[go: up one dir, main page]

JP3673077B2 - Thermal storage type exhaust gas treatment equipment - Google Patents

Thermal storage type exhaust gas treatment equipment Download PDF

Info

Publication number
JP3673077B2
JP3673077B2 JP08517598A JP8517598A JP3673077B2 JP 3673077 B2 JP3673077 B2 JP 3673077B2 JP 08517598 A JP08517598 A JP 08517598A JP 8517598 A JP8517598 A JP 8517598A JP 3673077 B2 JP3673077 B2 JP 3673077B2
Authority
JP
Japan
Prior art keywords
exhaust gas
duct
branch
introduction
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08517598A
Other languages
Japanese (ja)
Other versions
JPH11281035A (en
Inventor
知 幹 夫 村
治 和 彦 高
野 善 博 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP08517598A priority Critical patent/JP3673077B2/en
Publication of JPH11281035A publication Critical patent/JPH11281035A/en
Application granted granted Critical
Publication of JP3673077B2 publication Critical patent/JP3673077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中に含まれる可燃性有害成分や可燃性悪臭成分を直接燃焼させて無害無臭な物質に変化させると共に、その際に生ずる熱を回収して排ガス処理に再利用する蓄熱型排ガス処理装置に関する。
【0002】
【従来の技術】
塗装ブース,塗装乾燥炉,印刷用乾燥炉,プラスチックや合板の製造設備,食品加工設備,産業廃棄物処理設備あるいは香料製造設備などの各種施設内においては、塗料,インキ,溶剤,接着剤,合成樹脂,あるいは化学薬品等から、アルコール類,エステル類や,有害で特有の臭気を持つフェノール類,アルデヒド類等の可燃性有害悪臭成分が発生する。
【0003】
このような有害悪臭成分を含んだ排ガスは、公害防止の観点から直接大気中に放出することはできないので、通常は、浄化処理を施して、無害無臭化した状態で放出している。
そして、このような排ガスを浄化処理するために、排ガス中の可燃性有害悪臭成分を直接燃焼又は触媒酸化させて無害無臭な物質に変化させると共に、その際に生ずる熱を回収して未処理排ガスを加熱する熱源として再利用する蓄熱型排ガス処理装置が提案されている(特開平5−332523号,同332524号,同66005号公報参照)。
このような蓄熱式排ガス処理装置は、蓄熱室の数により、二塔式,三塔式,多塔式のものがあるが、各蓄熱室を導入側から排出側に切り換えるときに蓄熱室内に残存する未処理排ガスを排出させないで、且つ、連続的に排ガスを処理するためには3塔式のものが好ましい(特開平9−152120号,同253448号,同262434号,同264521号)。
【0004】
図4は、このような三塔式の排ガス処理装置41を示し、高温の処理済排ガスを排出させる際にその熱を蓄え、低温の未処理排ガスを導入する際に蓄えた熱を放熱して当該排ガスを予熱する蓄熱層2A〜2Cを配した三つの蓄熱室3A〜3Cが、未処理排ガスを所定の温度まで加熱して浄化処理する排ガス処理ゾーン4に連通して、例えば左右横並びに並設して配置されている。
排ガス処理ゾーン4には、未処理排ガスを加熱するバーナ5が配設されると共に、当該バーナ5で加熱された排ガスに含まれる可燃性成分を比較的低温で酸化燃焼/熱分解させる触媒層6A〜6Cが、各蓄熱室3A〜3Cの蓄熱層2A〜2Cに積層されて配設されている。
【0005】
そして、各蓄熱室3A〜3Cには、蓄熱層2A〜2Cを挟んで排ガス処理ゾーン4の反対側に、未処理排ガスを導入する未処理排ガス導入ダクト42A〜42Cと、排ガス処理ゾーン4で浄化処理された処理済排ガスを排出する処理済排ガス排出ダクト43A〜43Cと、処理済排ガスで各蓄熱室3A〜3C内に残る未処理排ガスを押し出して導入側の蓄熱室3A〜3Cに還流させるパージダクト44A〜44Cが接続されている。
【0006】
そして、未処理排ガス導入ダクト42A〜42Cは、排ガス発生源から未処理排ガスを送給する主導入ダクト42から分岐して形成され、処理済排ガス排出ダクト43A〜43Cは排ガスを外部に排出する主排出ダクト43に合流され、パージダクト44A〜44Cは前記主導入ダクト42に連通する主パージダクト44に合流接続されている。
また、前記各ダクト42A〜42C,43A〜43C,44A〜44Cには、オートダンパ45A〜45C,46A〜46C,47A〜47Cが介装され、これらを所定のタイミングで開閉させて、排ガスの導入側及び排出側を交互に切り換えるように成されている。
【0007】
これにより、例えば上述の三塔式の排ガス処理装置41では、一の蓄熱室3A(3B,3C)から未処理排ガスを導入して、排ガス処理ゾーン4で浄化処理した後、処理済排ガスを他の一の蓄熱室3B(3C,3A)から排出させると共に、残る一の蓄熱室3C(3A,3B)に残存する未処理排ガスを導入側の蓄熱室3A(3B,3C)に還流させてパージを行い、各蓄熱室3A〜3Cごとに処理済排ガスの排出(蓄熱)−未処理排ガスの導入(放熱)−残存未処理排ガスの還流(パージ)の順で交互に切り換えて連続的に排ガスを浄化処理することができる。
【0008】
【発明が解決しようとする課題】
しかしながら、三塔式の排ガス処理装置41は、各蓄熱室3A〜3Cごとに、未処理排ガス導入ダクト42A〜42C,処理済排ガス排出ダクト43A〜43C及びパージダクト44A〜44Cの合計九本のダクトを接続しなければならないので、そのダクトを取り回す広いスペースが必要になり、装置全体が大型化するという問題があった。
【0009】
例えば、実装置においては、図示は省略するが、左右に並設された三つの蓄熱室3A〜3Cの底部に対し、その正面側に配管された主導入ダクト42から排ガス導入ダクト42A〜42Cが分岐されて夫々の正面側から接続され、その背面側に配管された主排出ダクト43から排ガス排出ダクト43A〜43Cが分岐されて夫々の背面側から接続され、その底面側に配管された主パージダクト44からパージダクト44A〜44Cが分岐されて夫々の底面側から接続されている。
このため、各蓄熱室3A〜3Cの前後及び下方に上記各ダクトを配管するスペースを確保しなければならず、その分、装置が大型化する。
【0010】
また、各ダクト42A〜42C,43A〜43C,44A〜44Cには、夫々オートダンパ45A〜45C,46A〜46C,47A〜47Cを介装しなけれぱならないので、これらの設置スペースを確保しなければならず、さらに、各ダンパを個別に開閉する九つのアクチュエータを同期させて所定のタイミングで駆動させなければならないため、その制御が面倒なばかりでなく、制御装置が複雑で高価になるという問題もある。
【0011】
そこで本願第一の発明は、三塔式の排ガス処理装置における各ダクトの取回しを簡便にして装置全体の小型化を図ることを技術的課題としている。また、本願第二の発明は、装置全体の小型化を図ると共に、多数のダンパを一つにまとめて省スペースを図り、さらに、複雑で高価な制御装置を不要にして設備費を軽減することを技術的課題としている。
【0012】
【課題を解決するための手段】
この課題を解決するために、本願第一の発明は、高温の処理済排ガスを排出させる際にその熱を蓄熱し、低温の未処理排ガスを導入する際に放熱して当該排ガスを予熱する蓄熱層を配した三つの蓄熱室が、未処理排ガスを所定の温度に加熱して浄化処理する排ガス処理ゾーンに対して並設され、一の蓄熱室から導入された未処理排ガスを前記排ガス処理ゾーンで浄化処理した後、その処理済排ガスを他の一の蓄熱室から排出させると共に、排ガスの導入側及び排出側を順次交互に切り換えて連続的に処理を行う蓄熱型排ガス処理装置において、前記各蓄熱室が互いに隣接する位置に配設されると共に、各蓄熱室の底部に連通されてその下方に向かって並行に延設される夫々の排ガス導入排出ダクトと、排ガス発生源から未処理排ガスを送給する主導入ダクトと、処理済排ガスを排出する主排出ダクトと、各蓄熱室から排出される残存未処理排ガスを主導入ダクトに還流し、または、主排出ダクトを流れる処理済排ガスを各蓄熱室に還流する主パージダクトを備え、前記主導入ダクトから三方に分岐されて前記各排ガス導入排出ダクトに接続される三本の分岐導入ダクトと、前記各排ガス導入排出ダクトから分岐されて前記主排出ダクトに三方から合流接続される三本の分岐排出ダクトと、前記各排ガス導入排出ダクトから分岐されて前記主パージダクトに三方から合流接続される三本の分岐パージダクトが、前記各蓄熱室の下方で上下三層に配管されたことを特徴とする。
【0013】
この発明によれば、三つの各蓄熱室が互いに隣接する位置、すなわち、平面から見て略三角形の頂点となる位置に配置され、夫々の底部に接続された排ガス導入排出ダクトがその下方に向かって並行に延設されているので、各排ガス導入排出ダクトは、三角形の頂点となる位置に略垂直に立てられる。
【0014】
そして、排ガス発生源から未処理排ガスを送給する主導入ダクトから三方に分岐された各分岐導入ダクトが各排ガス導入排出ダクトに接続され、処理済排ガスを排出する主排出ダクトに対し各排ガス導入排出ダクトから分岐された三本の分岐排出ダクトが三方から合流接続され、各蓄熱室から排出される残存未処理排ガスを主導入ダクトに還流する主パージダクトに対し各排ガス導入排出ダクトから分岐された三本の分岐パージダクトが三方から合流接続されている。
【0015】
これら各分岐導入ダクト,分岐排出ダクト,分岐パージダクトは、前記各排ガス導入排出ダクトに対して互いに交錯することなく上下三層に配管することができるので、蓄熱室の設置スペースがあれば、その下方に配管することができ、したがって、装置全体の設置スペースを小さくして小型化できる。
【0016】
また、本願第二の発明は、各分岐導入ダクト,各分岐排出ダクト及び各分岐パージダクトと、主導入ダクト,主排出ダクト及び主パージダクトとの分岐合流点を上下に同軸的に配置して、その分岐合流点に、各分岐導入ダクト,各分岐排出ダクト及び各分岐パージダクトの三流路を同時に切り換えるオートダンパを設ければ、ダンパ及びその駆動装置は一つで足り、オートダンパの設置スペースが小さくて済むだけでなく、その制御も極めて簡単になる。
【0017】
例えば、オートダンパを中心にして各分岐導入ダクト,各分岐排出ダクト及び各分岐パージダクトを三方向に等角的に分岐又は合流させ、三つの切換流路が形成された回転シリンダを備えて成るオートダンパを用いれば、当該回転シリンダを120°ずつ回転することにより、各分岐導入ダクトのうち一の排ガス導入排出ダクトに連通する分岐導入ダクトを主導入ダクトと選択的に導通させ、各分岐排出ダクトのうち他の一の排ガス導入排出ダクトに連通する分岐排出ダクトを主排出ダクトと選択的に導通させ、各分岐パージダクトのうち残る一の排ガス導入排出ダクトに連通する分岐パージダクトを主パージダクトと選択的に導通させることができる。
したがって、これを120°ずつ回転させていけば、各蓄熱室ごとに処理済排ガスの排出(蓄熱)−未処理排ガスの導入(放熱)−残存未処理排ガスの還流(パージ)を繰り返して、連続的に排ガス処理が行われる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明に係る蓄熱型排ガス処理装置を示す概略構成図、図2(a)〜(c)は流路の切換動作を示す配管図、図3は他の実施形態の流路の切換動作の一例を示す配管図である。なお、図4と共通する部分については同一符号を付して詳細説明は省略する。
【0019】
本例に係る蓄熱型排ガス処理装置1は、三つの蓄熱室3A〜3Cが互いに隣接する位置に、すなわち、平面から見て三角形の頂点となる位置に配設されている。
このような配置とすることにより、隣接する各蓄熱室3A〜3C同士を密接することができ、この場合は、各蓄熱室3A〜3Cの間を断熱壁で仕切るだけでよく、その分、製造コストを低減することができる。
また、各蓄熱室3A〜3Cを密接して配設すれば、互いに隣接する部分は外気にさらされないので放熱量が少なく、その分、熱効率が向上する。
また、各蓄熱室3A〜3Cには、その底部から下方に向かって並行に延設される排ガス導入排出ダクト7A〜7Cが夫々接続され、三角形の頂点となる位置に略垂直に立てられている。
【0020】
そして、前記各排ガス導入排出ダクト7A〜7Cは、排ガス発生源から未処理排ガスを送給する主導入ダクト8と、処理済排ガスを排出する主排出ダクト9と、各蓄熱室3A〜3Cから排出される残存未処理排ガスを主導入ダクト8に還流する主パージダクト10に連通されている。
【0021】
主導入ダクト8は、当該ダクト8から三方に分岐された三本の分岐導入ダクト8A〜8Cを介して各排ガス導入排出ダクト7A〜7Cに夫々に接続されている。
また、主排出ダクト9に対しては、各排ガス導入排出ダクト7A〜7Cから分岐された三本の分岐排出ダクト9A〜9Cが三方から合流接続されている。
さらに、主パージダクト10に対しては、各排ガス導入排出ダクト7A〜7Cから分岐された三本の分岐パージダクト10A〜10Cが三方から合流接続されている。
【0022】
前記主導入ダクト8,主排出ダクト9,主パージダクト10は、蓄熱室3A〜3Cの下側に延設された各排ガス導入排出ダクト7A〜7Cを頂点とする三角形の内側まで延設されて、分岐導入ダクト8A〜8C,分岐排出ダクト9A〜9C,分岐パージダクト10A〜10Cと分岐合流されている。
そして、分岐導入ダクト8A〜8C,分岐排出ダクト9A〜9C,分岐パージダクト10A〜10Cは、排ガス導入排出ダクト7A〜7Cに対して上下三層に配管されて接続されている。
【0023】
また、各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cと、主導入ダクト8,主排出ダクト9及び主パージダクト10との分岐合流点Pが上下に同軸的に配置され、その分岐合流点Pには、各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cの三流路を同時に切り換えるオートダンパ11が配設されている。
【0024】
このオートダンパ11を中心にして、各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cは、三方向に等角的に分岐又は合流されている。
そして、オートダンパ11には、モータ12により120°ずつ回転駆動される回転シリンダ13(図2参照)が配設されている。
【0025】
この回転シリンダ13には、図2に示すように、120°回転されたときに、各分岐導入ダクト8A〜8Cのうち一の排ガス導入排出ダクト7A(7B,7C)に連通する分岐導入ダクト8A(8B,8C)を主導入ダクト8と選択的に導通させる切換流路14inと、各分岐排出ダクト9A〜9Cのうち他の一の排ガス導入排出ダクト7B(7C,7A)に連通する分岐排出ダクト9B(9C,9A)を主排出ダクト9と選択的に導通させる切換流路14out と、各分岐パージダクト10A〜10Cのうち残る一の排ガス導入排出ダクト7C(7A,7B)に連通する分岐パージダクト10C(10A,10B)を主パージダクト10と選択的に導通させる切換流路14pが形成されている。
【0026】
なお、15は主導入ダクト8に介装された送風ファンで、主パージダクト10は当該送風ファン15の上流側に接続されている。
【0027】
以上が本発明の一例構成であって、次にその作用を図2(a)〜(c)を伴って説明する。
オートダンパ11の回転シリンダ13が図2(a)に示す位置にあるときは、主導入ダクト8が切換流路14inを介して分岐導入ダクト8Aに導通され、分岐排出ダクト9Bが切換流路14out を介して主排出ダクト9に導通され、分岐パージダクト10Cが切換流路14pを介して主パージダクト10に導通される。
【0028】
したがって、主導入ダクト8を送給された未処理排ガスが、排ガス導入排出ダクト7Aを介して蓄熱室3Aに導入され、排ガス処理ゾーン4で処理された高温の処理済排ガスが蓄熱室3Bを通過する際に蓄熱層2Bに蓄熱されて、排ガス導入排出ダクト7B−分岐排出ダクト9B−切換流路14out −主排出ダクト9を通り外部に排出される。
【0029】
また、このとき蓄熱室3Cがパージされ、処理済排ガスで押し出された残存未処理排ガスが、排ガス導入排出ダクト7C−分岐パージダクト10C−切換流路14p−主パージダクト10を通り、主導入ダクト8を介して導入側の排ガス処理ゾーン4内に還流される。
【0030】
次いで、モータ12によりオートダンパ11の回転シリンダ13を図2(b)に示す位置まで120°回転させると、主導入ダクト8が切換流路14inを介して分岐導入ダクト8Bに導通され、分岐排出ダクト9Cが切換流路14out を介して主排出ダクト9に導通され、分岐パージダクト10Aが切換流路14pを介して主パージダクト10に導通される。
これにより、蓄熱が完了した蓄熱室3Bから未処理排ガスが導入されて予熱され、排ガス処理ゾーン4で処理された処理済排ガスがパージの完了した蓄熱室3Cから排出されると共に、蓄熱室3Aがパージされて残存未処理排ガスが導入側の蓄熱室3Bに還流される。
【0031】
さらに、モータ12によりオートダンパ11の回転シリンダ13を図2(c)に示す位置まで120°回転させると、主導入ダクト8が切換流路14inを介して分岐導入ダクト8Cに導通され、分岐排出ダクト9Aが切換流路14out を介して主排出ダクト9に導通され、分岐パージダクト10Bが切換流路14pを介して主パージダクト10に導通される。
これにより、蓄熱が完了した蓄熱室3Cから未処理排ガスが導入されて予熱され、排ガス処理ゾーン4で処理された処理済排ガスがパージの終了した蓄熱室3Aから排出されると共に、蓄熱室3Bがパージされて残存未処理排ガスが導入側の蓄熱室3Cに還流される。
【0032】
そして、このように、回転シリンダ13をモータ12により120°にずつ回転駆動し、各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cの流路を順次切り換えて、各蓄熱室3A〜3Cごとに処理済排ガスの排出(蓄熱)−未処理排ガスの導入(放熱)−残存未処理排ガスの還流(パージ)を繰り返して、連続的に排ガス処理を行うことができる。
【0033】
なお、オートダンパ11を分岐合流点Pに一つ設ける場合に限らず、複数のオートダンパを各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cごとに介装する場合であってもよい。
この場合、ダンパの設置個数は従来と同じであるが、各分岐導入ダクト8A〜8C,各分岐排出ダクト9A〜9C及び各分岐パージダクト10A〜10Cを三層に配管することにより配管スペースを狭くすることができ、また、各オートダンパを立体的に配設できることからその設置スペースも狭くなり、装置全体を小型化することができる。
【0034】
また、主パージダクト10は、蓄熱室3A〜3Cから押し出された残存未処理排ガスを主導入ダクト8に還流させるものに限らず、図3に示すように主排出ダクト9を流れる処理済排ガスを各蓄熱室3A〜3Cに供給して、当該蓄熱室3A〜3C内の残存未処理排ガスを排ガス処理ゾーン4内に押し込むものであってもよい。
この場合、主排出ダクト9に送風ファン15が介装され、その下流側から主パージダクト10が分岐されて、オートダンパ11を介して各分岐パージダクト10A〜10Cに接続されている。
【0035】
さらに、排ガス処理ゾーン4に触媒層6A〜6Cを配した場合について説明したが、本発明は、触媒層6A〜6Cのない直接燃焼タイプの排ガス処理装置に適用できることは勿論である。
【0036】
【発明の効果】
以上述べたように、本発明によれば、三つの蓄熱室が互いに隣接する位置に配設されて、その下方に排ガス導入排出ダクトが延設されており、主導入ダクトから三方に分岐された三本の分岐導入ダクトと、主排出ダクトに対して三方から合流される三本の分岐排出ダクトと、主パージダクトに対して三方から合流される三本の分岐パージダクトが、前記排ガス導入排出ダクトに対して上下三層に配管されているので、蓄熱室の設置スペースがあれば、その下方に配管することができ、したがって、装置全体の設置スペースを小さくすることができるという大変優れた効果を奏する。
また、三つの蓄熱室を密接して配置すれば、隣接する断熱壁を共用することができるので、その分、材料費を節約することができると同時に、外気にさらされる部分が少なくなるので、熱効率が向上するという効果もある。
【0037】
さらに、各分岐導入ダクト,各分岐排出ダクト及び各分岐パージダクトと、主導入ダクト,主排出ダクト及び主パージダクトとの分岐合流点を上下に同軸的に配置して、その分岐合流点に、各分岐導入ダクト,各分岐排出ダクト及び各分岐パージダクトの三流路を同時に切り換えるオートダンパを設ければ、ダンパ及びその駆動装置は一つで足り、ダンパの設置スペースが小さくて済むだけでなく、その制御も極めて簡単になり、設備費を大幅に軽減することができるという効果がある。
【図面の簡単な説明】
【図1】 本発明に係る蓄熱型排ガス処理装置を示す概略説明図。
【図2】(a)〜(c)は流路の切換動作を示す配管図。
【図3】 他の実施形態の流路の切換動作の一例を示す配管図。
【図4】 従来装置を示す概略説明図。
【符号の説明】
1・・・・・・・蓄熱型排ガス処理装置
2A〜2C・・・蓄熱層
3A〜3C・・・蓄熱室
4・・・・・・・排ガス処理ゾーン
5・・・・・・・バーナ
6A〜6C・・・触媒層
7A〜7C・・・排ガス導入排出ダクト
8・・・・・・・主導入ダクト
8A〜8C・・・分岐導入ダクト
9・・・・・・・主排出ダクト
9A〜9C・・・分岐排出ダクト
10・・・・・・・主パージダクト
10A〜10C・・分岐パージダクト
11・・・・・・・オートダンパ
13・・・・・・・回転シリンダ
14in,14out ,14p・・切換流路
[0001]
BACKGROUND OF THE INVENTION
The present invention is a regenerative exhaust gas that directly burns combustible harmful components and combustible malodorous components contained in exhaust gas to change them into harmless and odorless materials, and recovers the heat generated at that time and reuses it for exhaust gas treatment. The present invention relates to a processing apparatus.
[0002]
[Prior art]
In various facilities such as painting booth, painting drying furnace, printing drying furnace, plastic and plywood manufacturing equipment, food processing equipment, industrial waste processing equipment or fragrance manufacturing equipment, paint, ink, solvent, adhesive, synthesis Combustible harmful odor components such as alcohols, esters, phenols and aldehydes having harmful and specific odors are generated from resins or chemicals.
[0003]
Since the exhaust gas containing such harmful odor components cannot be directly released into the atmosphere from the viewpoint of pollution prevention, it is usually released in a harmless and non-brominated state after purification.
In order to purify such exhaust gas, combustible harmful odor components in the exhaust gas are directly burned or catalytically oxidized to change them into harmless and odorless substances, and the heat generated at that time is recovered to obtain untreated exhaust gas. A heat storage type exhaust gas treatment device which is reused as a heat source for heating the gas has been proposed (see JP-A-5-332523, 332524, and 66005).
Depending on the number of heat storage chambers, there are two types of heat storage type exhaust gas treatment devices, two tower type, three tower type, and multiple tower type, but they remain in the heat storage chamber when each heat storage chamber is switched from the introduction side to the discharge side. In order to continuously treat the exhaust gas without discharging the untreated exhaust gas, a three-column type is preferable (Japanese Patent Laid-Open Nos. 9-152120, 253448, 262434, and 264521).
[0004]
FIG. 4 shows such a three-tower type exhaust gas treatment device 41, which stores heat when discharging a high-temperature treated exhaust gas and dissipates heat stored when introducing a low-temperature untreated exhaust gas. The three heat storage chambers 3A to 3C in which the heat storage layers 2A to 2C for preheating the exhaust gas are communicated with the exhaust gas treatment zone 4 for heating and purifying the untreated exhaust gas to a predetermined temperature. Arranged.
The exhaust gas treatment zone 4 is provided with a burner 5 for heating the untreated exhaust gas, and a catalyst layer 6A for oxidative combustion / thermal decomposition of combustible components contained in the exhaust gas heated by the burner 5 at a relatively low temperature. To 6C are laminated and disposed on the heat storage layers 2A to 2C of the heat storage chambers 3A to 3C.
[0005]
In each of the heat storage chambers 3A to 3C, the untreated exhaust gas introduction ducts 42A to 42C for introducing untreated exhaust gas to the opposite side of the exhaust gas treatment zone 4 across the heat storage layers 2A to 2C, and the exhaust gas treatment zone 4 are purified. Processed exhaust gas exhaust ducts 43A to 43C for discharging the processed exhaust gas, and purge ducts for extruding untreated exhaust gas remaining in the heat storage chambers 3A to 3C with the processed exhaust gas and returning them to the heat storage chambers 3A to 3C on the introduction side 44A to 44C are connected.
[0006]
The untreated exhaust gas introduction ducts 42A to 42C are branched from the main introduction duct 42 that feeds the untreated exhaust gas from the exhaust gas generation source, and the treated exhaust gas exhaust ducts 43A to 43C mainly discharge the exhaust gas to the outside. The purge ducts 44 </ b> A to 44 </ b> C are joined to the main purge duct 44 that communicates with the main introduction duct 42.
The ducts 42A to 42C, 43A to 43C, 44A to 44C are provided with auto dampers 45A to 45C, 46A to 46C, and 47A to 47C, which are opened and closed at a predetermined timing to introduce exhaust gas. The side and the discharge side are alternately switched.
[0007]
Thereby, for example, in the above-mentioned three-column exhaust gas treatment device 41, after introducing untreated exhaust gas from one heat storage chamber 3A (3B, 3C) and purifying it in the exhaust gas treatment zone 4, the treated exhaust gas is treated as other The heat storage chamber 3B (3C, 3A) is discharged and the untreated exhaust gas remaining in the remaining heat storage chamber 3C (3A, 3B) is returned to the introduction side heat storage chamber 3A (3B, 3C) and purged. For each of the heat storage chambers 3A to 3C, by alternately switching in order of discharge of treated exhaust gas (heat storage)-introduction of untreated exhaust gas (radiation)-recirculation (purging) of remaining untreated exhaust gas. It can be purified.
[0008]
[Problems to be solved by the invention]
However, the three-tower type exhaust gas treatment device 41 has a total of nine ducts of untreated exhaust gas introduction ducts 42A to 42C, treated exhaust gas exhaust ducts 43A to 43C, and purge ducts 44A to 44C for each of the heat storage chambers 3A to 3C. Since they must be connected, a large space for the duct is required, and the entire apparatus becomes large.
[0009]
For example, in an actual apparatus, although illustration is abbreviate | omitted, with respect to the bottom part of the three heat storage chambers 3A-3C arranged side by side, exhaust gas introduction ducts 42A-42C are connected from the main introduction duct 42 piped in the front side. The main purge duct is branched and connected from the front side, and the exhaust gas discharge ducts 43A to 43C are branched from the main discharge duct 43 piped on the back side and connected from the back side, and piped on the bottom side. 44, purge ducts 44 </ b> A to 44 </ b> C are branched from each other and connected from the bottom side.
For this reason, the space which pipes each said duct must be ensured before and behind each heat storage chamber 3A-3C, and the apparatus enlarges that much.
[0010]
In addition, since each of the ducts 42A to 42C, 43A to 43C, and 44A to 44C must be provided with auto dampers 45A to 45C, 46A to 46C, and 47A to 47C, it is necessary to secure these installation spaces. In addition, the nine actuators that individually open and close each damper must be driven in synchronism with each other, so that the control is complicated and expensive. is there.
[0011]
Therefore, the first invention of the present application has a technical problem to simplify the handling of each duct in the three-tower type exhaust gas treatment device and to reduce the size of the entire device. In addition, the second invention of the present application aims to reduce the size of the entire apparatus, consolidate a large number of dampers into one, save space, and reduce the equipment cost by eliminating the need for a complicated and expensive control device. Is a technical issue.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the first invention of the present application stores heat when exhausting high-temperature treated exhaust gas, and stores heat to preheat the exhaust gas by dissipating heat when introducing low-temperature untreated exhaust gas. Three heat storage chambers with layers are juxtaposed with an exhaust gas treatment zone for heating and purifying the untreated exhaust gas to a predetermined temperature, and the untreated exhaust gas introduced from one heat storage chamber is treated as the exhaust gas treatment zone. In the heat storage type exhaust gas processing apparatus for exhausting the treated exhaust gas from the other one heat storage chamber and sequentially switching the exhaust gas introduction side and the exhaust side alternately in order, The heat storage chambers are disposed adjacent to each other, and communicate with the bottom of each of the heat storage chambers and extend in parallel toward the bottom of the respective heat storage chambers. Send The main introduction duct, the main exhaust duct that discharges the treated exhaust gas, and the residual untreated exhaust gas discharged from each heat storage chamber is returned to the main introduction duct, or the treated exhaust gas flowing through the main exhaust duct is returned to each heat storage chamber. A main purge duct that circulates; three branch introduction ducts that are branched in three directions from the main introduction duct and connected to the exhaust gas introduction / exhaust ducts; and branched from the exhaust gas introduction / exhaust ducts to the main exhaust duct Three branch discharge ducts joined from three sides and three branch purge ducts branched from each exhaust gas introduction / exhaust duct and joined from the three sides to the main purge duct are vertically moved below the respective heat storage chambers. It is characterized by being piped in layers.
[0013]
According to the present invention, the three heat storage chambers are arranged at positions adjacent to each other, that is, at positions that are substantially triangular vertices when viewed from above, and the exhaust gas introduction / discharge ducts connected to the respective bottom portions face downward. Therefore, each exhaust gas introduction / exhaust duct is erected substantially perpendicular to the position of the apex of the triangle.
[0014]
Each branch introduction duct branched in three directions from the main introduction duct that feeds the untreated exhaust gas from the exhaust gas generation source is connected to each exhaust gas introduction / exhaust duct, and each exhaust gas is introduced into the main exhaust duct that discharges the treated exhaust gas. Three branch exhaust ducts branched from the exhaust duct were joined and connected from three sides, and branched from each exhaust gas introduction / exhaust duct to the main purge duct that recirculates the remaining untreated exhaust gas discharged from each heat storage chamber to the main introduction duct Three branch purge ducts are joined from three sides.
[0015]
These branch introduction ducts, branch discharge ducts, and branch purge ducts can be arranged in three upper and lower layers without crossing each other with respect to the exhaust gas introduction / exhaust ducts. Therefore, the installation space of the entire apparatus can be reduced and the size can be reduced.
[0016]
Further, the second invention of the present application arranges branch junctions of each branch introduction duct, each branch discharge duct and each branch purge duct, and the main introduction duct, main discharge duct and main purge duct coaxially in the vertical direction, If an auto damper is provided at the branch junction to switch the three flow paths of each branch introduction duct, each branch discharge duct, and each branch purge duct at the same time, a single damper and its drive unit are sufficient, and the installation space for the auto damper is small. Not only does this work, it's very easy to control.
[0017]
For example, an auto cylinder comprising a rotating cylinder in which each branch introduction duct, each branch discharge duct, and each branch purge duct are branched or merged equiangularly in three directions with three switching flow paths formed around an auto damper. If the damper is used, by rotating the rotary cylinder by 120 °, the branch introduction duct communicating with one exhaust gas introduction / exhaust duct among the branch introduction ducts is selectively brought into conduction with the main introduction duct. The branch discharge duct that communicates with the other exhaust gas introduction / exhaust duct is selectively connected to the main exhaust duct, and the branch purge duct that communicates with the remaining exhaust gas introduction / exhaust duct among the branch purge ducts is selectively selected as the main purge duct. Can be conducted.
Therefore, if this is rotated 120 ° at a time, the exhaust of treated exhaust gas (storage)-introduction of untreated exhaust gas (heat release)-recirculation (purging) of residual untreated exhaust gas is repeated for each heat storage chamber. Exhaust gas treatment is performed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a heat storage type exhaust gas treatment apparatus according to the present invention, FIGS. 2A to 2C are piping diagrams showing a channel switching operation, and FIG. 3 is a channel switching of another embodiment. It is a piping diagram showing an example of operation. In addition, the same code | symbol is attached | subjected about the part which is common in FIG.
[0019]
In the heat storage type exhaust gas treatment apparatus 1 according to this example, the three heat storage chambers 3A to 3C are arranged at positions adjacent to each other, that is, at positions where the apexes of the triangle are seen from the plane.
By adopting such an arrangement, the adjacent heat storage chambers 3A to 3C can be brought into close contact with each other. In this case, it is only necessary to partition the heat storage chambers 3A to 3C with a heat insulating wall. Cost can be reduced.
Further, if the heat storage chambers 3A to 3C are arranged in close contact with each other, the portions adjacent to each other are not exposed to the outside air, so the amount of heat radiation is small, and the thermal efficiency is improved accordingly.
Further, the heat storage chambers 3A to 3C are respectively connected with exhaust gas introduction / exhaust ducts 7A to 7C extending in parallel downward from the bottom of the heat storage chambers 3A to 3C. .
[0020]
The exhaust gas introduction / discharge ducts 7A to 7C are discharged from the main introduction duct 8 for supplying untreated exhaust gas from the exhaust gas generation source, the main discharge duct 9 for discharging the treated exhaust gas, and the heat storage chambers 3A to 3C. The remaining untreated exhaust gas is communicated with a main purge duct 10 that recirculates the remaining untreated exhaust gas to the main introduction duct 8.
[0021]
The main introduction duct 8 is connected to each of the exhaust gas introduction / discharge ducts 7A to 7C via three branch introduction ducts 8A to 8C branched from the duct 8 in three directions.
Further, to the main discharge duct 9, three branch discharge ducts 9A to 9C branched from the exhaust gas introduction / discharge ducts 7A to 7C are joined and connected from three sides.
Furthermore, three branched purge ducts 10A to 10C branched from the exhaust gas introduction / discharge ducts 7A to 7C are joined and connected to the main purge duct 10 from three directions.
[0022]
The main introduction duct 8, the main discharge duct 9, and the main purge duct 10 are extended to the inside of a triangle with the exhaust gas introduction / exhaust ducts 7A to 7C extending below the heat storage chambers 3A to 3C as vertices, The branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C are branched and joined.
The branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C are connected to the exhaust gas introduction / exhaust ducts 7A to 7C in three upper and lower layers.
[0023]
Further, branch junctions P of the branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C and the branch purge ducts 10A to 10C and the main introduction duct 8, the main discharge duct 9 and the main purge duct 10 are coaxially arranged vertically. At the branch junction point P, there is disposed an auto damper 11 that simultaneously switches the three flow paths of the branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C.
[0024]
With the auto damper 11 as the center, the branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C are branched or merged equiangularly in three directions.
The auto damper 11 is provided with a rotating cylinder 13 (see FIG. 2) that is rotated by a motor 12 by 120 °.
[0025]
As shown in FIG. 2, the rotary cylinder 13 has a branch introduction duct 8A that communicates with one exhaust gas introduction / discharge duct 7A (7B, 7C) among the branch introduction ducts 8A to 8C when rotated by 120 °. (8B, 8C) is selectively connected to the main introduction duct 8 and the switching flow path 14in, and the branch discharge that communicates with the other exhaust gas introduction / discharge duct 7B (7C, 7A) among the branch discharge ducts 9A to 9C. A switching flow path 14out that selectively connects the duct 9B (9C, 9A) to the main discharge duct 9 and a branch purge duct that communicates with the remaining exhaust gas introduction / discharge duct 7C (7A, 7B) among the branch purge ducts 10A to 10C. A switching flow path 14p that selectively connects 10C (10A, 10B) to the main purge duct 10 is formed.
[0026]
Reference numeral 15 denotes a blower fan interposed in the main introduction duct 8, and the main purge duct 10 is connected to the upstream side of the blower fan 15.
[0027]
The above is an example of the configuration of the present invention, and its operation will be described next with reference to FIGS.
When the rotary cylinder 13 of the auto damper 11 is at the position shown in FIG. 2A, the main introduction duct 8 is conducted to the branch introduction duct 8A via the switching flow path 14in, and the branch discharge duct 9B is switched to the switching flow path 14out. Is connected to the main discharge duct 9, and the branch purge duct 10C is connected to the main purge duct 10 via the switching flow path 14p.
[0028]
Therefore, the untreated exhaust gas fed through the main introduction duct 8 is introduced into the heat storage chamber 3A through the exhaust gas introduction / exhaust duct 7A, and the high-temperature treated exhaust gas treated in the exhaust gas treatment zone 4 passes through the heat storage chamber 3B. In this case, the heat is stored in the heat storage layer 2B and is discharged to the outside through the exhaust gas introduction / discharge duct 7B-branch discharge duct 9B-switching flow path 14out-main discharge duct 9.
[0029]
At this time, the heat storage chamber 3C is purged, and the residual untreated exhaust gas pushed out by the treated exhaust gas passes through the exhaust gas introduction / exhaust duct 7C-branch purge duct 10C-switching flow path 14p-main purge duct 10 and passes through the main introduction duct 8. And then recirculated into the exhaust gas treatment zone 4 on the introduction side.
[0030]
Next, when the motor 12 rotates the rotary cylinder 13 of the auto damper 11 by 120 ° to the position shown in FIG. 2B, the main introduction duct 8 is conducted to the branch introduction duct 8B via the switching flow path 14in and branched and discharged. The duct 9C is conducted to the main discharge duct 9 via the switching flow path 14out, and the branch purge duct 10A is conducted to the main purge duct 10 via the switching flow path 14p.
Thereby, untreated exhaust gas is introduced from the heat storage chamber 3B where heat storage is completed and preheated, and the treated exhaust gas processed in the exhaust gas treatment zone 4 is discharged from the heat storage chamber 3C where purge is completed, and the heat storage chamber 3A is The remaining untreated exhaust gas is purged to the introduction side heat storage chamber 3B.
[0031]
Further, when the motor 12 rotates the rotary cylinder 13 of the auto damper 11 to the position shown in FIG. 2 (c) by 120 °, the main introduction duct 8 is conducted to the branch introduction duct 8C via the switching flow path 14in and branched and discharged. The duct 9A is conducted to the main discharge duct 9 via the switching flow path 14out, and the branch purge duct 10B is conducted to the main purge duct 10 via the switching flow path 14p.
Thereby, untreated exhaust gas is introduced and preheated from the heat storage chamber 3C where heat storage is completed, and the treated exhaust gas treated in the exhaust gas treatment zone 4 is discharged from the heat storage chamber 3A after purging, and the heat storage chamber 3B The remaining untreated exhaust gas is purged to the introduction side heat storage chamber 3C.
[0032]
In this way, the rotary cylinder 13 is rotationally driven by 120 ° by the motor 12, and the flow paths of the branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C are sequentially switched. In each heat storage chamber 3A to 3C, exhaust gas treatment can be performed continuously by repeating discharge of exhausted gas (heat storage)-introduction of untreated exhaust gas (radiation)-recirculation (purging) of residual untreated exhaust gas. .
[0033]
In addition, not only when providing one auto damper 11 at the branch junction P, a plurality of auto dampers are provided for each branch introduction duct 8A to 8C, each branch discharge duct 9A to 9C, and each branch purge duct 10A to 10C. It may be the case.
In this case, the number of installed dampers is the same as the conventional one, but the piping space is narrowed by piping the branch introduction ducts 8A to 8C, the branch discharge ducts 9A to 9C, and the branch purge ducts 10A to 10C in three layers. In addition, since each auto damper can be arranged three-dimensionally, the installation space is reduced, and the entire apparatus can be reduced in size.
[0034]
Further, the main purge duct 10 is not limited to recirculating the residual untreated exhaust gas pushed out from the heat storage chambers 3A to 3C to the main introduction duct 8, but each treated exhaust gas flowing through the main exhaust duct 9 as shown in FIG. The heat storage chambers 3 </ b> A to 3 </ b> C may be supplied to push the remaining untreated exhaust gas in the heat storage chambers 3 </ b> A to 3 </ b> C into the exhaust gas treatment zone 4.
In this case, the blower fan 15 is interposed in the main discharge duct 9, the main purge duct 10 is branched from the downstream side, and is connected to the branch purge ducts 10 </ b> A to 10 </ b> C via the auto damper 11.
[0035]
Furthermore, although the case where the catalyst layers 6A to 6C are disposed in the exhaust gas treatment zone 4 has been described, it is needless to say that the present invention can be applied to a direct combustion type exhaust gas treatment device without the catalyst layers 6A to 6C.
[0036]
【The invention's effect】
As described above, according to the present invention, the three heat storage chambers are disposed at positions adjacent to each other, and the exhaust gas introduction / exhaust duct is extended below the three heat storage chambers, and branched in three directions from the main introduction duct. Three branch introduction ducts, three branch discharge ducts joined from three sides to the main discharge duct, and three branch purge ducts joined from three sides to the main purge duct are connected to the exhaust gas introduction / exhaust duct. On the other hand, since the pipes are arranged in three upper and lower layers, if there is an installation space for the heat storage chamber, it is possible to perform the piping underneath it, and therefore, it is possible to reduce the installation space for the entire apparatus, which is an excellent effect. .
In addition, if the three heat storage chambers are arranged closely, the adjacent heat insulating walls can be shared, so that the material cost can be saved, and at the same time, the portion exposed to the outside air is reduced. There is also an effect that thermal efficiency is improved.
[0037]
Further, the branch junctions of each branch introduction duct, each branch discharge duct and each branch purge duct, and the main introduction duct, main discharge duct and main purge duct are arranged coaxially in the vertical direction, and each branch is arranged at the branch junction. If an auto damper is provided that switches between the three flow paths of the introduction duct, each branch discharge duct, and each branch purge duct at the same time, only one damper and its drive device are required, and not only the installation space for the damper is reduced, but also the control thereof. It becomes extremely simple, and there is an effect that the equipment cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a heat storage type exhaust gas treatment apparatus according to the present invention.
FIGS. 2A to 2C are piping diagrams showing flow path switching operations;
FIG. 3 is a piping diagram illustrating an example of a flow path switching operation according to another embodiment.
FIG. 4 is a schematic explanatory view showing a conventional apparatus.
[Explanation of symbols]
1 ... Thermal storage type exhaust gas treatment devices 2A-2C ... Thermal storage layers 3A-3C ... Thermal storage chamber 4 ... Exhaust gas treatment zone 5 ... Burner 6A ~ 6C ... catalyst layer 7A ~ 7C ... exhaust gas introduction and discharge duct 8 ... main introduction duct 8A ~ 8C ... branch introduction duct 9 ... ... main discharge duct 9A ~ 9C: Branch discharge duct 10 ... Main purge duct 10A to 10C ... Branch purge duct 11 ... Auto damper 13 ... Rotary cylinders 14in, 14out, 14p・ Switching channel

Claims (3)

高温の処理済排ガスを排出させる際にその熱を蓄熱し、低温の未処理排ガスを導入する際に放熱して当該排ガスを予熱する蓄熱層 (2A〜2C) を配した三つの蓄熱室 (3A〜3C)が、未処理排ガスを所定の温度に加熱して浄化処理する排ガス処理ゾーン(4)に対して並設され、一の蓄熱室(3A〜3C)から導入された未処理排ガスを前記排ガス処理ゾーン(4)で浄化処理した後、その処理済排ガスを他の一の蓄熱室(3A〜3C)から排出させると共に、排ガスの導入側及び排出側を順次交互に切り換えて連続的に処理を行う蓄熱型排ガス処理装置において、
前記各蓄熱室 (3A〜3C)が互いに隣接する位置に配設されると共に、各蓄熱室 (3A〜3C)の底部に連通されてその下方に向かって並行に延設される夫々の排ガス導入排出ダクト (7A〜7C)と、排ガス発生源から未処理排ガスを送給する主導入ダクト (8)と、処理済排ガスを排出する主排出ダクト(9)と、各蓄熱室 (3A〜3C)から排出される残存未処理排ガスを主導入ダクト(8)に還流し、または、主排出ダクト(9)を流れる処理済排ガスを各蓄熱室 (3A〜3C)に還流する主パージダクト(10)を備え、
前記主導入ダクト(8)から三方に分岐されて前記各排ガス導入排出ダクト (7A〜7C)に接続される三本の分岐導入ダクト (8A〜8C)と、前記各排ガス導入排出ダクト (7A〜7C)から分岐されて前記主排出ダクト(9)に三方から合流接続される三本の分岐排出ダクト (9A〜9C)と、前記各排ガス導入排出ダクト (7A〜7C)から分岐されて前記主パージダクト (10) に三方から合流接続される三本の分岐パージダクト(10A〜10C)が、前記各蓄熱室 (3A〜3C)の下方で上下三層に配管されたことを特徴とする蓄熱型排ガス処理装置。
Three heat storage chambers (3A to 2C) with heat storage layers (2A to 2C) that store heat when exhausting high-temperature treated exhaust gas and dissipate heat to preheat the exhaust gas when introducing low-temperature untreated exhaust gas ~ 3C) is juxtaposed to the exhaust gas treatment zone (4) for heating and purifying the untreated exhaust gas to a predetermined temperature, and the untreated exhaust gas introduced from one heat storage chamber (3A to 3C) After purifying in the exhaust gas treatment zone (4), the treated exhaust gas is discharged from the other heat storage chamber (3A-3C), and the exhaust gas introduction side and the exhaust side are switched alternately one after the other and processed continuously In a heat storage type exhaust gas treatment device that performs
Each of the heat storage chambers (3A to 3C) is disposed at a position adjacent to each other, and communicates with the bottom of each of the heat storage chambers (3A to 3C) and extends in parallel toward the lower side thereof. Exhaust duct (7A to 7C), main introduction duct (8) for delivering untreated exhaust gas from the exhaust gas source, main exhaust duct (9) for discharging treated exhaust gas, and each heat storage chamber (3A to 3C) The main purge duct (10) for returning the residual untreated exhaust gas discharged from the exhaust gas to the main introduction duct (8) or returning the treated exhaust gas flowing through the main discharge duct (9) to each heat storage chamber (3A to 3C) Prepared,
Three branch introduction ducts (8A-8C) branched in three directions from the main introduction duct (8) and connected to the exhaust gas introduction / exhaust ducts (7A-7C), and each exhaust gas introduction / exhaust duct (7A- 7C) and three branch discharge ducts (9A to 9C) joined and connected to the main discharge duct (9) from three directions, and the exhaust gas introduction / discharge ducts (7A to 7C) branched from the main discharge duct (9). Heat storage type exhaust gas characterized in that three branched purge ducts (10A to 10C) joined and connected to the purge duct (10) from three directions are piped in three layers above and below the heat storage chambers (3A to 3C). Processing equipment.
前記各分岐導入ダクト (8A〜8C),各分岐排出ダクト (9A〜9C)及び各分岐パージダクト(10A〜10C)と、主導入ダクト(8),主排出ダクト(9)及び主パージダクト(10)との分岐合流点(P)が上下に同軸的に配置され、その分岐合流点(P)には、各分岐導入ダクト (8A〜8C),各分岐排出ダクト (9A〜9C)及び各分岐パージダクト(10A〜10C)の三流路を同時に切り換えるオートダンパ(11)が配設されてなる請求項1記載の蓄熱型排ガス処理装置。Each branch introduction duct (8A to 8C), each branch discharge duct (9A to 9C) and each branch purge duct (10A to 10C), main introduction duct (8), main discharge duct (9) and main purge duct (10) The branch junction (P) is coaxially arranged vertically, and at each branch junction (P), each branch introduction duct (8A-8C), each branch discharge duct (9A-9C), and each branch purge duct The regenerative exhaust gas treatment apparatus according to claim 1, further comprising an auto damper (11) for simultaneously switching the three flow paths (10A to 10C). 各分岐導入ダクト (8A〜8C),各分岐排出ダクト (9A〜9C)及び各分岐パージダクト(10A〜10C)は、前記分岐合流点(P)に配されたオートダンパ(11)を中心にして三方向に等角的に分岐又は合流され、前記オートダンパ(11)は、120°ずつ回転されたときに各流路を切り換える回転シリンダ(13)を備え、当該回転シリンダ(13)には、各分岐導入ダクト (8A〜8C)のうち一の排ガス導入排出ダクト(7A〜7C)に連通する分岐導入ダクト (8A〜8C)を主導入ダクト(8)と選択的に導通させ、各分岐排出ダクト (9A〜9C)のうち他の一の排ガス導入排出ダクト(7A〜7C)に連通する分岐排出ダクト (9A〜9C)を主排出ダクト(9)と選択的に導通させ、各分岐パージダクト(10A〜10C)のうち残る一の排ガス導入排出ダクト(7A〜7C)に連通する分岐パージダクト(10A〜10C)を主パージダクト(10)と選択的に導通させる三つの切換流路(14in,14out ,14p)が形成されて成る請求項2記載の蓄熱型排ガス処理装置。Each branch introduction duct (8A to 8C), each branch discharge duct (9A to 9C) and each branch purge duct (10A to 10C) are centered on the auto damper (11) arranged at the branch junction (P). The auto damper (11) is equilaterally branched or joined in three directions, and the auto damper (11) includes a rotating cylinder (13) that switches each flow path when rotated by 120 °, and the rotating cylinder (13) includes: The branch introduction duct (8A to 8C) communicating with one exhaust gas introduction / discharge duct (7A to 7C) of each branch introduction duct (8A to 8C) is selectively brought into conduction with the main introduction duct (8), and each branch discharge is performed. The branch discharge duct (9A-9C) communicating with the other exhaust gas introduction / discharge duct (7A-7C) among the ducts (9A-9C) is selectively brought into conduction with the main discharge duct (9), and each branch purge duct ( Branch purge duct communicating with the remaining exhaust gas introduction / exhaust duct (7A-7C) Three switching flow path for selectively conducting (1OA - 1OC) and the main Pajidakuto (10) (14in, 14out, 14p) is regenerative exhaust gas treating apparatus according to claim 2, wherein comprising formed.
JP08517598A 1998-03-31 1998-03-31 Thermal storage type exhaust gas treatment equipment Expired - Fee Related JP3673077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08517598A JP3673077B2 (en) 1998-03-31 1998-03-31 Thermal storage type exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08517598A JP3673077B2 (en) 1998-03-31 1998-03-31 Thermal storage type exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JPH11281035A JPH11281035A (en) 1999-10-15
JP3673077B2 true JP3673077B2 (en) 2005-07-20

Family

ID=13851335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08517598A Expired - Fee Related JP3673077B2 (en) 1998-03-31 1998-03-31 Thermal storage type exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP3673077B2 (en)

Also Published As

Publication number Publication date
JPH11281035A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
WO2015041037A1 (en) Catalytic regenerative combustion apparatus
KR101249299B1 (en) System and methods for removing materials from flue gas via regenerative selective catalytic reduction
CA2251768C (en) Integrated voc entrapment system for regenerative oxidation
JP3673077B2 (en) Thermal storage type exhaust gas treatment equipment
US5362449A (en) Regenerative gas treatment
JP4121457B2 (en) Module VOC containment chamber for two-chamber regenerative oxidizer
JP3515253B2 (en) Thermal storage type deodorizing equipment
JP3673060B2 (en) Thermal storage type exhaust gas treatment device and operation method thereof
JP3679187B2 (en) Thermal storage exhaust gas purification system
JPH09262437A (en) Regenerative waste gas purifier
JP2911112B2 (en) Combustion deodorization of organic silicon-containing exhaust gas
JP2011072919A (en) System for treating gas containing organic solvent
WO1994023246A1 (en) Regenerative gas treatment
JP2997134B2 (en) Exhaust treatment device
JP3579176B2 (en) Thermal storage deodorization equipment
JP3831532B2 (en) Thermal storage type exhaust gas treatment equipment
JP3652778B2 (en) Catalytic heat storage deodorization treatment equipment
JPH11173529A (en) Heat storage catalytic method and device for treating exhaust gas
JPH10318521A (en) Thermal storage type exhaust gas processing equipment
KR200158948Y1 (en) Apparatus of preventing purge air exhausting in air polluting material combustor
JP2000088230A (en) Heat storage type waste gas processing apparatus and air intake/exhaust distributing apparatus
JPH10244125A (en) Apparatus for concentrating malodorous material
JP2000274644A (en) Regenerative exhaust gas treating device and method for operating it for burnout
JPH11281034A (en) Regenerative type exhaust gas combustion treatment apparatus and regenerative body used therefor
US6589315B1 (en) Method for thermally regenerating the heat exchanger material of a regenerative post-combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees