correction optical members including a first correction optical member. A first step of measuring the surface shapes of the plurality of optical members by processing and a predetermined surface shape of the first correction optical member arranged near the pupil position of the projection optical system based on the measurement result A second step of calculating, and processing the first correction optical member so as to have the predetermined surface shape calculated in the second step, and measuring the surface shape of the first correction optical member And a fourth step of assembling all of the optical member and the correcting optical member to adjust the optical performance.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail based on the embodiment shown in FIGS.
FIG. 1 is a cross-sectional view of the projection optical system of the first embodiment. By 17 KrF single glass lens lenses G1 to G17, the projection magnification is 1/5 times, the screen size is 17 mm × 17 mm, NA is 0.48, the object A projection optical system having a distance between the first surfaces of 120 mm and a working distance of 15 mm is formed.
[0018]
Data of the surface shape (radius of curvature) R, thickness and interval D, and refractive index N of each lens of this optical system are shown in the following table.
[0019]
Figure 0003673633
Figure 0003673633
[0020]
Here, aberrations are generated by giving the lens data changes in the surface shape R, the thickness, and the distance D corresponding to manufacturing errors. That is, as a manufacturing error, a deviation of the surface shape R of about 3 Neutrings and a deviation of the thickness and interval D of about 20 μm occur in each lens. The data of wall thickness and interval D are shown in the following table.
[0021]
Figure 0003673633
Figure 0003673633
[0022]
However, in an actual manufacturing process, there exists an axisymmetric or aspherical error in which the surface shape R deviates from the spherical surface.
[0023]
FIG. 2 is a flowchart of a method for correcting a manufacturing error, and designates a lens element A to be processed first and a lens element B to be used for correction of aberration. In this embodiment, two lenses G1 and G12 are used as the lens element B. Since the lens G1 is close to the object and is suitable for correcting distortion and telecentricity, and the lens G12 is located near the pupil, it is suitable for reducing wavefront aberration RMS, adjusting spherical aberration, and removing coma. ing. The lens elements other than the lenses G1 and G12 are all normal lens elements A.
[0024]
In step 11, the lens element A is processed. As a result, since a manufacturing error is given to each lens element A, it is assumed that the surface shape R and the wall thickness d are measured in step 12 and become the values shown in Table 2, respectively. In step 13, the aberration generated thereby is optimized using the distance between the lenses and the surface shape R and thickness d of the lens element B as variables. As a result of this optimization calculation, the surface shape R, the thickness d of the lens element B, and the distance between the lens elements are determined, and the lens element B is processed based on them in step 14. In this processing, it is assumed that the lens element B has a deviation of R of about three Neutrings and a deviation of the thickness d of about 20 μm as processing errors. In step 15, the surface shape R and the thickness d of the lens element B are obtained. Measure. In step 16, the generated aberration is corrected by performing an optimization calculation using the distance between the lenses as a variable. In step 17, assembly adjustment is performed.
[0025]
FIG. 3 shows an aberration diagram of the design value of the optical system before giving a manufacturing error, and three types of wavefront aberration RMS, distortion aberration, field curvature, and astigmatism are selected as quantities for evaluating the performance of the optical system. It is out. That is, (a) represents wavefront aberration RMS at each image height, (b) represents distortion aberration at each image height, and (c) represents field curvature and astigmatism at each image height.
[0026]
FIG. 4 is an aberration diagram of the optical system corrected by the method of the present invention, and (a) to (c) represent the same quantities as in FIGS. 3 (a) to 3 (b), respectively.
[0027]
First, regarding the wavefront aberration RMS in FIG. 3A, FIG. 4A, and FIG. 11A in the conventional example, the maximum value of the designed wavefront aberration RMS is 0.053λ off the most axis. As a result of adjustment by a conventional method, the wavefront aberration RMS cannot be completely corrected, and is 0.291λ off the outermost axis, which greatly exceeds the Marechal evaluation criterion. This is because, in the tolerance of Newt ring three shows a Yururu over-tricks Rukoto, it is necessary to set more stringent tolerances. On the other hand, in the method of the present embodiment, the wavefront aberration RMS is recovered to the design value of 0.067λ off the most axis. That is, it is shown that a tolerance of three neutral rings that cannot be set by the conventional method can be set.
[0028]
Next, regarding the distortion aberration of FIGS. 3B, 4B, and 11B, the width of the distortion that is the difference between the maximum value and the minimum value of the design value is 0.59 · 10 −3 %. On the other hand, in the conventional method, the correction can be made only to a value that is almost double at 1.10 · 10 −3 %. On the other hand, according to the method of the embodiment, the width of the distortion aberration is 0.66 · 10 −3 %, which can be corrected to about 10% of the design value.
[0029]
Further, regarding the field curvature and astigmatism in FIGS. 3 (c), 4 (c) and 11 (c), the designed image field width is 2.073 μm. On the other hand, as a result of correction by the conventional method, the image plane width is 4.233 μm, and according to the method of this embodiment, it is 1.586 μm. In particular, astigmatism is greatly generated as a result of correction by the conventional method, but this is intended to be corrected by balancing the change in Petzval sum that cannot be corrected by adjusting the spacing caused by manufacturing errors, with astigmatism. It depends on. This result also shows the superiority of the present invention.
[0030]
Therefore, by using the shapes of the two lens elements B of the lenses G1 and G12 for performance correction, it is possible to produce a projection optical system with performances in which the wavefront aberration RMS, distortion aberration, and field curvature are not inferior to the design values. it can.
[0031]
FIG. 5 shows the result of optimization calculation with the lens element B as an aspherical surface. 5A shows the wavefront aberration RMS, FIG. 5B shows the distortion aberration, and FIG. 5C shows the corrected state of the field curvature and astigmatism. From these aberration diagrams, it can be seen that a larger correction effect can be obtained by making the lens element B aspherical.
[0032]
The shape of the lens element B was determined by paying attention to the three properties of wavefront aberration RMS, distortion aberration, field curvature, and astigmatism. However, other optical performances such as spherical aberration and coma aberration are more detailed evaluation items. Can also be provided for determining the shape of the lens element B. In addition, although the surface shape R and the thickness d of each lens element are used as measurement quantities, the refractive index distribution in the plane perpendicular to the optical axis of each lens element is also measured and reflected in determining the shape of the lens element B. You may let them. Furthermore, although the lens element B is two lenses G1 and G12, it is not necessary to limit to these two lenses, and a KrF projection lens is used, but other projection wavelength projection optical systems such as i-line and ArF are used. Can be applied to.
[0033]
As described above, since the lens elements constituting the optical system can be used as they are as the correction optical element, the present embodiment can be applied to the projection optical system without newly adding a correction optical element in design. Is possible.
[0034]
FIG. 6 shows a cross-sectional view of the projection optical system of the second embodiment. In the first embodiment, changes in the surface shape R and the thickness d are given as manufacturing errors, but in the actual manufacturing process, the surface shape R is A surface shape error that deviates from the spherical surface occurs. Therefore, in this embodiment, the performance deterioration due to the surface shape error is corrected.
[0035]
The error such that the surface shape R becomes an aspherical surface is expressed by decomposing the deviation of the measurement surface from the spherical surface into each component, and Zernike, which is an orthogonal function system of the radial variable r and the angle variable θ, is divided into the components. (Zernike) Expand series. These aspherical error components include spherical and coma aberrations that behave asymmetrically in the screen, non-axisymmetric and random components of distortion, field curvature and astigmatism that are not axially distributed, etc. The correction of the distance causes an aberration that is difficult to correct. In order to correct the performance degradation caused by the aspherical surface shape error, it is effective to make the surface shape of the correcting optical element a non-axisymmetric aspherical surface.
[0036]
In FIG. 6, the projection magnification is 1/5 times by using three parallel plane plates G21, G27, G34 and 17 lenses G22 to G26, G28 to G33, and G35 to G40 which are made of KrF single glass material by design. A projection optical system having a screen size of 17 mm × 17 mm, NA of 0.50, a distance between the object and the first surface of 100 mm, and a working distance of 15.69 mm is formed. The surface shape R, thickness and interval D, and refractive index N of this projection optical system are shown in the following table.
[0037]
Figure 0003673633
Figure 0003673633
[0038]
By making these parallel flat plates G21, G27, and G34 correspond to the lens element B of the first embodiment, and correspondingly the remaining optical members to the lens element A, and performing assembly adjustment in the same procedure, Good assembly adjustment results can be obtained. At this time, if the optimization calculation is performed with the plane parallel plates G21, G27, and G34 of the lens element B made aspherical, a greater effect can be obtained.
[0039]
Since such an axially symmetric error component of the lens surface shape R is the same as that of the first embodiment, a description thereof will be omitted, and a method of correcting asymmetrical aberrations by the image height, that is, a non-axisymmetric error of the lens surface shape. A method of correcting the will be described.
[0040]
7 to 9 show the change in aberration by giving aspherical amounts to the rear surfaces of the plane parallel plates G21, G27 and G34, FIG. 7 shows the change in distortion, FIG. 8 shows the change in curvature of field, FIG. 9 shows changes in coma aberration.
[0041]
FIG. 7 shows the change of distortion by making the rear surface of the plane parallel plate G21 an aspherical shape, and the positional deviation caused by the aspherical shape is magnified 20,000 times and plotted against an ideal lattice. ing.
[0042]
FIG. 7A shows an aspheric surface represented by the Z4 term of the Zernike series given by 0.10λ, and a magnification error component is generated. FIG. 7B shows an aspheric surface represented by the term Z5 given by 0.10λ, and a vertical / horizontal magnification error component is generated. FIG. 7C shows an aspheric surface represented by the Z7 term given by 0.10λ, and the magnification changes linearly from the left to the right of the screen. FIG. 7D shows an aspherical surface represented by the term Z9 given by 0.10λ, and a third-order distortion component is generated. FIG. 7E shows the aspheric surface represented by the Z10 term given by 0.10λ. By providing a higher-order Zernike-shaped aspherical surface, it is possible to generate a more complicated distortion.
[0043]
FIG. 8 is a plot of changes in the focus position caused by examining changes in field curvature and making them aspherical. The mark ■ indicates the change of the focus position for the 0.25 μmL / S pattern aligned in the vertical direction in the screen, and the mark □ indicates the focus position for the 0.25 μmL / S pattern aligned in the horizontal direction in the screen. It represents a change.
[0044]
8A gives 0.10λ an aspheric surface represented by the Z5 term on the rear surface of the plane parallel plate G34, and FIG. 8B shows 0 aspherical surface represented by the Z12 term on the rear surface of the plane parallel plate G34. .10λ is given. Thus, by making the plane parallel plate G34 aspherical, uniform astigmatism can be generated over the entire screen.
[0045]
FIG. 8 (c) shows the rear surface of the plane parallel plate G27 given an aspherical surface represented by the term Z7 by 0.10λ, and FIG. 8 (d) shows the term Z9 on the rear surface of the plane parallel plate G27. FIG. 8E shows the aspherical surface represented by the Z12 term on the rear surface of the plane parallel plate G27. Thus, when the plane parallel plate G27 is aspherical, it is possible to generate field curvature and astigmatism that change asymmetrically over the entire screen. If an aspherical shape that is axially symmetric as shown in FIG. 8 (d) is given, field curvature and astigmatism that behave axially symmetric can also be generated.
[0046]
FIG. 9 is a graph showing changes in coma aberration, and shows changes in Z7 and Z8 terms, that is, low-order coma aberration when wavefront aberration at each image height is developed. The length of the line at each image height represents the magnitude of coma, and the direction of the line represents the direction of coma.
[0047]
In FIG. 9A, the rear surface of the plane parallel plate G34 is provided with an aspheric surface represented by the term Z7 of 0.10λ, and uniform coma aberration can be generated over the entire screen. In FIG. 9B, the rear surface of the plane parallel plate G34 is provided with an aspheric surface represented by the term Z8 of 0.10λ, and coma aberration that varies over the entire screen can be generated. It is also possible to give a more complicated image height dependency by giving a higher-order asymmetric shape.
[0048]
As described above, by giving the aspherical asymmetric shape to the plane parallel plates G21, G27, and G34, various patterns of axially asymmetric distortion, field curvature, astigmatism, coma, and the like are generated. Therefore, if each surface shape R and center thickness d of the lens elements other than the plane-parallel plates G21, G27, and G34 are measured and the lens data is reconstructed using those data, the generated aberration is non-axial. It can be predicted including symmetrical aberrations.
[0049]
In order to correct the aberration generated in this way, the axially symmetric aberration is corrected by the same method as in the first embodiment, and the remaining non-axisymmetric aberration after correcting the axially symmetric aberration is corrected. Can be corrected by adding to the parallel plane plates G21, G27, and G34 an aspherical shape that cancels the non-axisymmetric aberration generated by combining various patterns as described above.
[0050]
【The invention's effect】
As described above, the method of assembling and adjusting the projection optical system according to the present invention can use not only the distance between lenses but also the surface shape and thickness of a specific lens for correction of aberrations, thereby widening the range of correction. Therefore, it is possible to satisfactorily correct the optical performance degradation caused by the manufacturing error of the optical component, to easily manufacture a more accurate projection optical system, and to further relax the tolerance setting, thereby improving the yield.
[Brief description of the drawings]
FIG. 1 is a sectional view of a projection optical system according to a first embodiment.
FIG. 2 is a flowchart of an assembly adjustment method.
FIG. 3 is an aberration diagram of a design value.
FIG. 4 is an aberration diagram after correction.
FIG. 5 is an aberration diagram after another correction.
FIG. 6 is a sectional view of a projection optical system according to the second embodiment.
FIG. 7 is a plan view of a change in distortion.
FIG. 8 is a perspective view of a change in field curvature.
FIG. 9 is a plan view of changes in coma aberration.
FIG. 10 is a flowchart of a conventional assembly adjustment method.
FIG. 11 is an aberration diagram after correction by a conventional method.
[Explanation of symbols]
G1, G12, G2-G11, G13-G17, G22-G26, G28-G33, G35-G40 Lens G21, G27, G34 Parallel plane plate

Claims (10)

複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系としての球面収差を調整する前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする投影光学系の組立調整方法。  In a method for assembling and adjusting a projection optical system comprising a plurality of optical members and a plurality of correction optical members including a first correction optical member, the plurality of optical members are processed to obtain a surface shape of the plurality of optical members. A first step of measuring, a second step of calculating a predetermined surface shape of the first correction optical member for adjusting spherical aberration as the projection optical system from the measurement result, and the second step A third step of processing the first correction optical member so as to have the predetermined surface shape calculated in step, and measuring the surface shape of the first correction optical member, and the optical member and the correction And a fourth step of assembling all of the optical members for adjustment and adjusting the optical performance. 複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系としての波面収差を減少する前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする投影光学系の組立調整方法。  In a method for assembling and adjusting a projection optical system comprising a plurality of optical members and a plurality of correction optical members including a first correction optical member, the plurality of optical members are processed to obtain a surface shape of the plurality of optical members. A first step of measuring, a second step of calculating a predetermined surface shape of the first correction optical member that reduces wavefront aberration as the projection optical system from the measurement result, and the second step A third step of processing the first correction optical member so as to have the predetermined surface shape calculated in step, and measuring the surface shape of the first correction optical member, and the optical member and the correction And a fourth step of assembling all of the optical members for adjustment and adjusting the optical performance. 前記第1の補正用光学部材は前記投影光学系の瞳付近に配置したことを特徴とする請求項1又は2に記載の投影光学系。The projection optical system according to claim 1 or 2 a first correcting optical member, characterized in that arranged in the vicinity of the pupil of the projection optical system. 複数の光学部材と第1の補正用光学部材を含む複数の補正用光学部材とを備える投影光学系の組立調整方法において、前記複数の光学部材を加工してこれら複数の光学部材の面形状を測定する第1の工程と、該測定結果から前記投影光学系の瞳位置付近に配置した前記第1の補正用光学部材の所定の面形状を算出する第2の工程と、該第2の工程において算出した前記所定の面形状となるように前記第1の補正用光学部材を加工し、前記第1の補正用光学部材の面形状を測定する第3の工程と、前記光学部材及び前記補正用光学部材の全てを組み立てて光学的性能の調整を行う第4の工程とを備えることを特徴とする投影光学系の組立調整方法。  In a method for assembling and adjusting a projection optical system comprising a plurality of optical members and a plurality of correction optical members including a first correction optical member, the plurality of optical members are processed to obtain a surface shape of the plurality of optical members. A first step of measuring, a second step of calculating a predetermined surface shape of the first correction optical member arranged in the vicinity of the pupil position of the projection optical system from the measurement result, and the second step A third step of processing the first correction optical member so as to have the predetermined surface shape calculated in step, and measuring the surface shape of the first correction optical member, and the optical member and the correction And a fourth step of assembling all of the optical members for adjustment and adjusting the optical performance. 前記第1の補正用光学部材の前記面形状に加えて肉厚を設定することを特徴とする請求項1〜4の何れか1つの請求項に記載の投影光学系の組立調整方法。The method of assembling and adjusting a projection optical system according to any one of claims 1 to 4 , wherein a thickness is set in addition to the surface shape of the first correction optical member. 歪曲収差を補正する第2の補正用光学部材を備えることを特徴とする請求項1〜5の何れか1つの請求項に記載の投影光学系の組立調整方法。Second assembling method of adjusting a projection optical system according to any one of claims 1-5, characterized in that it comprises a correcting optical member for correcting the distortion. 所定の物体の像をウエハに投影する場合において、前記第2の補正用光学部材は前記物体近傍に配置したことを特徴とする請求項に記載の投影光学系の組立調整方法。7. The method of assembling and adjusting a projection optical system according to claim 6 , wherein, when an image of a predetermined object is projected onto the wafer, the second correction optical member is disposed in the vicinity of the object. 前記第1の工程において、前記複数の光学部材の面形状の測定の他に屈折率分布を測定することを特徴とする請求項1〜7の何れか1つの請求項に記載の投影光学系の組立調整方法。The projection optical system according to any one of claims 1 to 7 , wherein in the first step, a refractive index distribution is measured in addition to the measurement of the surface shapes of the plurality of optical members. Assembly adjustment method. 請求項1〜8の何れか1つの請求項に記載の投影光学系の組立調整方法を用いて組み立てた投影光学系を有し、所定の物体の像をウエハに投影露光することを特徴とする半導体露光装置。A projection optical system assembled by using the projection optical system assembly adjustment method according to any one of claims 1 to 8 , wherein an image of a predetermined object is projected and exposed onto a wafer. Semiconductor exposure equipment. 請求項に記載の半導体露光装置を用いて半導体集積回路を作製することを特徴とする半導体集積回路の製造方法。A method for manufacturing a semiconductor integrated circuit, comprising manufacturing a semiconductor integrated circuit using the semiconductor exposure apparatus according to claim 9 .
JP36341797A 1997-12-16 1997-12-16 Assembling and adjusting method of projection optical system Expired - Fee Related JP3673633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36341797A JP3673633B2 (en) 1997-12-16 1997-12-16 Assembling and adjusting method of projection optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36341797A JP3673633B2 (en) 1997-12-16 1997-12-16 Assembling and adjusting method of projection optical system

Publications (2)

Publication Number Publication Date
JPH11176744A JPH11176744A (en) 1999-07-02
JP3673633B2 true JP3673633B2 (en) 2005-07-20

Family

ID=18479256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36341797A Expired - Fee Related JP3673633B2 (en) 1997-12-16 1997-12-16 Assembling and adjusting method of projection optical system

Country Status (1)

Country Link
JP (1) JP3673633B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079472B2 (en) * 1999-06-23 2006-07-18 Dphi Acquisitions, Inc. Beamshaper for optical head
US7227817B1 (en) 1999-12-07 2007-06-05 Dphi Acquisitions, Inc. Low profile optical head
JP2002184667A (en) 2000-12-14 2002-06-28 Nikon Corp Method of forming correcting piece, method of forming projection optical system, and method of adjusting aligner
KR100927560B1 (en) 2002-01-29 2009-11-23 가부시키가이샤 니콘 Image forming state adjusting system, exposure method and exposure apparatus, and program and information recording medium
AU2003211559A1 (en) 2002-03-01 2003-09-16 Nikon Corporation Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method, exposure device, program, and device manufacturing method
KR101124179B1 (en) 2003-04-09 2012-03-27 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI609409B (en) 2003-10-28 2017-12-21 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TW201809801A (en) 2003-11-20 2018-03-16 日商尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
TWI437618B (en) 2004-02-06 2014-05-11 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
JP4574198B2 (en) 2004-03-17 2010-11-04 キヤノン株式会社 Exposure apparatus, adjustment method thereof, and device manufacturing method
JP4645271B2 (en) * 2005-04-05 2011-03-09 株式会社ニコン Projection optical system manufacturing method, exposure apparatus, and micro device manufacturing method
EP2660853B1 (en) 2005-05-12 2017-07-05 Nikon Corporation Projection optical system, exposure apparatus and exposure method
EP2035897B1 (en) * 2006-07-03 2015-10-28 Carl Zeiss SMT GmbH Method for revising or repairing a lithographic projection objective
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5105474B2 (en) 2007-10-19 2012-12-26 国立大学法人東京農工大学 Exposure apparatus and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010278034A (en) 2009-05-26 2010-12-09 Canon Inc Exposure apparatus and device manufacturing method
JP2014077904A (en) * 2012-10-11 2014-05-01 Olympus Corp Manufacturing method of optical assembly and designing method of a lens to be assembled
JP7158582B2 (en) * 2019-06-12 2022-10-21 三菱電機株式会社 Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program, and machine tool assembly method

Also Published As

Publication number Publication date
JPH11176744A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3673633B2 (en) Assembling and adjusting method of projection optical system
EP1422562B1 (en) Reticle and optical characteristic measuring method
US6788389B2 (en) Production method of projection optical system
JP4178862B2 (en) Reflective projection lens for EUV photolithography
KR100877022B1 (en) Method of evaluating imaging performance
US10168613B2 (en) Mask blank substrate, mask blank, transfer mask, and method of manufacturing semiconductor device
EP1349201A1 (en) Observation device and its manufacturing method, exposure device, and method for manufacturing micro device
US6867922B1 (en) Projection optical system and projection exposure apparatus using the same
US11899181B2 (en) Lithography projection objective
JP4207478B2 (en) Optical integrator, illumination optical apparatus, exposure apparatus, and exposure method
CN110531587B (en) Evaluation method, exposure method, and method for manufacturing article
KR20030071521A (en) Aberration estimating method of image formation optical system, handling method of image formation optical system, projecting exposure apparatus and method therefor, recording medium, and carrier wave capable of receiving to computer
JPH1195095A (en) Projection optical system
TW200839455A (en) Method for improving the imaging properties of an optical system, and such an optical system
TWI715392B (en) Photoetching projection objective lens and photoetching machine
JP2000249917A (en) Projection optical system, production of projection optical system, production of illumination optical system and production of exposure device
US6710930B2 (en) Illumination optical system and method of making exposure apparatus
CN110764224B (en) Photoetching projection objective lens
US20060098273A1 (en) Reflective-type projection optical system and exposure apparatus equipped with said reflective-type projection optical system
JP2002250865A (en) Projection optical system, exposure device and method for manufacturing them
JP2005114922A (en) Lighting optical system and aligner using the same
JP2000353661A (en) Projection optical system and aligner
JP2005301054A (en) Illumination optical system and exposure apparatus using the same
JP2004259844A (en) Projection optical system, method for manufacturing the same aliner, method for manufacturing the same, exposure method, and method for manufacturing optical system
US20090041934A1 (en) Method for manufacturing projection optics

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees